Journal of Hyperstructures 12 (1) (2023), 51-77. <https://doi.org/10.22098/jhs.2023.2512> Research Paper

SB-NEUTROSOPHIC STRUCTURES IN BCK/BCI-ALGEBRAS

Bavanari Satyanarayana, Shake Baji **D** and Dola Devanandam

Abstract. This article presents the novel set termed SB - neutrosophic set (SB-NSS), which extends the concept of the Neutrosophic set (NSS). We illustrate its fundamental operations with examples. This concept of SB-NSSs is applied to BCK/BCI-algebras, and we introduce the notion of SB-neutrosophic subalgebra (SB-NSSA), SB-neutrosophic ideal (SB-NSI), and related properties are investigated. Furthermore, we provide conditions for an SB-NSS to be an SB-NSSA, for an SB-NSS to be an SB-NSI, and for an SB-NSSA to be an SB-NSI. In a BCI-algebra, conditions for an SB-NSI to be an SB-NSSA are given.

Key Words: SB-neutrosophic set (SB-NSS), SB-neutrosophic subalgebra (SB-NSSA), SBneutrosophic ideal (SB-NSI).

2020 Mathematics Subject Classification: Primary: 06F35; Secondary: 08A72, 03B52.

1. INTRODUCTION

The list of acronyms used in this article is given below with their corresponding extensions to help readers understand the terminology and concepts presented.

- BCK/BCI-Algebra: BCK/BCI-A
- BCK-Algebra: BCK-A

Received: 02 March 2023, Accepted: 22 April 2023. Communicated by Mahmood Bakhshi; ∗Address correspondence to Shake Baji; E-mail: shakebaji6@gmail.com.

This work is licensed under a [Creative Commons Attribution-NonCommercial 4.0](https://creativecommons.org/licenses/by-nc/4.0/) International License.

Copyright \odot 2023 The Author(s). Published by University of Mohaghegh Ardabili.

51

- Fuzzy Set: FS
- Interval-Valued Fuzzy Set: IVFS
- Fuzzy Subalgebra: FSA
- Fuzzy Ideal: FI
- Intuitionistic Fuzzy Set: IFS
- Neutrosophic Set: NSS
- SB-Neutrosophic Set: SB-NSS
- SB-Neutrosophic Subalgebra: SB-NSSA
- SB-Neutrosophic Ideal: SB-NSI

In 1965, L.A. Zadeh [\[30\]](#page-26-0) from the University of California introduced FSs, making it possible to analyse the extent to which elements belong to a set and innovate the handling of uncertainty in decisionmaking. In 1986, Atanasov [\[1\]](#page-24-0) extended the concept further by generalising the FS to an IFS by including an additional function known as the non-membership function. The concept of NSS (NSS), introduced by Smarandache ([\[25\]](#page-25-0), [\[26\]](#page-25-1)), represents a more comprehensive framework that extends the concepts of Classical Set, FS, IFS, and Interval Valued Fuzzy (Intuitionistic) Set, providing a more extensive approach to handling indeterminate and inconsistent data. The study of BCK/BCI-As, initiated by Imai and Iseki $([5, 6])$ $([5, 6])$ $([5, 6])$ $([5, 6])$ $([5, 6])$ in 1966, was based on the study of settheoretic difference and propositional calculi, marking a significant advancement in algebraic structures. As part of the broader development of BCI/BCK algebras, the study of ideals and their fuzzy extensions holds significant importance. Jun et al. $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ $([17, 18, 19, 11])$ examined the fuzzy characteristics of different ideals within BCI/BCK algebras. The literature, including articles [\[28,](#page-26-1) [2,](#page-24-2) [13,](#page-25-7) [14,](#page-25-8) [15,](#page-25-9) [16,](#page-25-10) [21,](#page-25-11) [22,](#page-25-12) [23,](#page-25-13) [27,](#page-25-14) [24\]](#page-25-15), provides a more detailed description of neutrosophic algebraic structures. We have provided an illustration of the process through a framework diagram shown in Figure 1. Our intention is that this visual representation will enhance your understanding of the task.

This article aims to introduce a new generalisation of the NSS, called SB-NSS. A NSS consists of a membership function, an indeterminate membership function, and a non-membership function, each of which can be represented as FSs. When considering the generalisation of an NSS, we utilise an IVFS as a membership function, as it represents a broader generalisation of the FS. SB-neutrosophic structures are particularly beneficial in situations where there is a high degree of uncertainty in the data, especially concerning the membership function. Additionally, in scenarios where there is a low degree of uncertainty in

the indeterminate membership function and non-membership function, SB-Neutrosophic structures can also prove valuable.

Moreover, innovative research has led to the introduction of new concepts such as SB-NSSA, SB-NSI, closed SB-NSI, and related properties within the field of BCK/BCI-As. We present a comprehensive characterization of SB-NSSA and SB-NSI. Additionally, we discuss the homomorphic pre-image and translation of the SB-NSSA. Our findings demonstrate that every closed SB-NSI is an SB-NSSA in a BCI-A, while in a BCK-A, every SB-NSI is an SB-NSSA. In the context of an (s)-BCK-A, we establish that every SB-NSI can be considered an SB-neutrosophic ◦-subalgebra. Furthermore, we provide conditions for an SB-NSS to be an SB-NSI in an (s)-BCK-A.

2. Preliminaries

Definition 2.1. ([\[4\]](#page-24-3), [\[7\]](#page-25-16)) Let K be a non-empty set with a binary operation " \circ " and a constant "0" is called a BCI-A if it satisfies the following axioms for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$

(2.1) $((\zeta_1 \diamond \eta_1) \diamond (\zeta_1 \diamond \theta_1)) \diamond (\theta_1 \diamond \eta_1) = 0$

$$
(2.2) \qquad (\zeta_1 \diamond (\zeta_1 \diamond \eta_1)) \diamond \eta_1 = 0
$$

(2.3) $\zeta_1 \diamond \zeta_1 = 0$

(2.4)
$$
\zeta_1 \diamond \eta_1 = 0, \eta_1 \diamond \zeta_1 = 0 \Rightarrow \zeta_1 = \eta_1
$$

If the BCI-A K satisfies the following identity

(2.5)
$$
0 \diamond \zeta_1 = 0
$$
 for all $\zeta_1 \in \mathcal{K}$, then \mathcal{K} is called a BCK-algebra.

The following properties hold in any BCK/BCI-A (See [\[4,](#page-24-3) [10\]](#page-25-17)),

$$
(2.6) \t\t\t \zeta_1 \diamond 0 = 0
$$

$$
(2.7) \qquad \zeta_1 \leq \eta_1 \Rightarrow \zeta_1 \diamond \theta_1 \leq \eta_1 \diamond \theta_1, \theta_1 \diamond \eta_1 \leq \theta_1 \diamond \zeta_1
$$

(2.8)
$$
(\zeta_1 \diamond \eta_1) \diamond \theta_1 = (\zeta_1 \diamond \theta_1) \diamond \eta_1
$$

(2.9)
$$
(\zeta_1 \diamond \theta_1) \diamond (\eta_1 \diamond \theta_1) \leq \zeta_1 \diamond \eta_1 \text{ for all } \zeta_1, \eta_1, \theta_1 \in \mathcal{K}.
$$

where $\zeta_1 \leq \eta_1$ if and only if $\zeta_1 \diamond \eta_1 = 0$.

The following conditions hold in any BCI-A \mathcal{K} (See [\[4\]](#page-24-3)),

$$
(2.10) \qquad \qquad \zeta_1 \diamond (\zeta_1 \diamond (\zeta_1 \diamond \eta_1)) = \zeta_1 \diamond \eta_1
$$

$$
(2.11) \t 0 \diamond (\zeta_1 \diamond \eta_1) = (0 \diamond \zeta_1) \diamond (0 \diamond \eta_1)
$$

Definition 2.2. [\[4\]](#page-24-3) A BCI-A $\mathcal K$ is said to be p-semisimple if

$$
(2.12) \t\t 0 \diamond (0 \diamond \zeta_1) = \zeta_1
$$

for all $\zeta_1 \in \mathcal{K}$. In a p-semisimple BCI-A \mathcal{K} , the following holds for all $\zeta_1, \eta_1 \in \mathcal{K}$

$$
(2.13) \t\t 0 \diamond (\zeta_1 \diamond \eta_1) = \eta_1 \diamond \zeta_1
$$

(2.14) ζ¹ (ζ¹ η1) = η1.

