FUZZY α -MODULARITY IN FUZZY α -LATTICES

Paval A. Khubchandani and Jvoti A. Khubchandani

ABSTRACT. In this paper, we have introduced and studied the notion of a fuzzy independent pair and obtain some properties of fuzzy α -modular pairs and independent pairs.

Key Words: Fuzzy α -lattice, fuzzy α -modular pair, fuzzy atom, fuzzy independent pair, \perp_{F} -symmetric, fuzzy semi-modular.

2010 Mathematics Subject Classification: Primary: 06D72; Secondary: 03E72.

1. Introduction

Zadeh [14] in 1971 introduced the concept of fuzzy ordering. The concept of a fuzzy sublattice was introduced by Yuan and Wu [13]. Ajmal and Thomas [1] in 1994 defined a fuzzy lattice and a fuzzy sublattice as a fuzzy algebra. Chon [2] considered Zadeh's fuzzy order [15] and proposed a new notion of a fuzzy lattice and studied level sets of such structures. At the same time, he also proved some results for distributive and modular fuzzy lattices. Mezzomo *et. al.* [4] changed the way to define the fuzzy supremum and the fuzzy infimum of a pair of elements by considering a threshold fixed $\alpha \in [0,1)$ instead of, as usual, zero.

The concept of a modular pair in a lattice is well investigated by Maeda and Maeda [3]. Wasadikar and Khubchandani [7] defined a fuzzy modular pair in a fuzzy lattice and obtained some properties of fuzzy

Received: 17 April 2023, Accepted: 30 June 2023. Communicated by Mahmood Bakhshi; *Address correspondence to P.A. Khubchandani; E-mail: payal_khubchandani@yahoo.com.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2023 The Author(s). Published by University of Mohaghegh Ardabili.

modular pairs. Recently, Wasadikar and Khubchandani [12] introduced the notion of a fuzzy α -modular pair in a fuzzy α -lattice and prove some properties analogous to classical theory. In this paper, we introduce and study the notion of a fuzzy independent pair and obtain some properties of fuzzy α -modular pairs and independent pairs in fuzzy α -lattice.

2. Preliminaries

In fuzzy sets, each element of a nonempty set X is mapped to [0,1] by a membership function $\mu: X \to [0,1]$.

A mapping $A: X \times X \to [0,1]$ is called a fuzzy binary relation on X.

The following definition is from Zadeh [15]. A fuzzy binary relation A on X is called:

- (i) fuzzy reflexive if A(x,x) = 1, for all $x \in X$;
- (ii) fuzzy symmetric if A(x,y) = A(y,x), for all $x,y \in X$;
- (iii) fuzzy transitive if $A(x, z) \ge \sup_{y \in X} \min[A(x, y), A(y, z)];$
- (iv) fuzzy antisymmetric if A(x,y) > 0 and A(y,x) > 0 implies x = y.

Based on the above properties Zadeh [15] introduced the following concepts related to a fuzzy binary relation A on a set X:

- (i) A is called a fuzzy equivalence relation on X if A is fuzzy reflexive, fuzzy symmetric and fuzzy transitive;
- (ii) A is a fuzzy partial order relation if A is fuzzy reflexive, fuzzy antisymmetric and fuzzy transitive and the pair (X, A) is called a fuzzy partially ordered set or a fuzzy poset;
- (iii) A is a fuzzy total order relation if it is a fuzzy partial order relation and A(x,y)>0 or A(y,x)>0, for all $x,y\in X$, and the fuzzy poset (X,A) is called of a fuzzy totally ordered set or a fuzzy chain.

Definition 2.1. [2, Definition 3.1] Let (X, A) be a fuzzy poset and let $Y \subseteq X$. An element $u \in X$ is said to be an upper bound for Y iff A(y, u) > 0, for all $y \in Y$. An upper bound u_0 for Y is the least upper bound (or supremum) of Y iff $A(u_0, u) > 0$, for every upper bound u for Y. We then write $u_0 = \sup Y = \vee Y$. If $Y = \{x, y\}$, then we write $\vee Y = x \vee y$.

Similarly, an element $v \in X$ is said to be a lower bound for Y iff A(v, y) > 0, for all $y \in Y$. A lower bound v_0 for Y is the greatest lower bound (or infimum) of Y iff $A(v, v_0) > 0$, for every lower bound v for

Y. We then write $v_0 = \inf Y = \wedge Y$. If $Y = \{x, y\}$, then we write $\wedge Y = x \wedge y$.

3. Fuzzy α -lattices

Mezzomo and Bedregal [4] generalized the concept of a (fuzzy) upper bound as follows.

Definition 3.1. [4, Definition 3.1] Let (X, A) be a fuzzy poset. Let $Y \subseteq X$ and $\alpha \in [0, 1)$. An element $u \in X$ is said to be an α -upper bound for Y whenever $A(x, u) > \alpha$, for all $x \in Y$. An α -upper bound u_0 for Y is called a least α -upper bound (or α -Supremum) of Y iff $A(u_0, u) > \alpha$, for every α -upper bound u of Y.

Dually, an element $v \in X$ is said to be an α -lower bound for Y iff $A(v,x) > \alpha$, for all $y \in Y$. An α -lower bound v_0 for Y is called a greatest α -lower bound (or α -infimum) of Y iff $A(v,v_0) > \alpha$ for every α -lower bound v for Y.

We denote the least α -upper bound of the set $\{x, y\}$ by $x \vee_{\alpha} y$ and the greatest α -lower bound of the set $\{x, y\}$ by $x \wedge_{\alpha} y$.

Remark 3.2. [4, Remark 3.1] Since A is fuzzy antisymmetric, the least α -upper (greatest α -lower) bound, if it exists, is unique.

Proposition 3.3. [4, Proposition 3.1] Let (X, A) be fuzzy poset, $\alpha \in [0,1)$ and $x,y,z \in X$. If $A(x,y) > \alpha$ and $A(y,z) > \alpha$, then $A(x,z) > \alpha$.

Definition 3.4. [4, Definition 3.2] A fuzzy poset (X, A) is a fuzzy α -lattice iff $x \vee_{\alpha} y$ and $x \wedge_{\alpha} y$ exists for all $x, y \in X$, for some $\alpha \in [0, 1)$.

Definition 3.5. [4, Definition 3.4] A fuzzy poset (X, A) is called fuzzy sup α -lattice, if each pair of element has α -supremum in X, denoted by $\sup_{\alpha} X$.

Dually, it is called fuzzy inf α -lattice, if each pair of element has α -infimum in X, denoted by $inf_{\alpha} X$. A fuzzy semi α -lattice is a fuzzy poset which is a fuzzy sup α -lattice or a fuzzy inf α -lattice.

Definition 3.6. [4, Definition 3.5] Let (X,A) be a fuzzy poset and I be a fuzzy set on X. The α -supremum in I denoted by $\sup_{\alpha} I$, is an element of X such that if $x \in X$ and $\mu_I(x) > \alpha$, then $A(x, \sup_{\alpha} I) > \alpha$ and if $u \in X$ is such that $A(x,u) > \alpha$ whenever $\mu_I(x) > \alpha$, then $A(\sup_{\alpha} I, u) > \alpha$.

Similarly, the α -infimum in I denoted by $inf_{\alpha} I$, is an element of X such that if $x \in X$ and $\mu_I(x) > \alpha$, then $A(inf_{\alpha}I, x) > \alpha$ and if $v \in X$ is such that $A(v, x) > \alpha$ whenever $\mu_I(x) > \alpha$, then $A(v, inf_{\alpha}I) > \alpha$.

Definition 3.7. [4, Definition 3.6] A fuzzy inf α -lattice is called inf complete if all of its nonempty fuzzy sets have α -infimum.

Similarly, a fuzzy sup α -lattice is called sup-complete if all of its nonempty fuzzy set admit α -supremum. A fuzzy α -lattice is complete whenever it is, simultaneously, inf-complete and sup-complete.

Proposition 3.8. [4, Proposition 3.2] Let (X, A) be a complete fuzzy $\sup \alpha$ -lattice (inf α -lattice) and I be a fuzzy set on X. Then, $\sup_{\alpha} I$ (inf α I) exists and it is unique.

Proposition 3.9. [4, Proposition 3.3] Let $\mathcal{L} = (X, A)$ be a fuzzy sup α -lattice, then there exist an element \top in X, such that $A(x, \top) > \alpha$ for all $x \in X$.

Proposition 3.10. [4, Proposition 3.4] Let $\mathcal{L} = (X, A)$ be a fuzzy inf α -lattice, then there exist an element \perp in X, such that $A(\perp, x) > \alpha$ for all $x \in X$.

Definition 3.11. [4, Definition 3.6] A fuzzy lattice (X, A) is bounded if there exists \top and \bot in X such that for any $x \in X$, $A(\bot, x) > \alpha$ and $A(x, \top) > \alpha$.

Corollary 3.12. [4, Corollary 3.1] Every fuzzy lattice is a fuzzy α lattice.

We illustrate the concepts of an α -upper bound and α -lower bound with an example.

Example 3.13. Consider the set $X = \{x, y, z, w\}$, let $\alpha = 0.2$ and

let $A: X \times X \longrightarrow [0,1]$ be a fuzzy relation defined as follows:

$$A(x,x) = A(y,y) = A(z,z) = A(w,w) = 1.0,$$

$$A(w,z) = 0.2, A(w,y) = 0.5, A(w,x) = 0.9,$$

$$A(z, w) = 0.0, A(z, y) = 0.3, A(z, x) = 0.6,$$

$$A(y, w) = 0.0, A(y, z) = 0.0, A(y, x) = 0.4,$$

$$A(x, w) = 0.0, A(x, z) = 0.0, A(x, y) = 0.0.$$

Then A is a fuzzy total order relation.

Let $Y = \{w, z\}$. Then x, y and z are the α -upper bounds of Y. Since A(z, w) = 0.0 and $A(w, z) = 0.2 \ge \alpha$, it follows that the α -supremum of Y is z and the α -infimum is w.

The fuzzy α -join and fuzzy α -meet tables are as follows:

\vee_{α}	x	y	z	w
x	x	x	x	x
y	x	y	y	y
z	x	y	z	z
w	x	y	z	w

We note that (X, A) is a fuzzy lattice as well as a fuzzy α -lattice for $\alpha = 0.2$.

In Figure 1, we show the related tabular and graphical representations for the fuzzy relation A.

A	w	z	y	x
w	1.0	0.2	0.5	0.9
z	0.0	1.0	0.3	0.6
y	0.0	0.0	1.0	0.4
x	0.0	0.0	0.0	1.0

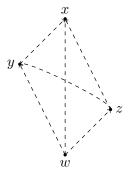


Figure 1

The following example shows that a subset of a fuzzy poset may not have a greatest α -lower bound (least α -upper bound).

Example 3.14. Let $X = \{x_1, y_1, z_1, w_1\}.$

Let $A: X \times X \longrightarrow [0,1]$ be a fuzzy relation defined as follows:

$$A(x_1, x_1) = A(y_1, y_1) = A(z_1, z_1) = A(w_1, w_1) = 1.0,$$

$$A(x_1, y_1) = 0.20, A(x_1, z_1) = 0.30, A(x_1, w_1) = 0.90,$$

$$A(y_1, x_1) = 0.0, A(y_1, z_1) = 0.0, A(y_1, w_1) = 0.50,$$

$$A(z_1, x_1) = 0.0, A(z_1, y_1) = 0.0, A(z_1, w_1) = 0.70,$$

$$A(w_1, x_1) = 0.0, A(w_1, y_1) = 0.0, A(w_1, z_1) = 0.0.$$

Then A is a fuzzy partial order relation.

The fuzzy α -join and fuzzy α -meet tables are as follows:

\vee_{α}	$ x_1 $	y_1	z_1	w_1	\wedge_{α}	$ x_1 $	y_1	z_1
x_1	x_1	y_1	z_1	w_1	x_1	x_1	x_1	x_1
y_1	y_1	y_1	w_1	w_1	y_1	x_1	y_1	x_1
z_1	$ z_1 $	w_1	z_1	w_1	z_1	x_1	x_1	z_1
w_1	$ w_1 $	w_1	w_1	w_1	w_1	x_1	y_1	z_1

We note that (X, A) is a fuzzy lattice.

In Figure 2, we show the related tabular and graphical representation for the fuzzy relation A.

A	x_1	y_1	z_1	w_1
x_1	1.0	0.20	0.30	0.90
y_1	0.0	1.0	0.0	0.50
z_1	0.0	0.0	1.0	0.70
w_1	0.0	0.0	0.0	1.0

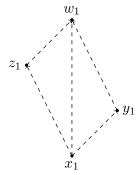


Figure 2

In Figure 3, we show the related tabular and graphical representations for the fuzzy relation A for $\alpha>0.30$.

Here
$$x_1 \vee_{\alpha} w_1 = w_1$$
, $x_1 \wedge_{\alpha} w_1 = x_1$,

$$y_1 \vee_{\alpha} w_1 = w_1, y_1 \wedge_{\alpha} w_1 = y_1,$$

$$z_1 \vee_{\alpha} w_1 = w_1, \ z_1 \wedge_{\alpha} w_1 = z_1,$$

$$y_1 \vee_{\alpha} z_1 = w_1, y_1 \vee_{\alpha} x_1 = w_1, z_1 \vee_{\alpha} x_1 = w_1.$$

But $y_1 \wedge_{\alpha} z_1$, $y_1 \wedge_{\alpha} x_1$, $z_1 \wedge_{\alpha} x_1$ does not exist.