Definition 2.3. [\[4\]](#page-24-3) A BCI-A K is said to be a weakly BCK-A if

(2.15)
$$
0 \diamond \zeta_1 \le \zeta_1 \text{ for all } \zeta_1 \in \mathcal{K}.
$$

Definition 2.4. [\[4\]](#page-24-3) A BCI-A $\mathcal K$ is said to be associative if

(2.16)
$$
(\zeta_1 \diamond \eta_1) \diamond \theta_1 = (\zeta_1 \diamond \theta_1) \diamond \eta_1 \text{ for all } \zeta_1, \eta_1, \theta_1 \in \mathcal{K}.
$$

Definition 2.5. [\[10\]](#page-25-17) An (s)-BCK-A, we mean a BCK-A \mathcal{K} such that, for any $\zeta_1, \eta_1 \in \mathcal{K}$, the set $\{\theta_1 \in \mathcal{K}/\theta_1 \diamond \zeta_1 \leq \eta_1\}$ has a greatest element, denoted by $\zeta_1 \circ \eta_1$.

Definition 2.6. A subset $\mathcal{H}(\neq \emptyset)$ of a BCK/BCI-A K is called a subalgebra of K if $\zeta_1 \diamond \eta_1 \in \mathcal{H}$ for all $\zeta_1, \eta_1 \in \mathcal{H}$.

Definition 2.7. [\[9\]](#page-25-18) A subset $\mathcal{H}(\neq \emptyset)$ of a BCK/BCI-A K is called an ideal of K if

- (i) $0 \in \mathcal{H}$,
- (ii) $\eta_1, \zeta_1 \diamond \eta_1 \in \mathcal{H} \Rightarrow \zeta_1 \in \mathcal{H}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Definition 2.8. [\[4\]](#page-24-3) A subset $\mathcal{H}(\neq \emptyset)$ of a BCI-A K is called a closed ideal of K if it is an ideal of K that satisfies $\zeta_1 \in \mathcal{H} \Rightarrow 0 \diamond \zeta_1 \in \mathcal{H}$ for all $\zeta_1 \in \mathcal{K}$.

Definition 2.9. [\[30\]](#page-26-0) Let K be a non-empty set. A FS in K is a mapping $\alpha_t : \mathcal{K} \to [0,1].$

Definition 2.10. [\[30\]](#page-26-0) The complement of a FS α_t , denoted by $(\alpha_t)^c$, is also a FS defined as $(\alpha_t)^c = 1 - \alpha_t$ for all $\zeta_1 \in \mathcal{K}$. Also, $((\alpha_t)^c)^c = \alpha_t$.

Definition 2.11. [\[29\]](#page-26-2) A FS $\alpha_t : \mathcal{K} \to [0,1]$ is called a FSA of \mathcal{K} if $\alpha_t(\zeta_1 \diamond \eta_1) \ge \min\{\alpha_t(\zeta_1), \alpha_t(\eta_1)\}\$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Definition 2.12. [\[20\]](#page-25-19) A FS $\alpha_t : \mathcal{K} \to [0,1]$ of a BCK-A \mathcal{K} is said to be a FI of K if

- (i) $\alpha_t(0) \geq \alpha_t(\zeta_1)$
- (ii) $\alpha_t(\zeta_1) \ge \min{\alpha_t(\zeta_1 \diamond \eta_1), \alpha_t(\eta_1)}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

An interval number, denoted as $\Theta = [\Theta^-, \Theta^+]$, represents a closed subinterval of [I], where $0 \leq \Theta^- \leq \Theta^+ \leq 1$. Here, [I] refers to the set of all interval numbers. The interval $[\Theta, \Theta]$ is indicated by the number $\Theta \in [0, 1]$ for whatever follows. Let us define the refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in [I]. We also define the symbols \preccurlyeq , \succcurlyeq , and $=$ in the case of two elements in [I]. Consider two interval numbers $\widetilde{\Theta}_1 = [\Theta_1^-,\Theta_1^+]$ and $\widetilde{\Theta}_2 = [\Theta_2^-,\Theta_2^+]$. Then

$$
\circ \ min\{\widetilde{\Theta}_1, \widetilde{\Theta}_2\} = \left[\min\{\Theta_1^-, \Theta_2^-\}, \min\{\Theta_1^+, \Theta_2^+\}\right] \circ \ max\{\widetilde{\Theta}_1, \widetilde{\Theta}_2\} = \left[\max\{\Theta_1^-, \Theta_2^-\}, \max\{\Theta_1^+, \Theta_2^+\}\right] \circ \widetilde{\Theta}_1 \succcurlyeq \widetilde{\Theta}_2 \Leftrightarrow \Theta_1^- \ge \Theta_2^-, \Theta_1^+ \ge \Theta_2^+ \circ \widetilde{\Theta}_1 \preccurlyeq \widetilde{\Theta}_2 \Leftrightarrow \Theta_1^- \le \Theta_2^-, \Theta_1^+ \le \Theta_2^+
$$

$$
\begin{aligned}\n&\circ \widetilde{\Theta}_1 = \widetilde{\Theta}_2 \Leftrightarrow \Theta_1^- = \Theta_2^-, \Theta_1^+ = \Theta_2^+ \\
&\text{Let } \widetilde{\Theta}_i \in [I] \text{ where } i \in \square. \text{ We define} \\
&\circ \mathop{rinf}_{i \in \square} \widetilde{\Theta}_i = \begin{bmatrix} \mathop{inf}\limits_{i \in \square} \Theta_i^-, \mathop{inf}\limits_{i \in \square} \Theta_i^+ \\ \mathop{sup}\limits_{i \in \square} \end{bmatrix} \\
&\circ \mathop{rsup}_{i \in \square} \widetilde{\Theta}_i = \begin{bmatrix} \mathop{sup}\limits_{i \in \square} \Theta_i^-, \mathop{sup}\limits_{i \in \square} \Theta_i^+ \\ \mathop{sup}\limits_{i \in \square} \end{bmatrix}\n\end{aligned}
$$

Definition 2.13. [\[3\]](#page-24-4) Let K be a non-empty set. A function $\tilde{\alpha}: K \to [I]$ is called an IVFS in K. Let $[I]^{\mathcal{K}}$ represent the set of all IVFSs in K. For every $\tilde{\alpha} \in [I]^{\mathcal{K}}$ and $\zeta_1 \in \mathcal{K}$, $\tilde{\alpha}(\zeta_1) = [\alpha^-(\zeta_1), \alpha^+(\zeta_1)]$ is called the mombership degree of an element $\zeta_1 \in \tilde{\alpha}$ where $\alpha^- \in \mathcal{K} \setminus [I]$ and membership degree of an element $\zeta_1 \in \tilde{\alpha}$, where $\alpha^- : \mathcal{K} \to [I]$ and $\alpha^+ : \mathcal{K} \to [I]$ are ESs in K which are called a lewer ES and an upper ES $\alpha^+:\mathcal{K}\to[I]$ are FSs in $\mathcal K$ which are called a lower FS and an upper FS in K, respectively. For simplicity, we denote $\tilde{\alpha} = [\alpha^-, \alpha^+]$.

Definition 2.14. [\[26\]](#page-25-1) Let K be a non-empty set. A NSS in K is a structure of the form

$$
\mathcal{N} = \{ \langle \zeta_1; \alpha_t(\zeta_1), \alpha_i(\zeta_1), \alpha_f(\zeta_1) \rangle : \zeta_1 \in \mathcal{K} \},
$$

where $\alpha_t : \mathcal{K} \to [0,1]$ is a degree of membership, $\alpha_i : \mathcal{K} \to [0,1]$ is a degree of indeterminacy, and $\alpha_f : \mathcal{K} \to [0,1]$ is a degree of a nonmembership.

3. SB-neutrosophic Structures

Definition 3.1. Let K be a non-empty set. An SB-neutrosophic set (SB-NSS) in K is a structure of the form

(3.1)
$$
\mathcal{N} = \{ \langle \zeta; \widetilde{\alpha}_t(\zeta), \alpha_i(\zeta), \alpha_f(\zeta) \rangle \mid \zeta \in \mathcal{K} \},
$$

where α_i and α_f are FSs in K, which are called a degree of indeterminacy and degree of non-membership, respectively. $\tilde{\alpha}_t$ is an IVFS in \mathcal{K} , which
is called an interval valued degree of membership is called an interval valued degree of membership.

For the sake of simplicity, we will denote the SB-NSS as $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f).$

Remark 3.2. In an SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$, if we take $\tilde{\alpha}_t : \mathcal{K} \to [I],$
 $\zeta \mapsto [\alpha_t^{-1}(\zeta), \alpha_t^{+1}(\zeta)]$ with $\alpha_t^{-1}(\zeta) = \alpha_t^{+1}(\zeta)$, then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_t)$ is a $\zeta \mapsto [\alpha_t^-(\zeta), \alpha_t^+(\zeta)]$ with $\alpha_t^-(\zeta) = \alpha_t^+(\zeta)$, then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is a NSS in K.

Example 3.3. Let $\mathcal{K} = \{5, 15, 30, 55, 85\}$ be a set representing the ages of individuals. We define an SB-NSS $\mathcal N$ of $\mathcal K$ to represent the Intervalvalued degree of membership, degree of indeterminacy, and degree of

non-membership of each age to the category 'young people' as $\mathcal{N} =$ \int ([0.1,0.3],0.2.0.7) $\frac{([0.9,1],0.9,0.9,0.1)}{15}, \frac{([0.7,1],0.9,0.1)}{30}, \frac{([0.1,0.6],0.4,0.9)}{55}, \frac{([0,0.1],0.2,1)}{85}$

Definition 3.4. Let $\mathcal{N}_1 = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ and $\mathcal{N}_2 = (\beta_t, \beta_i, \beta_f)$ be SB-
NSSs of K, We say that \mathcal{N}_t is a subset of \mathcal{N}_t denoted by $\mathcal{N}_t \subset \mathcal{N}_t$ if it NSSs of K. We say that \mathcal{N}_1 is a subset of \mathcal{N}_2 , denoted by $\mathcal{N}_1 \subseteq \mathcal{N}_2$, if it satisfies

$$
\widetilde{\alpha}_t(\zeta) \succcurlyeq \widetilde{\beta}_t(\zeta), \quad \alpha_i(\zeta) \geq \beta_i(\zeta), \quad \alpha_f(\zeta) \leq \beta_f(\zeta) \text{ for all } \zeta \in \mathcal{K}.
$$

If $\mathcal{N}_1 \subseteq \mathcal{N}_2$ and $\mathcal{N}_2 \subseteq \mathcal{N}_1$, then we say that $\mathcal{N}_1 = \mathcal{N}_2$.

Definition 3.5. For every two SB-NSSs \mathcal{N}_1 and \mathcal{N}_2 of \mathcal{K} , the union, intersection, and complement are defined as follows

$$
\mathcal{N}_1 \cup \mathcal{N}_2 = \{ (\zeta, r\max(\widetilde{\alpha}_t(\zeta), \beta_t(\zeta)),\max(\alpha_i(\zeta), \beta_i(\zeta)), \min(\alpha_f(\zeta), \beta_f(\zeta))) \}.
$$

$$
\mathcal{N}_1 \cap \mathcal{N}_2 = \{ (\zeta, r\min(\widetilde{\alpha}_t(\zeta), \widetilde{\beta}_t(\zeta)),\min(\alpha_i(\zeta), \beta_i(\zeta)), \max(\alpha_f(\zeta), \beta_f(\zeta))) \}.
$$

$$
\mathcal{N}_1^C = \{ \widetilde{\alpha}_t^c(\zeta), \alpha_i^c(\zeta), \alpha_f^c(\zeta) \}.
$$

where

$$
\widetilde{\alpha}_t^c(\zeta) = [1 - \alpha_t^+(\zeta), 1 - \alpha_t^-(\zeta)],\alpha_i^c(\zeta) = 1 - \alpha_i(\zeta),\alpha_f^c(\zeta) = 1 - \alpha_f(\zeta), \text{ for all } \zeta \in \mathcal{K}.
$$

Example 3.6. Let us consider SB-NSSs \mathcal{N}_1 and \mathcal{N}_2 of $\mathcal{K} = {\zeta_1, \eta_1, \theta_1}.$ The full description of SB-NSS \mathcal{N}_1 is

$$
\mathcal{N}_1 = \{(\zeta_1, \widetilde{\alpha}_t(\zeta_1), \alpha_i(\zeta_1), \alpha_f(\zeta_1)), (\eta_1, \widetilde{\alpha}_t(\eta_1), \alpha_i(\eta_1), \alpha_f(\eta_1)), \n(\theta_1, \widetilde{\alpha}_t(\theta_1), \alpha_i(\theta_1), \alpha_f(\theta_1))\}.\n\text{(or)}
$$

 $\mathcal{N}_1 = \left\{ \frac{(\widetilde{\alpha}_t(\zeta_1),\alpha_i(\zeta_1),\alpha_f(\zeta_1))}{\zeta_1}, \frac{(\widetilde{\alpha}_t(\eta_1),\alpha_i(\eta_1),\alpha_f(\eta_1))}{\eta_1}, \frac{(\widetilde{\alpha}_t(\theta_1),\alpha_i(\theta_1),\alpha_f(\theta_1))}{\theta_1} \right\}$ o For example,

$$
\mathcal{N}_1 = \left\{ \frac{([0.3, 0.8], 0.5, 0.1)}{\zeta_1}, \frac{([0.1, 0.5], 0.3, 0.7)}{\eta_1}, \frac{([0.2, 0.7], 0.1, 0.4)}{\theta_1} \right\}
$$

$$
\mathcal{N}_2 = \left\{ \frac{([0.1, 0.5], 0.6, 0.5)}{\zeta_1}, \frac{([0.3, 0.9], 0.2, 0.6)}{\eta_1}, \frac{([0.5, 0.7], 0.7, 0.8)}{\theta_1} \right\}
$$

Then

$$
\mathcal{N}_1 \cup \mathcal{N}_2 = \left\{ \frac{([0.3, 0.8], 0.6, 0.1)}{\zeta_1}, \frac{([0.3, 0.9], 0.3, 0.6)}{\eta_1}, \frac{([0.5, 0.7], 0.7, 0.4)}{\theta_1} \right\}
$$

58 Satyanarayana, Baji, and Devanandam

$$
\mathcal{N}_1 \cap \mathcal{N}_2 = \left\{ \frac{([0.1, 0.5], 0.5, 0.5)}{\zeta_1}, \frac{([0.1, 0.5], 0.2, 0.7)}{\eta_1}, \frac{([0.2, 0.7], 0.1, 0.8)}{\theta_1} \right\}
$$

$$
\mathcal{N}_1^C = \left\{ \frac{([0.2, 0.7], 0.5, 0.9)}{\zeta_1}, \frac{([0.5, 0.9], 0.7, 0.3)}{\eta_1}, \frac{([0.3, 0.8], 0.9, 0.6)}{\theta_1} \right\}.
$$

Proposition 3.7. Let \mathcal{N}_1 , \mathcal{N}_2 , and \mathcal{N}_3 be an SB-NSSs of K. Then

- (i) $\mathcal{N}_1 \cup \mathcal{N}_2 = \mathcal{N}_1 \cup \mathcal{N}_2$.
- (ii) $\mathcal{N}_1 \cap \mathcal{N}_2 = \mathcal{N}_1 \cap \mathcal{N}_2$
- (iii) $\mathcal{N}_1 \cup (\mathcal{N}_2 \cup \mathcal{N}_3) = (\mathcal{N}_1 \cup \mathcal{N}_2) \cup \mathcal{N}_3$
- (iv) $\mathcal{N}_1 \cap (\mathcal{N}_2 \cap \mathcal{N}_3) = (\mathcal{N}_1 \cap \mathcal{N}_2) \cap \mathcal{N}_3$

Proposition 3.8. If N be an SB-NSS of K, then $(N^c)^c = N$.