A	x_1	y_1	z_1	w_1
x_1	1.0	0.0	0.0	0.90
y_1	0.0	1.0	0.0	0.50
z_1	0.0	0.0	1.0	0.70
w_1	0.0	0.0	0.0	1.0

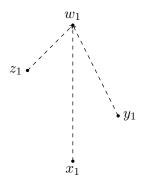


Figure 3

Remark 3.15. We note that Example 3.13 is an example of a fuzzy α -lattice for $\alpha = 0.2$ whereas Example 3.14, is not a fuzzy α -lattice for $\alpha > 0.30$.

Proposition 3.16. [4, Proposition 3.7] Let (X, A) be a fuzzy α -lattice, $\alpha \in [0, 1)$ and let $x, y, z \in X$. The following statements hold:

- (i) $A(x, x \vee_{\alpha} y) > \alpha$, $A(y, x \vee_{\alpha} y) > \alpha$, $A(x \wedge_{\alpha} y, x) > \alpha$, $A(x \wedge_{\alpha} y, y) > \alpha$;
- (ii) $A(x,z) > \alpha$ and $A(y,z) > \alpha$ implies $A(x \vee_{\alpha} y, z) > \alpha$;
- (iii) $A(z,x) > \alpha$ and $A(z,y) > \alpha$ implies $A(z,x \wedge_{\alpha} y) > \alpha$;
- (iv) $A(x,y) > \alpha$ iff $x \vee_{\alpha} y = y$;
- (v) $A(x,y) > \alpha$ iff $x \wedge_{\alpha} y = x$;
- (vi) If $A(y,z) > \alpha$, then $A(x \wedge_{\alpha} y, x \wedge_{\alpha} z) > \alpha$ and $A(x \vee_{\alpha} y, x \vee_{\alpha} z) > \alpha$;
- (vii) If $A(x \vee_{\alpha} y, z) > \alpha$, then $A(x, z) > \alpha$ and $A(y, z) > \alpha$;
- (viii) If $A(x, y \wedge_{\alpha} z) > \alpha$, then $A(x, y) > \alpha$ and $A(x, z) > \alpha$.

Proposition 3.17. [4, Proposition 3.8] Let (X, A) be a fuzzy α -lattice and let $x, y, z \in X$. Then

- (i) $x \vee_{\alpha} x = x$ and $x \wedge_{\alpha} x = x$;
- (ii) $x \vee_{\alpha} y = y \vee_{\alpha} x$ and $x \wedge_{\alpha} y = y \wedge_{\alpha} x$;
- (iii) $(x \vee_{\alpha} y) \vee_{\alpha} z = x \vee_{\alpha} (y \vee_{\alpha} z)$ and $(x \wedge_{\alpha} y) \wedge_{\alpha} z = x \wedge_{\alpha} (y \wedge_{\alpha} z)$;
- (iv) $(x \vee_{\alpha} y) \wedge_{\alpha} x = x$ and $(x \wedge_{\alpha} y) \vee_{\alpha} x = x$.

Lemma 3.18. [12, Lemma 3.18] Let (X, A) be a fuzzy α -lattice and $x, y, x', y' \in X$. If $A(x', x) > \alpha$ and $A(y', y) > \alpha$, then $A(x' \wedge_{\alpha} y', x \wedge_{\alpha} y) > \alpha$ and $A(x' \vee_{\alpha} y', x \vee_{\alpha} y) > \alpha$.

Definition 3.19. [4, Definition 3.8] Let (X, A) be a fuzzy α -lattice. (X, A) is fuzzy distributive iff $x \wedge_{\alpha} (y \vee_{\alpha} z) = (x \wedge_{\alpha} y) \vee_{\alpha} (x \wedge_{\alpha} z)$ and $(x \vee_{\alpha} y) \wedge_{\alpha} (x \vee_{\alpha} z) = x \vee_{\alpha} (y \wedge_{\alpha} z)$.

Note that (X, A) is fuzzy distributive iff $A(x \wedge_{\alpha} (y \vee_{\alpha} z), (x \wedge_{\alpha} y) \vee_{\alpha} (x \wedge_{\alpha} z)) > \alpha$ and $A((x \vee_{\alpha} y) \wedge_{\alpha} (x \vee_{\alpha} z), x \vee_{\alpha} (y \wedge_{\alpha} z)) > \alpha$.

Proposition 3.20. [12, Proposition 3.20] (Modular inequality) Let (X, A) be a fuzzy α -lattice and let $x, y, z \in X$. Then $A(x, z) > \alpha$ implies $A(x \vee_{\alpha} (y \wedge_{\alpha} z), (x \vee_{\alpha} y) \wedge_{\alpha} z) > \alpha$.

Definition 3.21. [12, Definition 3.21] Let (X, A) be a fuzzy α -lattice. (X, A) is fuzzy α -modular iff $A(x, z) > \alpha$ implies $x \vee_{\alpha} (y \wedge_{\alpha} z) = (x \vee_{\alpha} y) \wedge_{\alpha} z$ for all $x, y, z \in X$.

By the modular inequality, a fuzzy α -lattice (X, A) is fuzzy α -modular iff $A(x, z) > \alpha$ implies $A((x \vee_{\alpha} y) \wedge_{\alpha} z, x \vee_{\alpha} (y \wedge_{\alpha} z)) > \alpha$ for $x, y, z \in X$.

Proposition 3.22. [12, Proposition 3.22] Let (X, A) be a fuzzy α -lattice. (X, A) be a fuzzy distributive lattice, then (X, A) is fuzzy α -modular lattice.

We recall the Definition of a fuzzy α -modular pair in fuzzy α -lattice from paper [12]

Definition 3.23. [12, Definition 4.2] Let (X,A) be a fuzzy α -lattice. We say that (x,y) is a fuzzy α -modular pair and we write $(x,y)FM_{\alpha}$, if whenever $A(z,y) > \alpha$ for some $z \in X$, $\alpha \in [0,1)$, then $(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y)$.

We say that (x,y) is a fuzzy dual α -modular pair and we write $(x,y)FM_{\alpha}^*$, if whenever $A(y,z)>\alpha$ for some $z\in X$, then $(z\wedge_{\alpha}x)\vee_{\alpha}y=z\wedge_{\alpha}(x\vee_{\alpha}y)$.

We write $(x,y)\overline{FM_{\alpha}}$ when the pair (x,y) is not a fuzzy α -modular pair.

4. Fuzzy α -modularity in fuzzy α -lattice

The following lemma gives a sufficient condition for a pair to be fuzzy α -modular in fuzzy α -lattice.

Lemma 4.1. If $A(x,y) > \alpha$ or $A(y,x) > \alpha$, then $(x,y)FM_{\alpha}$.