Proposition 3.9. If \mathcal{N}_1 and \mathcal{N}_2 be an SB-NSSs of K, then

(i) $\mathcal{N}_1 \subseteq \mathcal{N}_2 \Leftrightarrow \mathcal{N}_2^c \subseteq \mathcal{N}_1^c$ (ii) $\mathcal{N}_1 \cup \mathcal{N}_2 = \mathcal{N}_1 \Leftrightarrow \mathcal{N}_2 \subseteq \mathcal{N}_1$ (iii) $\mathcal{N}_1 \cap \mathcal{N}_2 = \mathcal{N}_1 \Leftrightarrow \mathcal{N}_1 \subseteq \mathcal{N}_2$.

4. SB-neutrosophic subalgebra

Definition 4.1. Let K be a BCK/BCI-A. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$
in K is called an SB neutroscapic subglocks (SB NSSA) of K if it follows in K is called an SB-neutrosophic subalgebra (SB-NSSA) of K if it follows $(SB\text{-}NSSA\ 1) \ \widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}\$

(SB-NSSA 2) $\alpha_i(\zeta_1 \diamond \eta_1) \geq min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}\$ (SB-NSSA 3) $\alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}\$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Example 4.2. Let us consider a set $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1\}$ with the binary operation ' \diamond ' as given in the Table [1.](#page-7-0) Then, $(\mathcal{K}; \diamond, 0)$ is a BCK-A.

Table 1. BCK-algebra.

◠	Ω		η_1	θ_1
$\mathbf{0}$	0	0	0	0
ζ_1	51	0	Ω	,1
η_1	η_1		O	η_1
H_1	θ_1	θ_1	θ_1	0

Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in K defined by Table [2.](#page-8-0) It is
uting to vorify that $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_t, \alpha_t)$ is an SB NSSA of K routine to verify that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Table 2. SB-NSS

ĸ	$\widetilde{\alpha}_t(\zeta)$	$\alpha_i(\zeta)$	$\alpha_f(\zeta)$
Ω	[0.5, 0.9]	0.8	0.3
ζ_1	[0.4, 0.7]	0.6	0.5
η_1	[0.2, 0.8]	0.7	0.4
θ_1	[0.3, 0.6]	$0.3\,$	

Proposition 4.3. If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K, then

$$
\widetilde{\alpha}_t(0) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \alpha_i(0) \ge \alpha_i(\zeta_1), \text{and } \alpha_f(0) \le \alpha_f(\zeta_1)
$$

for all $\zeta_1 \in \mathcal{K}$.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSSA. Then, for any $\zeta_1 \in \mathcal{K}$, we have have

$$
\begin{aligned}\n\widetilde{\alpha}_t(0) &= \widetilde{\alpha}_t(\zeta_1 \diamond \zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\zeta_1)\} \\
&= rmin\{[\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)], [\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)]\} \\
&= [\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)] = \widetilde{\alpha}_t(\zeta_1), \\
\alpha_i(0) &= \alpha_i(\zeta_1 \diamond \zeta_1) \ge \min\{\alpha_i(\zeta_1)\alpha_i(\zeta_1)\} = \alpha_i(\zeta_1), \\
\alpha_f(0) &= \alpha_f(\zeta_1 \diamond \zeta_1) \le \max\{\alpha_f(\zeta_1), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1).\n\end{aligned}
$$

Hence, the proof is completed. \Box

Proposition 4.4. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K. If there exists a sequence $f(\zeta)$, i.e. K such that exists a sequence $\{(\zeta_1)_n\}$ in $\hat{\mathcal{K}}$ such that

$$
\lim_{n \to \infty} \widetilde{\alpha}_t(\zeta_{1n}) = [1, 1], \lim_{n \to \infty} \alpha_i(\zeta_{1n}) = 1 \text{ and } \lim_{n \to \infty} \alpha_f(\zeta_{1n}) = 0,
$$

then $\widetilde{\alpha}_t(0) = [1, 1], \alpha_i(0) = 1, \text{ and } \alpha_f(0) = 0.$

Proof. Using the Proposition [4.3,](#page-8-1) we have $\tilde{\alpha}_t(0) \geq \tilde{\alpha}_t(\zeta_{1n}), \alpha_i(0) \geq \alpha_i(\zeta_{1n})$ and $\alpha_i(0) \leq \alpha_i(\zeta_{1n})$ for every positive integer n. Note that $\alpha_i(\zeta_{1n}),$ and $\alpha_f(0) \leq \alpha_f(\zeta_{1n})$ for every positive integer n. Note that

$$
[1,1] \succcurlyeq \widetilde{\alpha}_t(0) \succcurlyeq \lim_{n \to \infty} \widetilde{\alpha}_t(\zeta_{1n}) = [1,1]
$$

$$
1 \ge \alpha_i(0) \ge \lim_{n \to \infty} \alpha_i(\zeta_{1n}) = 1
$$

$$
0 \le \alpha_f(0) \le \lim_{n \to \infty} \alpha_f(\zeta_{1n}) = 0.
$$

Therefore, $\tilde{\alpha}_t(0) = [1, 1], \alpha_i(0) = 1$, and $\alpha_f(0) = 0$.

Theorem 4.5. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of K. Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_f)$ is an SB NSS of K. Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_f)$ $(\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K if and only if $\widetilde{\alpha}_t^-$, $\widetilde{\alpha}_t^+$, α_i , and α_f^c are
ESA c of K FSAs of K.

$$
\overline{}
$$

Proof. Suppose that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} , then

$$
\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

$$
\alpha_i(\zeta_1 \diamond \eta_1) \geq min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}
$$

$$
\alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Now

$$
\begin{aligned}\n\left[\alpha_t^-(\zeta_1 \diamond \eta_1), \alpha_t^+(\zeta_1 \diamond \eta_1)\right] &\qquad \succ rmin\{[\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)], [\alpha_t^-(\eta_1), \alpha_t^+(\eta_1)]\} \\
&= [min\{\alpha_t^-(\zeta_1), \alpha_t^-(\eta_1)\}, \min\{\alpha_t^+(\zeta_1), \alpha_t^+(\eta_1)\}]\n\end{aligned}
$$
\n
$$
\Rightarrow \alpha_t^-(\zeta_1 \diamond \eta_1) \ge \min\{\alpha_t^-(\zeta_1), \alpha_t^-(\eta_1)\} \text{ and}
$$
\n
$$
\alpha_t^+(\zeta_1 \diamond \eta_1) \ge \min\{\alpha_t^+(\zeta_1), \alpha_t^+(\eta_1)\}.
$$

Also,
$$
\alpha_f(\zeta_1 \circ \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}\
$$

\n $\Rightarrow 1 - \alpha_f(\zeta_1 \circ \eta_1) \geq 1 - max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}\$
\n $\Rightarrow \alpha_f^c(\zeta_1 \circ \eta_1) \geq min\{1 - \alpha_f(\zeta_1), 1 - \alpha_f(\eta_1)\}\$
\n $\Rightarrow \alpha_f^c(\zeta_1 \circ \eta_1) \geq min\{\alpha_f^c(\zeta_1), \alpha_f^c(\eta_1)\}\$

Hence, α_t^- , α_t^+ , α_i , and α_f^c are FSAs of K. The converse part is obvious. \square

Definition 4.6. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} . We define the following lovel sets the following level sets

$$
\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]) = \{ \zeta_1 \in \mathcal{K} : \widetilde{\alpha}_t(\zeta_1) \succcurlyeq [l_1, l_2] \}
$$

$$
\mathcal{U}(\alpha_i; m) = \{ \zeta_1 \in \mathcal{K} : \alpha_i(\zeta_1) \ge m \}
$$

$$
\mathcal{L}(\alpha_f; n) = \{ \zeta_1 \in \mathcal{K} : \alpha_f(\zeta_1) \le n \}
$$

where $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$.