Proof. (i): Suppose that $A(x,y) > \alpha$ and $A(z,y) > \alpha$. Then by Proposition 3.16(ii), we get

$$A(z \vee_{\alpha} x, y) > \alpha.$$

As $A(x, y) > \alpha$ by Proposition 3.16(v), we get

$$(4.1) x \wedge_{\alpha} y = x.$$

We note that

$$A((z \vee_{\alpha} x) \wedge_{\alpha} y, z \vee_{F} (x \wedge_{\alpha} y))$$

$$= A((z \vee_{\alpha} x) \wedge_{\alpha} y, z \vee_{\alpha} x), \text{ by } (4.1)$$

$$= A(z \vee_{\alpha} x, z \vee_{\alpha} x), \text{ since } A(z \vee_{\alpha} x, y) > \alpha$$

$$= 1 > 0$$

Therefore,

$$A((z \vee_{\alpha} x) \wedge_{\alpha} y, z \vee_{F} (x \wedge_{\alpha} y)) > \alpha.$$

We know that

$$A(z \vee_{\alpha} (x \wedge_{\alpha} y), (z \vee_{\alpha} x) \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y).$$

(ii): Suppose that $A(y,x) > \alpha$ and $A(z,y) > \alpha$. By fuzzy transitivity of A we have

$$A(z,x) > \alpha$$
.

We have

$$\begin{split} &A((z\vee_{\alpha}x)\wedge_{\alpha}y,z\vee_{\alpha}(x\wedge_{\alpha}y))\\ &\geq sup_{k\in X}\min[A((z\vee_{\alpha}x)\wedge_{\alpha}y,k),A(k,z\vee_{F}(x\wedge_{\alpha}y))]\\ &\geq \min[A((z\vee_{\alpha}x)\wedge_{\alpha}y,y),A(y,z\vee_{\alpha}(x\wedge_{\alpha}y))]\\ &\geq \min[A(x\wedge_{\alpha}y,y),A(y,z\vee_{\alpha}y)]\\ &\geq \min[A(y,y),A(y,y)] \end{split}$$

Therefore,

$$A((z \vee_{\alpha} x) \wedge_{\alpha} y, z \vee_{\alpha} (x \wedge_{\alpha} y)) > \alpha.$$

We know that

$$A(z \vee_{\alpha} (x \wedge_{\alpha} y), (z \vee_{\alpha} x) \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y).$$

Thus, $(x,y)FM_{\alpha}$ holds in either case.

Remark 4.2. If X has the elements \bot and \top , then for every $x \in X$, $(\bot, x)FM_{\alpha}$, $(x, \top)FM_{\alpha}$ and $(\bot, \top)FM_{\alpha}$ hold.

Remark 4.3. If $x, y \in X$, then, $(x \wedge_{\alpha} y, x)FM_{\alpha}$, $(x \wedge_{\alpha} y, y)FM_{\alpha}$, $(x, x \vee_{\alpha} y)FM_{\alpha}$, $(y, x \vee_{\alpha} y)FM_{\alpha}$ and $(x \wedge_{\alpha} y, x \vee_{\alpha} y)FM_{\alpha}$ hold.

We now prove some properties of fuzzy α -modular pairs.

Lemma 4.4. If $(x,y)FM_{\alpha}$, $A(x \wedge_{\alpha} y,z) > \alpha$, then $(x \wedge_{\alpha} z,y)FM_{\alpha}$.

Proof. Let $A(u, y) > \alpha$.

To show that $A([u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y, u \vee_{\alpha} [(x \wedge_{\alpha} z) \wedge_{\alpha} y]) > \alpha$ holds. We know that

$$A(x \wedge_{\alpha} z, x) > \alpha.$$

By applying Proposition 3.16(vi), repeatedly we have

$$A(u \vee_{\alpha} (x \wedge_{\alpha} z), u \vee_{\alpha} x) > \alpha$$

and

$$(4.2) A([u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y, (u \vee_{\alpha} x) \wedge_{\alpha} y) > \alpha.$$

As $(x,y)FM_{\alpha}$ holds so we have

$$(u \vee_{\alpha} x) \wedge_{\alpha} y = u \vee_{\alpha} (x \wedge_{\alpha} y).$$

Therefore, (4.2) reduces to

$$(4.3) A([u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y, u \vee_{\alpha} (x \wedge_{\alpha} y)) > \alpha.$$

As $A(x \wedge_{\alpha} y, z) > \alpha$ we have

$$(x \wedge_{\alpha} y) \wedge_{\alpha} z = x \wedge_{\alpha} y.$$

Therefore, (4.3) reduces to

$$A([u\vee_{\alpha}(x\wedge_{\alpha}z)]\wedge_{\alpha}y,u\vee_{\alpha}[(x\wedge_{\alpha}y)\wedge_{\alpha}z])>\alpha.$$

Thus,

$$A([u \vee_F (x \wedge_{\alpha} z)] \wedge_{\alpha} y, u \vee_{\alpha} [(x \wedge_{\alpha} z) \wedge_{\alpha} y]) > \alpha.$$

We know that

$$A(u \vee_{\alpha} [(x \wedge_{\alpha} z) \wedge_{\alpha} y], [u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$[u \vee_{\alpha} (x \wedge_{\alpha} z)] \wedge_{\alpha} y = u \vee_{\alpha} [(x \wedge_{\alpha} z) \wedge_{\alpha} y].$$

Thus, $(x \wedge_{\alpha} z, y)_F M_m$ holds.

Definition 4.5. Let $x, y \in X$. We say that (x, y) is a fuzzy independent pair and we write $(x, y) \perp FM_{\alpha}$ if $(x, y)FM_{\alpha}$ and $x \wedge_{\alpha} y = \bot$ hold.

Corollary 4.6. Let $x_1 \in X$. If $(x,y) \perp FM_{\alpha}$ and $A(x_1,x) > \alpha$, then $(x_1,y)FM_{\alpha}$.

Proof. Suppose that $(x,y) \perp FM_{\alpha}$ holds.

Then $(x, y)FM_{\alpha}$ holds with $x \wedge_{\alpha} y = \bot$.

As $A(\perp, x_1) > \alpha$ always holds we have

$$A(x \wedge_{\alpha} y, x_1) > \alpha.$$

Hence by Lemma 4.4, we have

$$(x \wedge_{\alpha} x_1, y)FM_{\alpha}$$
.

As $A(x_1, x) > \alpha$, Proposition 3.16(v), we have

$$x \wedge_{\alpha} x_1 = x_1.$$

Thus, $(x_1, y)FM_{\alpha}$ holds.

Theorem 4.7. If $(x,y) \perp FM_{\alpha}$, $A(x_1,x) > \alpha$ and $A(y_1,y) > \alpha$, then $(x_1,y_1) \perp FM_{\alpha}$.

Proof. Suppose that $(x,y) \perp FM_{\alpha}$ holds.

Then $(x,y)FM_{\alpha}$ holds with $x \wedge_{\alpha} y = \bot$.

Let $A(x_1, x) > \alpha$ and $A(y_1, y) > \alpha$ for some $x_1, y_1 \in X$.