Theorem 4.7. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of K is an SB-NSSA of K is an and α_t is an α_t of α_t of α_t or α_t or α_t or α_t or α_t o K if and only if the non-empty level sets $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_i; n)$ are exhalgebras of K for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$ $\mathcal{L}(\alpha_f; n)$ are subalgebras of K for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$.

Proof. Suppose that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K. Let $m, n \in$
[0, 1] and $[L, L] \in [L]$ be such that $\mathcal{U}(\tilde{\alpha}_t; [L, L])$, $\mathcal{U}(\alpha, m)$, and $\mathcal{L}(\alpha, m)$ [0, 1] and $[l_1, l_2] \in [I]$ be such that $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are non-empty. For any $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathcal{K}$ if $a_1, a_2 \in \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]),$

$$
b_1, b_2 \in \mathcal{U}(\alpha_i; m), \text{ and } c_1, c_2 \in \mathcal{L}(\alpha_f; n), \text{ then}
$$

\n
$$
\widetilde{\alpha}_t(a_1 \diamond a_2) \succcurlyeq rmin\{\widetilde{\alpha}_t(a_1), \widetilde{\alpha}_t(a_2)\} \succcurlyeq rmin\{[l_1, l_2], [l_1, l_2]\} = [l_1, l_2]
$$

\n
$$
\alpha_i(b_1 \diamond b_2) \geq min\{\alpha_i(b_1), \alpha_i(b_2)\} \geq min\{m, m\} = m
$$

\n
$$
\alpha_f(c_1 \diamond c_2) \leq max\{\alpha_f(c_1), \alpha_f(c_2)\} \leq max\{n, n\} = n
$$

Therefore, $a_1 \diamond a_2 \in \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]), b_1 \diamond b_2 \in \mathcal{U}(\alpha_i; m)$, and $c_1 \diamond c_2 \in \mathcal{C}(\alpha_i; n)$. Hence $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$ and $\mathcal{C}(\alpha_i; n)$ are subgleshes $\mathcal{L}(\alpha_f; n)$. Hence, $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are subalgebras of \mathcal{K} .

Conversely, assume that the non-empty sets $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$,
d $\mathcal{L}(\alpha_i; n)$ are subglobes of K for all m $n \in [0, 1]$ and $[l, l_2] \in [l]$ and $\mathcal{L}(\alpha_f; n)$ are subalgebras of K for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$. Suppose that

$$
\widetilde{\alpha}_t(a_0 \diamond b_0) \prec rmin\{\widetilde{\alpha}_t(a_0), \widetilde{\alpha}_t(b_0)\}
$$

for some $a_0, b_0 \in \mathcal{K}$. Let $\tilde{\alpha}_t(a_0) = [\delta_1, \delta_2], \tilde{\alpha}_t(b_0) = [\delta_3, \delta_4]$ and $\tilde{\alpha}_t(a_0 \diamond b_0) = [l, l, l]$. Then b_0) = [l_1, l_2]. Then,

$$
[l_1, l_2] \prec rmin\{[\delta_1, \delta_2], [\delta_3, \delta_4]\}
$$

=
$$
[min\{\delta_1, \delta_3\}, min\{\delta_2, \delta_4\}]
$$

$$
\Rightarrow l_1 < min\{\delta_1, \delta_3\} \text{ and } l_2 < min\{\delta_2, \delta_4\}.
$$

Taking,

$$
[\eta_1, \eta_2] = \frac{1}{2} [\widetilde{\alpha}_t(a_0 \diamond b_0) + rmin{\{\widetilde{\alpha}_t(a_0), \widetilde{\alpha}_t(b_0)\}}]
$$

= $\frac{1}{2} [[l_1, l_2] + [min{\{\delta_1, \delta_3\}}, min{\{\delta_2, \delta_4\}}]]$
= $[\frac{1}{2}(l_1 + min{\{\delta_1, \delta_3\}}), \frac{1}{2}(l_2 + min{\{\delta_2, \delta_4\}})].$

It follows that

$$
l_1 < \eta_1 = \frac{1}{2}(l_1 + \min{\{\delta_1, \delta_3\}}) < \min{\{\delta_1, \delta_3\}} \text{ and}
$$

$$
l_2 < \eta_2 = \frac{1}{2}(l_2 + \min{\{\delta_2, \delta_4\}}) < \min{\{\delta_2, \delta_4\}}.
$$

Hence, $[\min\{\delta_1, \delta_3\}, \min\{\delta_2, \delta_4\}] \succ [\eta_1, \eta_2] \succ [l_1, l_2] = \tilde{\alpha}_t(a_0 \circ b_0)$. Therefore, $a_0 \diamond b_0 \notin \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$. On the other hand, we have

$$
\widetilde{\alpha}_t(a_0) = [\delta_1, \delta_2] \succcurlyeq [min{\delta_1, \delta_3}, min{\delta_2, \delta_4}] \succ [n_1, n_2]
$$

$$
\widetilde{\alpha}_t(b_0) = [\delta_3, \delta_4] \succcurlyeq [min{\delta_1, \delta_3}, min{\delta_2, \delta_4}] \succ [n_1, n_2].
$$

that is $a_0, b_0 \in \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$. This is a contradiction and, therefore, we
have $\widetilde{\alpha}_t(\zeta, \zeta, \alpha_t) \setminus \min_{\alpha} \{\widetilde{\alpha}_t(\zeta, \zeta, \alpha_t)\}$ for all $\zeta, \alpha_t \in \mathcal{K}$ have $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}\$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Also, if $\alpha_i(a_0 \diamond b_0) < min\{\alpha_i(a_0), \alpha_i(b_0)\}\$ for some $a_0, b_0 \in \mathcal{K}$, then $a_0, b_0 \in \mathcal{U}(\alpha_i; m_0)$ but $a_0 \diamond b_0 \notin \mathcal{U}(\alpha_i; m_0)$ for $m_0 = \min{\{\alpha_i(a_0), \alpha_i(b_0)\}}$. This is a contradiction, and thus $\alpha_i(\zeta_1 \circ \eta_1) \ge \min{\alpha_i(\zeta_1), \alpha_i(\eta_1)}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Similarly, we can show that $\alpha_f(\zeta_1 \circ \eta_1) \leq \max{\alpha_f(\zeta_1), \alpha_f(\eta_1)}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Consequently, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Corollary 4.8. If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K, then the sets $K_{\tilde{\alpha}} = \{ \zeta \in \mathcal{K} \mid \tilde{\alpha}_t(\zeta) = \tilde{\alpha}_t(0) \}$ $K_{\tilde{\alpha}} = \{ \zeta \in \mathcal{K} \mid \alpha_t(\zeta) = \alpha_t(0) \}$ and $\mathcal{K}_{\widetilde{\alpha}_t} = \{\zeta_1 \in \mathcal{K} \mid \widetilde{\alpha}_t(\zeta_1) = \widetilde{\alpha}_t(0)\}, \ \mathcal{K}_{\alpha_i} = \{\zeta_1 \in \mathcal{K} \mid \alpha_i(\zeta_1) = \alpha_i(0)\}, \ and$ $\mathcal{K}_{\alpha_f} = \{ \zeta_1 \in \mathcal{K} \mid \alpha_f(\zeta_1) = \alpha_f(0) \}$ are subalgebras of \mathcal{K} .

We say that the subalgebras $\mathcal{U}(\tilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$ and $\mathcal{L}(\alpha_f; n)$ are SB-subalgebras of $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$.

Theorem 4.9. Every subalgebra of K can be realized as an SB-subalgebra of an SB-NSSA of K.