Then by Proposition 3.16(vi), we have

$$A(x_1 \wedge_{\alpha} y, x \wedge_{\alpha} y) > \alpha.$$

Therefore,

$$(4.4) A(x_1 \wedge_{\alpha} y, \bot) > \alpha.$$

Similarly, $A(y_1, y) > \alpha$ by Proposition 3.16(vi), we have

$$(4.5) A(x_1 \wedge_{\alpha} y_1, x_1 \wedge_{\alpha} y) > \alpha.$$

By fuzzy transitivity of A from (4.4) and (4.5) we get

$$(4.6) A(x_1 \wedge_{\alpha} y_1, \bot) > \alpha.$$

As

$$(4.7) A(\bot, x_1 \land_{\alpha} y_1) > \alpha$$

always holds.

From (4.6) and (4.7) by fuzzy antisymmetry of A we have

$$x_1 \wedge_{\alpha} y_1 = x_1 \wedge_{\alpha} y = \bot.$$

Now, it remains to show that $(x_1, y_1)FM_{\alpha}$ holds. By Corollary 4.6, we have

$$(x_1,y)FM_{\alpha}$$
.

Now, let $A(y_2, y_1) > \alpha$ for some $y_2 \in X$.

Then by (iv) and (v) of Proposition 3.16, we have

$$y_2 \vee_{\alpha} y_1 = y_1$$
 and $y_2 \wedge_{\alpha} y_1 = y_2$.

Since $A(y_2, y_1) > \alpha$ and $A(y_1, y) > \alpha$ by fuzzy transitivity of A we get

$$A(y_2, y) > \alpha$$
.

As $A(y_1, y) > \alpha$, by (iv) and (v) of Proposition 3.16, we have

$$y_1 \vee_{\alpha} y = y$$
 and $y_1 \wedge_{\alpha} y = y_1$.

Hence

$$A((y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y_1, y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1))$$

$$= A((y_2 \vee_{\alpha} x_1) \wedge_{\alpha} (y \wedge_{\alpha} y_1), y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1))$$

$$= A([(y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y] \wedge_{\alpha} y_1, y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1))$$

$$= A([y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y)] \wedge_{\alpha} y_1, y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1)), \text{ by } (x_1, y)FM_{\alpha}$$

$$= A((y_2 \vee_{\alpha} \bot) \wedge_{\alpha} y_1, y_2 \vee_{\alpha} \bot)$$

$$= A(y_2 \wedge_{\alpha} y_1, y_2)$$

$$= A(y_2, y_2) = 1 > 0.$$

Therefore,

$$A((y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y_1, y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1)) > \alpha.$$

We know that

$$A(y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1), (y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y_1) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$(y_2 \vee_{\alpha} x_1) \wedge_{\alpha} y_1 = y_2 \vee_{\alpha} (x_1 \wedge_{\alpha} y_1).$$

Thus, $(x_1, y_1)FM_{\alpha}$ holds.

Also, we have

$$x_1 \wedge_{\alpha} y_1 = \bot$$
.

Hence $(x_1, y_1) \perp FM_{\alpha}$ holds.

Lemma 4.8. If $(x,y)FM_{\alpha}$ and if $(z,x\vee_{\alpha}y)FM_{\alpha}$, $A(z\wedge_{\alpha}(x\vee_{\alpha}y),x) > \alpha$, then $(z\vee_{\alpha}x,y)FM_{\alpha}$ and $(z\vee_{\alpha}x)\wedge_{\alpha}y = x\wedge_{\alpha}y$.

Proof. We have

$$\begin{split} &(z\vee_{\alpha}x)\wedge_{\alpha}y\\ &=(z\vee_{\alpha}x)\wedge_{\alpha}(x\vee_{\alpha}y)\wedge_{\alpha}y, \ \text{ by absorption identity}\\ &=(x\vee_{\alpha}z)\wedge_{\alpha}(x\vee_{\alpha}y)\wedge_{\alpha}y,\\ &=[x\vee_{\alpha}[z\wedge_{\alpha}(x\vee_{\alpha}y)]]\wedge_{\alpha}y, \ as\ (z,\ x\vee_{\alpha}y)FM_{\alpha}\\ &=x\wedge_{\alpha}y, \ \text{ as } A(z\wedge_{\alpha}(x\vee_{\alpha}y),\ x)>0. \end{split}$$

Thus, we get

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y.$$

We now show that $(z \vee_{\alpha} x, y)FM_{\alpha}$ holds, that is, to show that $A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) > \alpha$. Let $A(y_1, y) > \alpha$ for some $y_1 \in X$. We have

$$A([y_{1} \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y])$$

$$= A([(y_{1} \vee_{\alpha} x) \vee_{\alpha} z] \wedge_{\alpha} y, y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y])$$

$$= A([(y_{1} \vee_{\alpha} x) \vee_{\alpha} z] \wedge_{\alpha} (x \vee_{\alpha} y) \wedge_{\alpha} y, y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]),$$

$$as y = (x \vee_{\alpha} y) \wedge_{\alpha} y$$

$$= A(y_{1} \vee_{\alpha} [x \vee_{F} [z \wedge_{\alpha} (x \vee_{\alpha} y)]] \wedge_{\alpha} y, y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y])$$

$$= A((y_{1} \vee_{\alpha} x) \wedge_{\alpha} y, y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]),$$

$$as A(z \wedge_{\alpha} (x \vee_{\alpha} y), x) > \alpha$$

$$= A(y_{1} \vee_{\alpha} (x \wedge_{\alpha} y), y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]),$$

$$as (x, y)_{F}M_{m}$$

$$= A(y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y], y_{1} \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]),$$

$$as x \wedge_{\alpha} y = (z \vee_{\alpha} x) \wedge_{\alpha} y$$

$$= 1 > 0.$$

Hence

$$A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) > \alpha.$$

We know that

$$A(y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y], [y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$[y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y = y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y].$$

Thus, $(z \vee_{\alpha} x, y)FM_{\alpha}$ holds.

Theorem 4.9. If $(x, y)FM_{\alpha}$ and $(z, x \vee_{\alpha} y) \perp FM_{\alpha}$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$ and $(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y$.

Proof. Suppose that $(x,y)FM_{\alpha}$ and $(z,x\vee_{\alpha}y)\perp FM_{\alpha}$ hold.

Then $(z, x \vee_{\alpha} y)FM_{\alpha}$ holds with $z \wedge_{\alpha} (x \vee_{\alpha} y) = \bot$.

Therefore, by Lemma 4.8, we have $(z \vee_{\alpha} x, y)FM_{\alpha}$ and

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y.$$

Theorem 4.10. If $(x,y)FM_{\alpha}$ and $A(z,y) > \alpha$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$.

Proof. Let $A(y_1, y) > \alpha$.