Proof. Let \mathcal{J} be a subalgebra of \mathcal{K} , and let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be a SB-NSS in \mathcal{K} defined by in K defined by

(4.1)
$$
\tilde{\alpha}_t(\zeta_1) = \begin{cases} [\eta_1, \eta_2], \text{ if } \zeta_1 \in \mathcal{J} \\ [0, 0], \text{ otherwise} \end{cases}
$$
, $\alpha_i(\zeta_1) = \begin{cases} m, \text{ if } \zeta_1 \in \mathcal{J} \\ 0, \text{ otherwise} \end{cases}$, and

 $\alpha_f(\zeta_1) = \begin{cases} n, & \text{if } \zeta_1 \in \mathcal{J} \\ 1, & \text{otherwise} \end{cases}$ where η_1 , η_2 , and $m \in (0, 1]$ with $\eta_1 < \eta_2$,
1, otherwise and $n \in [0, 1)$. It is clear that $\mathcal{U}(\widetilde{\alpha}_t; [\eta_1, \eta_2]) = \mathcal{J}, \mathcal{U}(\alpha_i; m) = \mathcal{J},$ and $\mathcal{C}(\alpha_i; m) = \mathcal{J}$ $\mathcal{L}(\alpha_f; n) = \mathcal{J}.$ Let $\zeta_1, \eta_1 \in \mathcal{K}$. If $\zeta_1, \eta_1 \in \mathcal{J}$, then $\zeta_1 \diamond \eta_1 \in \mathcal{J}$ and so

$$
\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) = [\eta_1, \eta_2] = rmin\{[\eta_1, \eta_2], [\eta_1, \eta_2]\} = rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

$$
\alpha_i(\zeta_1 \diamond \eta_1) = m = min\{m, m\} = min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}
$$

$$
\alpha_f(\zeta_1 \diamond \eta_1) = n = max\{n, n\} = max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}.
$$

If any one of ζ_1 and η_1 is contained in J, say $\zeta_1 \in \mathcal{J}$, then $\tilde{\alpha}_t(\zeta_1) =$ $[\eta_1, \eta_2], \alpha_i(\zeta_1) = m, \alpha_f(\zeta_1) = n, \tilde{\alpha}_t(\eta_1) = [0, 0], \alpha_i(\eta_1) = 0, \text{ and}$ $\alpha_f(\eta_1) = 1$. Hence,

$$
\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq [0, 0] = rmin\{[\eta_1, \eta_2], [0, 0]\} = rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

$$
\alpha_i(\zeta_1 \diamond \eta_1) \ge 0 = \min\{m, 0\} = \min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}
$$

$$
\alpha_f(\zeta_1 \diamond \eta_1) \le 1 = \max\{n, 1\} = \max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}.
$$

If $\zeta_1, \eta_1 \notin \mathcal{J}$, then $\tilde{\alpha}_t(\zeta_1) = [0,0], \alpha_i(\zeta_1) = 0, \alpha_f(\zeta_1) = 1, \tilde{\alpha}_t(\eta_1) = [0,0],$ $\alpha_i(\eta_1) = 0$, and $\alpha_f(\eta_1) = 1$. It follows that

$$
\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq [0,0] = rmin\{[0,0], [0,0]\} = rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

\n
$$
\alpha_i(\zeta_1 \diamond \eta_1) \ge 0 = \min\{0,0\} = \min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}
$$

\n
$$
\alpha_f(\zeta_1 \diamond \eta_1) \le 1 = \max\{1,1\} = \max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}.
$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Theorem 4.10. For any non-empty set \mathcal{J} of \mathcal{K} , let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be
an SB NSS in \mathcal{K} as defined in (1.1) If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_t)$ is an SB NSSA an SB-NSS in K as defined in [\(4.1\)](#page-11-0). If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA
of K, then *T* is a subglaship of K of K, then $\mathcal J$ is a subalgebra of K.

Proof. Let $\zeta_1, \eta_1 \in \mathcal{J}$. Then $\tilde{\alpha}_t(\zeta_1) = [\eta_1, \eta_2], \alpha_i(\zeta_1) = m, \alpha_f(\zeta_1) = n$, $\widetilde{\alpha}_t(\eta_1) = [\eta_1, \eta_2], \alpha_i(\eta_1) = m$, and $\alpha_f(\eta_1) = n$. Thus $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\} = [\eta_1, \eta_2]$ $\alpha_i(\zeta_1 \diamond \eta_1) \geq min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\} = m$ $\alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\} = n$

Therefore, $\zeta_1 \diamond \eta_1 \in \mathcal{J}$. Hence, \mathcal{J} is a subalgebra of \mathcal{K} .

Theorem 4.11. Given an SB-NSSA $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of a BCI-A K,
let $\mathcal{N}^{\circ} = (\tilde{\alpha}^{\circ}, \alpha, \tilde{\gamma}, \alpha, \tilde{\gamma})$ be an SB NSS defined by $\tilde{\alpha}^{\circ}(\zeta, \tilde{\gamma}) = \tilde{\alpha}^{\circ}(\alpha, \zeta, \zeta)$ let $\mathcal{N}^{\diamond} = (\tilde{\alpha}_t^{\diamond}, \alpha_t^{\diamond}, \alpha_f^{\diamond})$ be an SB-NSS defined by $\tilde{\alpha}_t^{\diamond}(\zeta_1) = \tilde{\alpha}_t(0 \diamond \zeta_1),$
 $\alpha_t^{\diamond}(\zeta_1) = \alpha_t(0 \diamond \zeta_1)$ and $\alpha_t^{\diamond}(\zeta_1) = \alpha_t(0 \diamond \zeta_1)$ for all $\zeta_1 \in \mathcal{K}$. Then $\alpha_i^{\diamond}(\zeta_1) = \alpha_i(0 \diamond \zeta_1)$, and $\alpha_f^{\diamond}(\zeta_1) = \alpha_f(0 \diamond \zeta_1)$ for all $\zeta_1 \in \mathcal{K}$. Then $\mathcal{N}^{\diamond} = (\widetilde{\alpha}_t^{\diamond}, {\alpha_i}^{\diamond}, {\alpha_f}^{\diamond})$ is an SB-NSSA of K.

Proof. In a BCI-A, we have that $0 \circ (\zeta_1 \circ \eta_1) = (0 \circ \zeta_1) \circ (0 \circ \eta_1)$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$
\widetilde{\alpha}_{t}^{\circ}(\zeta_{1} \diamond \eta_{1}) = \widetilde{\alpha}_{t}(0 \diamond (\zeta_{1} \diamond \eta_{1})) = \widetilde{\alpha}_{t}((0 \diamond \zeta_{1}) \diamond (0 \diamond \eta_{1}))
$$
\n
$$
\succcurlyeq rmin\{\widetilde{\alpha}_{t}(0 \diamond \zeta_{1}), \widetilde{\alpha}_{t}(0 \diamond \eta_{1})\} = rmin\{\widetilde{\alpha}_{t}^{\circ}(\zeta_{1}), \widetilde{\alpha}_{t}^{\circ}(\eta_{1})\},
$$
\n
$$
\alpha_{i}^{\circ}(\zeta_{1} \diamond \eta_{1}) = \alpha_{i}(0 \diamond (\zeta_{1} \diamond \eta_{1})) = \alpha_{i}((0 \diamond \zeta_{1}) \diamond (0 \diamond \eta_{1}))
$$
\n
$$
\geq min\{\alpha_{i}(0 \diamond \zeta_{1}), \alpha_{i}(0 \diamond \eta_{1})\} = min\{\alpha_{i}^{\circ}(\zeta_{1}), \alpha_{i}^{\circ}(\eta_{1})\},
$$
\n
$$
\alpha_{f}^{\circ}(\zeta_{1} \diamond \eta_{1}) = \alpha_{f}(0 \diamond (\zeta_{1} \diamond \eta_{1})) = \alpha_{f}((0 \diamond \zeta_{1}) \diamond (0 \diamond \eta_{1}))
$$
\n
$$
\leq max\{\alpha_{f}(0 \diamond \zeta_{1}), \alpha_{f}(0 \diamond \eta_{1})\} = max\{\alpha_{f}^{\circ}(\zeta_{1}), \alpha_{f}^{\circ}(\eta_{1})\}
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Therefore, $\mathcal{N}^{\diamond} = (\tilde{\alpha}_t^{\diamond}, \alpha_i^{\diamond}, \alpha_f^{\diamond})$ is an SB-NSSA of \mathcal{K} .