As $A(y_1, y) > \alpha$ and $A(z, y) > \alpha$ by Proposition 3.16(ii), we have

$$A(y_1 \vee_{\alpha} z, y) > \alpha.$$

Also, $(x, y)FM_{\alpha}$ holds so we have

$$(4.8) [(y_1 \vee_{\alpha} z) \vee_{\alpha} x] \wedge_{\alpha} y = (y_1 \vee_{\alpha} z) \vee_{\alpha} (x \wedge_{\alpha} y).$$

To show that $A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_F y]) > \alpha$. Consider

$$A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y])$$

$$= A([(y_1 \vee_{\alpha} z) \vee_{\alpha} x] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y])$$

$$= A((y_1 \vee_{\alpha} z) \vee_{\alpha} (x \wedge_{\alpha} y), y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]), \text{ by } (4.8)$$

$$= A(y_1 \vee_{\alpha} [z \vee_{\alpha} (x \wedge_{\alpha} y)], y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y])$$

$$=A(y_1\vee_\alpha[(z\vee_\alpha x)\wedge_\alpha y],y_1\vee_\alpha[(z\vee_\alpha x)\wedge_\alpha y]),\ \text{ as }(x,y)FM_\alpha$$

$$= 1 > 0$$

Hence

$$A([y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y, y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y]) > \alpha.$$

We know that

$$A(y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y], [y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y) > \alpha$$

always holds.

By fuzzy antisymmetry of A we get

$$[y_1 \vee_{\alpha} (z \vee_{\alpha} x)] \wedge_{\alpha} y = y_1 \vee_{\alpha} [(z \vee_{\alpha} x) \wedge_{\alpha} y].$$

Thus, $(z \vee_{\alpha} x, y) F M_{\alpha}$ holds.

Corollary 4.11. If $(x,y) \perp FM_{\alpha}$ and $A(z,y) > \alpha$, then $(z \vee_{\alpha} x, y)FM_{\alpha}$ and $(z \vee_{\alpha} x) \wedge_{\alpha} y = z$.

Proof. Suppose that $(x,y) \perp FM_{\alpha}$ holds.

Then $(x, y)FM_{\alpha}$ holds with $x \wedge_{\alpha} y = \bot$.

Also, given $A(z, y) > \alpha$.

Therefore, by Theorem 4.10, we have

$$(z \vee_{\alpha} x, y) FM_{\alpha}$$
.

Now, it remains to show that $(z \vee_{\alpha} x) \wedge_{\alpha} y = z$.

By $(x, y)FM_{\alpha}$ and $A(z, y) > \alpha$ we have

$$(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y) = z \vee_{\alpha} \bot = z.$$

Lemma 4.12. If $(x,y) \perp FM_{\alpha}$ and $(z,x \vee_{\alpha} y) \perp FM_{\alpha}$, then $(z \vee_{\alpha} x,y) \perp FM_{\alpha}$.

Proof. Suppose that $(x,y) \perp FM_{\alpha}$ and $(z,x \vee_{\alpha} y) \perp FM_{\alpha}$ hold.

Then $(x,y)FM_{\alpha}$ and $(z,x\vee_{\alpha}y)FM_{\alpha}$ hold with

$$x \wedge_{\alpha} y = \bot \text{ and } z \wedge_{\alpha} (x \vee_{\alpha} y) = \bot.$$

By Theorem 4.9, we get

$$(z \vee_{\alpha} x, y) FM_{\alpha}$$
 and $(z \vee_{\alpha} x) \wedge_{\alpha} y = x \wedge_{\alpha} y = \bot$.

Hence $(z \vee_{\alpha} x, y) \perp FM_{\alpha}$ holds.

Definition 4.13. Let $\mathcal{L} = (X, A)$ be a fuzzy α -lattice. Let $x, y \in X$, then $y \prec_F^{\alpha} x$ (x "fuzzy covers" y) if $\alpha < A(y, x) < 1$, $A(y, c) > \alpha$ and $A(c, x) > \alpha$ imply c = y or c = x.

Definition 4.14. Let P denote the set of all $x \in X$ such that $\bot \prec_F^{\alpha} x$. The elements of P are called fuzzy atoms.

Corollary 4.15. Let $\mathcal{L} = (X, A)$ be a fuzzy α -lattice with \bot . If $p \in P$, $y \in X$, then $(y, p)FM_{\alpha}$.

Proof. If $A(x,p) > \alpha$, then $x = \bot$ or x = p.

Case (1): If $x = \bot$, then

$$(x \vee_{\alpha} y) \wedge_{\alpha} p = (\bot \vee_{\alpha} y) \wedge_{\alpha} p = y \wedge_{\alpha} p = x \vee_{\alpha} (y \wedge_{\alpha} p).$$

Case (2): If x = p, then

$$(x \vee_{\alpha} y) \wedge_{\alpha} p = (p \vee_{\alpha} y) \wedge_{\alpha} p = p = p \vee_{\alpha} (y \wedge_{\alpha} p) = x \vee_{\alpha} (y \wedge_{\alpha} p).$$

Thus,
$$(y, p)FM_{\alpha}$$
 holds.

5. Fuzzy semi-modular in α -lattices

In this section, we introduce the notion of a fuzzy semi-modular fuzzy α -lattice.

Definition 5.1. A fuzzy α -lattice $\mathcal{L} = (X, A)$ with \perp is called fuzzy weakly α -modular when in $\mathcal{L} = (X, A)$, $x \wedge_{\alpha} y \neq \bot$ implies $(x, y)FM_{\alpha}$.

Definition 5.2. A fuzzy α -lattice (X, A) with \perp is called \perp_F -symmetric fuzzy α -lattice when in (X, A), $(x, y) \perp FM_{\alpha}$ implies $(y, x)FM_{\alpha}$.

Definition 5.3. A fuzzy weakly modular α -lattice with \perp_F -symmetric fuzzy α -lattice is called as a fuzzy semi-modular α -lattice.

Throughout this section, we assume $\mathcal{L}=(X,A)$ as a fuzzy semi-modular α -lattice.

Lemma 5.4. If $x \wedge_{\alpha} y \prec_F^{\alpha} x$, then $y \prec_F^{\alpha} x \vee_{\alpha} y$.

Proof. Suppose that $A(y,z) > \alpha$ and

$$(5.1) A(z, x \vee_{\alpha} y) > \alpha.$$

To show that y = z or $x \vee_F y = z$.

Define $u = z \wedge_{\alpha} x$.

Then

$$A(x \wedge_{\alpha} y, u) > \alpha$$
 and $A(u, x) > \alpha$.

Hence

$$x \wedge_{\alpha} y = u \text{ or } u = x \text{ as } x \wedge_{\alpha} y \prec_F^{\alpha} x.$$

Case (1): If u = x, then $z \wedge_{\alpha} x = x$,

that is, $A(x,z) > \alpha$ by Proposition 3.16(v).

So, by Proposition 3.16(vi), we have

$$A(x \vee_{\alpha} y, z \vee_{\alpha} y) > \alpha.$$

Therefore, by (5.1) we get

$$(5.2) A(x \vee_{\alpha} y, z) > \alpha.$$

From (5.1) and (5.2), by fuzzy antisymmetry of A we get

$$x \vee_{\alpha} y = z$$
.

Case (2): Let $u = x \wedge_{\alpha} y$, i.e., $z \wedge_{\alpha} x = x \wedge_{\alpha} y$.

Now, if $x \wedge_{\alpha} y \neq \bot$, then $z \wedge_{\alpha} x \neq \bot$.