Theorem 4.12. Let $\phi : \mathcal{K} \to \mathcal{Y}$ be a homomorphism of a BCK/BCI-A. If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{Y} , then $\phi^{-1}(\mathcal{N}) = (\phi^{-1}(\tilde{\alpha}_t), \phi^{-1}(\alpha_t), \phi^{-1}(\alpha_t))$ is an SB-NSSA of \mathcal{K} , where $\phi^{-1}(\tilde{\alpha}_t)(\zeta) = \tilde{\alpha}_t(\phi(\zeta_t))$. $\phi^{-1}(\alpha_i)$, $\phi^{-1}(\alpha_f)$ is an SB-NSSA of K, where $\phi^{-1}(\tilde{\alpha}_t)(\zeta_1) = \tilde{\alpha}_t(\phi(\zeta_1)),$
 $\phi^{-1}(\alpha_i)(\zeta_1) = \alpha_i(\phi(\zeta_1))$, and $\phi^{-1}(\alpha_i)(\zeta_1) = \alpha_i(\phi(\zeta_1))$ for all $\zeta_i \in K$ $\phi^{-1}(\alpha_i)(\zeta_1) = \alpha_i(\phi(\zeta_1)),$ and $\phi^{-1}(\alpha_f)(\zeta_1) = \alpha_f(\phi(\zeta_1))$ for all $\zeta_1 \in \mathcal{K}$.

Proof. Let $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$
\phi^{-1}(\widetilde{\alpha}_t)(\zeta_1 \diamond \eta_1) = \widetilde{\alpha}_t(\phi(\zeta_1 \diamond \eta_1)) = \widetilde{\alpha}_t(\phi(\zeta_1) \diamond \phi(\eta_1))
$$

\n
$$
\succcurlyeq rmin\{\widetilde{\alpha}_t(\phi(\zeta_1)), \widetilde{\alpha}_t(\phi(\eta_1))\}
$$

\n
$$
= rmin\{\phi^{-1}(\widetilde{\alpha}_t)(\zeta_1), \phi^{-1}(\widetilde{\alpha}_t)(\eta_1)\},
$$

\n
$$
\phi^{-1}(\alpha_i)(\zeta_1 \diamond \eta_1) = \alpha_i(\phi(\zeta_1 \diamond \eta_1)) = \alpha_i(\phi(\zeta_1) \diamond \phi(\eta_1))
$$

\n
$$
\geq min\{\alpha_i(\phi(\zeta_1)), \alpha_i(\phi(\eta_1))\}
$$

\n
$$
= min\{\phi^{-1}(\alpha_i)(\zeta_1), \phi^{-1}(\alpha_i)(\eta_1)\},
$$

\n
$$
\phi^{-1}(\alpha_f)(\zeta_1 \diamond \eta_1) = \alpha_f(\phi(\zeta_1 \diamond \eta_1)) = \alpha_f(\phi(\zeta_1) \diamond \phi(\eta_1))
$$

\n
$$
\leq max\{\alpha_f(\phi(\zeta_1)), \alpha_f(\phi(\eta_1))\}
$$

\n
$$
= max\{\phi^{-1}(\alpha_f)(\zeta_1), \phi^{-1}(\alpha_f)(\eta_1)\}.
$$

Hence, $\phi^{-1}(\mathcal{N}) = (\phi^{-1}(\tilde{\alpha}_t), \phi^{-1}(\alpha_i), \phi^{-1}(\alpha_f))$ is an SB-NSSA of \mathcal{K} . \Box

Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} . We denote

$$
\mathfrak{b} = [1, 1] - r \sup \{ \widetilde{\alpha}_t(\zeta_1) \mid \zeta_1 \in \mathcal{K} \},
$$

\n
$$
\mathfrak{s} = 1 - \sup \{ \alpha_i(\zeta_1) \mid \zeta_1 \in \mathcal{K} \},
$$

\n
$$
\mathfrak{n} = \inf \{ \alpha_f(\zeta_1) \mid \zeta_1 \in \mathcal{K} \}.
$$

For any $\hat{a} \in [[0,0], \mathfrak{b}], b \in [0, \mathfrak{s}],$ and $c \in [0, \mathfrak{n}]$ we define $\tilde{\alpha}_t^{\hat{a}}(\zeta_1) = \tilde{\alpha}_t(\zeta_1) + \hat{a}, \alpha_t^b(\zeta_1) = \alpha_i(\zeta_1) + b$, and $\alpha_f^c = \alpha_f(\zeta_1) - c$ then $\mathcal{N}^T = (\tilde{\alpha}_t^{\hat{a}}, \alpha_t^b, \alpha_f^c)$ is an SB NSS in K, is an SB-NSS in K, which is called a (\hat{a}, b, c) −translative SB-NSS of K.

Theorem 4.13. If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K, then the $(\hat{\alpha}_t, \hat{\alpha}_t)$ translating SB NSS of $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_t)$ is also an SB NSSA of (\hat{a}, b, c) -translative SB-NSS of $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is also an SB-NSSA of K.

Proof. For any $\zeta_1, \eta_1 \in \mathcal{K}$, we have,

$$
\tilde{\alpha}_{t}^{\hat{a}}(\zeta_{1} \diamond \eta_{1}) = \tilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) + \hat{a} \succarcsim\{\tilde{\alpha}_{t}(\zeta_{1}), \tilde{\alpha}_{t}(\eta_{1})\} + \hat{a}
$$
\n
$$
= r\min\{\tilde{\alpha}_{t}(\zeta_{1}) + \hat{a}, \tilde{\alpha}_{t}(\eta_{1}) + \hat{a}\} = r\min\{\tilde{\alpha}_{t}^{\hat{a}}(\zeta_{1}), \tilde{\alpha}_{t}^{\hat{a}}(\eta_{1})\},
$$
\n
$$
\alpha_{i}^{b}(\zeta_{1} \diamond \eta_{1}) = \alpha_{i}(\zeta_{1} \diamond \eta_{1}) + b \ge \min\{\alpha_{i}(\zeta_{1}), \alpha_{i}(\eta_{1})\} + b
$$
\n
$$
= \min\{\alpha_{i}(\zeta_{1}) + b, \alpha_{i}(\eta_{1}) + b\} = \min\{\alpha_{i}^{b}(\zeta_{1}), \alpha_{i}^{b}(\eta_{1})\},
$$
\n
$$
\alpha_{f}^{c}(\zeta_{1} \diamond \eta_{1}) = \alpha_{f}(\zeta_{1} \diamond \eta_{1}) - c \le \max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\eta_{1})\} - c
$$
\n
$$
= \max\{\alpha_{f}(\zeta_{1}) - c, \alpha_{f}(\eta_{1}) - c\} = \max\{\alpha_{f}^{c}(\zeta_{1}), \alpha_{f}^{c}(\eta_{1})\}.
$$
\nTherefore, $\mathcal{N}^{T} = (\tilde{\alpha}_{t}^{\hat{a}}, \alpha_{i}^{b}, \alpha_{f}^{c})$ is an SB-NSSA of \mathcal{K} .

Theorem 4.14. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in K such that i te $(\hat{\alpha}, b, c)$ translative SB NSS is an SB NSSA of K for $\hat{\alpha} \in [0, 0]$ b) its (\hat{a}, b, c) - translative SB-NSS is an SB-NSSA of K for $\hat{a} \in [[0, 0], \mathfrak{b}],$ $b \in [0, \mathfrak{s}],$ and $c \in [0, \mathfrak{n}].$ Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K.