By the definition of fuzzy weakly modular α -lattice we have $(x,z)FM_{\alpha}$.

If $x \wedge_{\alpha} z = x \wedge_{\alpha} y = \bot$, then $\bot \prec_F^{\alpha} x$,

that is, $x \in P$ and $(z, x)FM_{\alpha}$ by Corollary 4.15.

Thus we have $(x, z)FM_{\alpha}$ as \mathcal{L} is \perp_F -symmetric fuzzy α -lattice.

Now, $(x, z)FM_{\alpha}$ and $A(y, z) > \alpha$ imply that

$$z = (y \vee_{\alpha} x) \wedge_{\alpha} z = y \vee_{\alpha} (x \wedge_{\alpha} z) = y \vee_{\alpha} (x \wedge_{\alpha} y) = y \vee_{\alpha} \bot = y.$$

From Case (1) and Case (2) we have either

$$y = z$$
 or $z = x \vee_{\alpha} y$.

Therefore, $y \prec_F^{\alpha} x \vee_{\alpha} y$.

Lemma 5.5. If $y \prec_F^{\alpha} x \vee_{\alpha} y$ and if $(y, x)FM_{\alpha}$, then $x \wedge_{\alpha} y \prec_F^{\alpha} x$.

Proof. If $x \wedge_{\alpha} y = x$, then $x \vee_{\alpha} y = y$, contrary to $y \prec_F^{\alpha} x \vee_{\alpha} y$. Hence $\alpha < A(x \wedge_{\alpha} y, x) < 1$.

Now, suppose that

$$A(x \wedge_{\alpha} y, z) > \alpha$$

and

$$(5.3) A(z,x) > \alpha.$$

Define $u = z \vee_{\alpha} y$.

Then $A(y, u) > \alpha$ and $A(u, x \vee_{\alpha} y) > \alpha$.

Hence u = y or $u = x \vee_{\alpha} y$ as $y \prec_F^{\alpha} x \vee_{\alpha} y$.

Case (1): If u = y, then $y = z \vee_{\alpha} y$,

that is, $A(z, y) > \alpha$ by Proposition 3.16(iv).

Therefore, by Proposition 3.16(vi), we get

$$(5.4) A(z \wedge_{\alpha} x, y \wedge_{\alpha} x) > \alpha.$$

As $A(z,x) > \alpha$ so by Proposition 3.16(v), we have

$$z \wedge_{\alpha} x = z$$
.

Therefore, (5.4) reduces to

$$(5.5) A(z, y \wedge_{\alpha} x) > \alpha.$$

Hence from (5.3) and (5.5) by fuzzy antisymmetry of A we get

$$x \wedge_{\alpha} y = z$$
.

Case (2): On the other hand if $u = x \vee_{\alpha} y$, then $z \vee_{\alpha} y = x \vee_{\alpha} y$. Hence by $(y, x)FM_{\alpha}$ we get

$$x = (x \vee_{\alpha} y) \wedge_{\alpha} x = (z \vee_{\alpha} y) \wedge_{\alpha} x = z \vee_{\alpha} (y \wedge_{\alpha} x) = z.$$

Hence from Case (1) and Case (2) we have either

$$x \wedge_{\alpha} y = z \text{ or } z = x.$$

Thus, $x \wedge_{\alpha} y \prec_F^{\alpha} x$ holds.

Lemma 5.6. If $x \prec_F^{\alpha} y$ and $z \in X$, then either

(i)
$$x \vee_{\alpha} z = y \vee_{\alpha} z$$
 or

(ii)
$$x \vee_{\alpha} z \prec_F^{\alpha} y \vee_{\alpha} z$$
.

Proof. Clearly $x \vee_{\alpha} z = y \vee_{\alpha} z$ or $\alpha < A(x \vee_{\alpha} z, y \vee_{\alpha} z) < 1$.

Suppose that $A(x \vee_{\alpha} z, u) > \alpha$ and $A(u, y \vee_{\alpha} z) > \alpha$.

Then by Proposition 3.16(vi), we get

$$A((x \vee_{\alpha} z) \wedge_{\alpha} y, u \wedge_{\alpha} y) > \alpha \text{ and } A(u \wedge_{\alpha} y, (y \vee_{\alpha} z) \wedge_{\alpha} y) > \alpha,$$

i.e.,

$$A((x \vee_{\alpha} z) \wedge_{\alpha} y, u \wedge_{\alpha} y) > \alpha$$
, and $A(u \wedge_{\alpha} y, y) > \alpha$.

As $A(x, x \vee_{\alpha} z) > \alpha$ always holds by Proposition 3.16(vi), we get

$$A(x \wedge_{\alpha} y, (x \vee_{\alpha} z) \wedge_{\alpha} y) > \alpha.$$

As $x \prec_F^{\alpha} y$ we get

$$(5.6) A(x, (x \vee_{\alpha} z) \wedge_{\alpha} y) > \alpha.$$

Also,

(5.7)
$$A((x \vee_{\alpha} z) \wedge_{\alpha} y, y \wedge_{\alpha} u) > \alpha.$$

From (5.6) and (5.7) by fuzzy transitivity of A we get

$$A(x, y \wedge_{\alpha} u) > \alpha$$

and

$$A(y \wedge_{\alpha} u, y) > \alpha$$

always holds.

If $y \wedge_{\alpha} u = \bot$, then for $x = \bot$ and $y \in P$ we get

$$(y,u)FM_{\alpha}$$
.

If $y \wedge_{\alpha} u \neq \bot$, then $(y, u)FM_{\alpha}$ by the definition of fuzzy weakly α -modular.

Therefore, we get $(y, u)FM_{\alpha}$ in either case.

Hence

$$z \vee_{\alpha} (y \wedge_{\alpha} u) = (z \vee_{\alpha} y) \wedge_{\alpha} u = u.$$

Since $A(z, x \vee_{\alpha} z) > \alpha$ and $A(x \vee_{\alpha} z, u) > \alpha$.

Now, since $x \prec_F^{\alpha} y$, we have

$$x = y \wedge_{\alpha} u \text{ or } y \wedge_{\alpha} u = y.$$

If $y \wedge_{\alpha} u = x$, then

$$z \vee_{\alpha} x = z \vee_{\alpha} (y \wedge_{\alpha} u) = u,$$

if $y \wedge_{\alpha} u = y$, then

$$z \vee_{\alpha} y = z \vee_{\alpha} (y \wedge_{\alpha} u) = u.$$

This shows that either

$$x \vee_{\alpha} z = u \text{ or } u = y \vee_{\alpha} z.$$

Hence we have

$$x \vee_{\alpha} z \prec_F^{\alpha} y \vee_{\alpha} z$$
.

Thus, (ii) holds.

Lemma 5.7. If $y \prec_F^{\alpha} z$, $(x, z)FM_{\alpha}$ and $(x, y)FM_{\alpha}$, then either (i) $x \vee_{\alpha} y \prec_F^{\alpha} x \vee_{\alpha} z$ and $x \wedge_{\alpha} y = x \wedge_{\alpha} z$ or (ii) $x \vee_{\alpha} y = x \vee_{\alpha} z$ and $x \wedge_{\alpha} y \prec_F^{\alpha} x \wedge_{\alpha} z$.

Proof. As $(x,z)FM_{\alpha}$ holds, we have

$$(y \vee_{\alpha} x) \wedge_{\alpha} z = y \vee_{\alpha} (x \wedge_{\alpha} z).$$

Let $u = (y \vee_{\alpha} x) \wedge_{\alpha} z = y \vee_{\alpha} (x \wedge_{\alpha} z)$.

Then by (iv) and (v) of Proposition 3.16 we have

$$A(y, u) > \alpha$$
 and $A(u, z) > \alpha$.

As $y \prec_F^{\alpha} z$ either y = u or u = z.

Case (1): Suppose that y = u.

Then $y = y \vee_{\alpha} (x \wedge_{\alpha} z)$, by Proposition 3.16(iv) we get

$$A(x \wedge_{\alpha} z, y) > \alpha.$$

By Proposition 3.16(vi), we get

$$(5.8) A(x \wedge_{\alpha} z, y \wedge_{\alpha} x) > \alpha.$$

As $y \prec_F^{\alpha} z$ we have $\alpha < A(y,z) < 1$. Hence

$$(5.9) A(x \wedge_{\alpha} y, x \wedge_{\alpha} z) > \alpha.$$

From (5.8) and (5.9) by fuzzy antisymmetry of A we get

$$x \wedge_{\alpha} z = x \wedge_{\alpha} y$$
.

Moreover $u \prec_F^{\alpha} z$, that is,

$$(x \vee_{\alpha} y) \wedge_{\alpha} z \prec_{F}^{\alpha} z.$$

Hence by Lemma 5.4, we get

$$(5.10) x \vee_{\alpha} y \prec_F^{\alpha} (x \vee_{\alpha} y) \vee_{\alpha} z.$$

As $\alpha < A(y, z) < 1$ by Proposition 3.16(vi), we get $y \vee_{\alpha} z = z$. Therefore (5.10) reduces to

$$x \vee_{\alpha} y \prec_F^{\alpha} x \vee_{\alpha} z$$
.

Thus, (i) holds.

Case (2): Now let us suppose that u = z.

Then $(y \vee_{\alpha} x) \wedge_{\alpha} z = z$, by Proposition 3.16(iv) we get

$$A(z, y \vee_{\alpha} x) > \alpha.$$

By Proposition 3.16(vi), we get

$$A(x \vee_{\alpha} z, y \vee_{\alpha} x) > \alpha.$$

Also, $\alpha < A(y, z) < 1$ by Proposition 3.16(vi), we have

$$A(x \vee_{\alpha} y, x \vee_{\alpha} z) > \alpha.$$

Thus, by fuzzy antisymmetry of A we get

$$x \vee_{\alpha} z = x \vee_{\alpha} y.$$

Now, $y \prec_F^{\alpha} z = u = y \vee_{\alpha} (x \wedge_{\alpha} z) = (y \vee_{\alpha} x) \wedge_{\alpha} z$. Now, $\alpha < A(y, z) < 1$ by Proposition 3.16(vi),we have

$$A(x \wedge_{\alpha} y, x \wedge_{\alpha} z) > \alpha.$$

As $A(x \wedge_{\alpha} z, z) > \alpha$ always holds, so by fuzzy transitivity of A we have

$$A(x \wedge_{\alpha} y, z) > \alpha.$$

Since $(x, y)_F M_m$, $A(x \wedge_{\alpha} y, z) > \alpha$, then by Lemma 4.4, we have

$$(x \wedge_{\alpha} z, y)_F M_m$$
.

Thus, by Lemma 5.5, we get

$$x \wedge_{\alpha} z \wedge_{\alpha} y \prec_F^{\alpha} x \wedge_{\alpha} z$$
,

or equivalently,

$$x \wedge_{\alpha} y \prec_F^{\alpha} x \wedge_{\alpha} z$$
.

Thus, (ii) holds.

6. Conclusion

In this paper, we have studied the notion of a fuzzy independent pair and obtained some properties of fuzzy α -modular pairs and independent pairs in fuzzy α -lattice.

7. Acknowledgement

The authors are thankful to the referee for fruitful suggestions, which enhanced the quality of the paper.

References

- N. Ajmal and K. V. Thomas, Fuzzy lattices, Information Science, 79 (1994), 271–291.
- [2] I. Chon, Fuzzy partial order relations and fuzzy lattices, Korean J. Math., 17(4) (2009), 361–374.
- [3] F. Maeda and S. Maeda, Theory of Symmetric Lattices, Springer-verlag, Berlin, 1970.
- [4] I. Mezzomo and B. Bedregal, On fuzzy α -lattices, IEEE World Congress on Computational Intelligence WCCI (2016), 775–781. doi:10.1109/FUZZ-IEEE.2016.7737766.
- [5] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy essential-small sub-modules and fuzzy small-essential submodules, Journal of Hyperstructures, 9(2) (2020), 52–67.
- [6] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy weakly irreducible ideals of a ring, Journal of Hyperstructures, 10(2) (2021), 118–128.
- [7] M. P. Wasadikar and P. A. Khubchandani, Fuzzy modularity in fuzzy lattices, The Journal of Fuzzy Mathematics, 27(4) (2019), 985–998.
- [8] M. P. Wasadikar and P. A. Khubchandani, Fuzzy modularity and complement in fuzzy lattices, TWMS J. App. and Eng. Math., 12(4) (2022), 1368–1379.
- [9] M. P. Wasadikar and P. A. Khubchandani, Fuzzy semi-orthogonality in fuzzy lattices, (Communicated).
- [10] M. P. Wasadikar and P. A. Khubchandani, 'Del' Relation and parallelism in fuzzy lattices, TWMS J. App. and Eng. Math., 12(3) (2022), 864–875.
- [11] M. P. Wasadikar and P. A. Khubchandani, Fuzzy distributive pairs in fuzzy lattices Discussiones Mathematicae General Algebra and Applications, 42(1) (2022), 179–199.
- [12] M. P. Wasadikar and P. A. Khubchandani, Fuzzy pairs in fuzzy α -lattices, Journal of Hyper structures, 9(2) (2020), 68–80.
- [13] B. Yaun and W. Wu, Fuzzy ideals on distributive lattices, Fuzzy sets and Systems, **35** (1990), 231–240.
- [14] L. Zadeh, Fuzzy sets, Information and control, 8 (1965), 338–353.
- [15] L. Zadeh, Similarity relations and fuzzy orderings, Information Sciences, 3 (1971), 177–200.

Payal A. Khubchandani

Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune 411037, India

Email: payal_khubchandani@yahoo.com

Jyoti A. Khubchandani

Department of Engineering Sciences and Humanities, Vishwakarma Institute of Technology, Pune 411037, India

Email: khubchandani_jyoti@yahoo.com