Proof. Assume that $\mathcal{N}^T = (\tilde{\alpha}_t^{\hat{a}}, \alpha_t^{\hat{b}}, \alpha_f^{\hat{c}})$ is an SB-NSSA of K for $\hat{a} \in$ [10, 0] b) $b \in [0, \infty]$ and $c \in [0, \mathbf{n}]$ Let ζ , $n \in \mathcal{K}$. Then $[0,0], \mathfrak{b}, b \in [0,\mathfrak{s}],$ and $c \in [0,\mathfrak{n}].$ Let $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$
\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) + \hat{a} = \widetilde{\alpha}_{t}^{\hat{a}}(\zeta_{1} \diamond \eta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}^{\hat{a}}(\zeta_{1}), \widetilde{\alpha}_{t}^{\hat{a}}(\eta_{1})\} \n= rmin\{\widetilde{\alpha}_{t}(\zeta_{1}) + \hat{a}, \widetilde{\alpha}_{t}(\eta_{1}) + \hat{a}\} \n= rmin\{\widetilde{\alpha}_{t}(\zeta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\} + \hat{a}, \n\alpha_{i}(\zeta_{1} \diamond \eta_{1}) + b = \alpha_{i}^{b}(\zeta_{1} \diamond \eta_{1}) \ge \min\{\alpha_{i}^{b}(\zeta_{1}), \alpha_{i}^{b}(\eta_{1})\} \n= \min\{\alpha_{i}(\zeta_{1}) + b, \alpha_{i}(\eta_{1}) + b\} \n= \min\{\alpha_{i}(\zeta_{1}), \alpha_{i}(\eta_{1})\} + b, \n\alpha_{f}(\zeta_{1} \diamond \eta_{1}) - c = \alpha_{f}^{c}(\zeta_{1} \diamond \eta_{1}) \le \max\{\alpha_{f}^{c}(\zeta_{1}), \alpha_{f}^{c}(\eta_{1})\} \n= \max\{\alpha_{f}(\zeta_{1}) - c, \alpha_{f}(\eta_{1}) - c\} \n= \max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\eta_{1})\} - c.
$$

It follows that

$$
\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

$$
\alpha_i(\zeta_1 \diamond \eta_1) \geq min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}
$$

$$
\alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Hence, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

5. SB-neutrosophic ideal

Definition 5.1. Let K be a BCK/BCI-A. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$
in K is called an SB neutrosophic ideal (SB-NSI) of K if it satisfies in K is called an SB-neutrosophic ideal (SB-NSI) of K if it satisfies (SB-NSI 1) $\widetilde{\alpha}_t(0) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \alpha_i(0) \geq \alpha_i(\zeta_1)$, and $\alpha_f(0) \leq \alpha_f(x)$ $(SB\text{-NSI 2}) \widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}\$ (SB-NSI 3) $\alpha_i(\zeta_1) \geq min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}\$ (SB-NSI 4) $\alpha_f(\zeta_1) \leq max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}\$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Example 5.2. Consider a set $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1\}$ with the binary operation \Diamond as given in the Table [3.](#page-15-0) Then $(\mathcal{K}; \Diamond, 0)$ is a BCI-A.

Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in K as defined in the Table [4.](#page-15-1) It routing to verify that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of K is routine to verify that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

Table 3. BCI-algebra

€			η_1	θ_1
0	$_{0}$	0	0	θ_1
		١)	0	Α,
η_1	η_1	η_1	O	θ_1
θ .	θ_1	θ,	H_{1}	11

Table 4. SB-Neutrosophic set

Proposition 5.3. Let K be a BCK/BCI-A. Then every SB-NSI $\mathcal{N} =$ $(\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ of K satisfies the following assertion

(5.1)
$$
\zeta_1 \diamond \eta_1 \leq \theta_1 \Rightarrow \begin{pmatrix} \tilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\tilde{\alpha}_t(\eta_1), \tilde{\alpha}_t(\theta_1)\} \\ \alpha_i(\zeta_1) \geq min\{\alpha_i(\eta_1), \alpha_i(\theta_1)\} \\ \alpha_f(\zeta_1) \leq max\{\alpha_f(\eta_1), \alpha_f(\theta_1)\} \end{pmatrix}
$$

for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$.

Proof. Let $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$ be such that $\zeta_1 \diamond \eta_1 \leq \theta_1$. Then

$$
\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) \succeq rmin\{\widetilde{\alpha}_{t}((\zeta_{1} \diamond \eta_{1}) \diamond \theta_{1}), \widetilde{\alpha}_{t}(\theta_{1})\}= rmin\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}(\theta_{1})\} = \widetilde{\alpha}_{t}(\theta_{1}),\alpha_{i}(\zeta_{1} \diamond \eta_{1}) \geq min\{\alpha_{i}((\zeta_{1} \diamond \eta_{1}) \diamond \theta_{1}), \alpha_{i}(\theta_{1})\}= min\{\alpha_{i}(0), \alpha_{i}(\theta_{1})\} = \alpha_{i}(\theta_{1}),\alpha_{f}(\zeta_{1} \diamond \eta_{1}) \leq max\{\alpha_{f}((\zeta_{1} \diamond \eta_{1}) \diamond \theta_{1}), \alpha_{f}(\theta_{1})\}= max\{\alpha_{f}(0), \alpha_{f}(\theta_{1})\} = \alpha_{f}(\theta_{1}).
$$

It follows that for all $\zeta_1, \eta_1 \in \mathcal{K},$ we have

$$
\widetilde{\alpha}_{t}(\zeta_{1}) \succeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1} \circ \eta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\} \succeq rmin\{\widetilde{\alpha}_{t}(\theta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\}
$$
\n
$$
\alpha_{i}(\zeta_{1}) \geq min\{\alpha_{i}(\zeta_{1} \circ \eta_{1}), \alpha_{i}(\eta_{1})\} \geq min\{\alpha_{i}(\theta_{1}), \alpha_{i}(\eta_{1})\}
$$
\n
$$
\alpha_{f}(\zeta_{1}) \leq max\{\alpha_{f}(\zeta_{1} \circ \eta_{1}), \alpha_{f}(\eta_{1})\} \leq max\{\alpha_{f}(\theta_{1}), \alpha_{f}(\eta_{1})\}.
$$

Hence, the proof is completed. $\hfill \square$

Theorem 5.4. Every SB-NSS in a BCK/BCI-A K satisfying (SB-NSI) 1) and assertion (5.1) in Proposition [5.3](#page-15-3) is an SB-NSI of K.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in K satisfying (SB-NSI 1) and assertion (5.1). Since $(\alpha \wedge (\alpha \wedge n)) \leq n$, for all $\alpha, n \in K$ we have and assertion [\(5.1\)](#page-15-2). Since $\zeta_1 \circ (\zeta_1 \circ \eta_1) \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, we have,

$$
\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}
$$
\n
$$
\alpha_i(\zeta_1) \geq \min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}
$$
\n
$$
\alpha_f(\zeta_1) \leq \max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}.
$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

Theorem 5.5. Given an SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ in a BCK/BCI-A
 \mathcal{K} Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_s)$ is an SB NSL of K if and only if $\alpha_t = \alpha_t + \alpha_t$ K. Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of K if and only if α_t^- , α_t^+ , $\alpha_t^ \alpha_i$, and $\alpha_f{}^c$ are FIs of $\check{\mathcal{K}}$.

Proof. Suppose that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} . Then we have, for all $\zeta_t, \gamma_t \in \mathcal{K}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

$$
\widetilde{\alpha}_t(0) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \ \alpha_i(0) \geq \alpha_i(\zeta_1), \ \text{and} \ \alpha_f(0) \leq \alpha_f(\zeta_1)
$$
\n
$$
\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}
$$
\n
$$
\alpha_i(\zeta_1) \geq \min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}
$$
\n
$$
\alpha_f(\zeta_1) \leq \max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}.
$$

$$
\widetilde{\alpha}_t(0) \succcurlyeq \widetilde{\alpha}_t(\zeta_1) \Rightarrow [\alpha_t^-(0), \alpha_t^+(0)] \succcurlyeq [\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)]
$$

\n
$$
\Rightarrow \alpha_t^-(0) \ge \alpha_t^-(\zeta_1) \text{ and } \alpha_t^+(0) \ge \alpha_t^+(\zeta_1).
$$

\n
$$
\alpha_f(0) \le \alpha_f(\zeta_1) \Rightarrow 1 - \alpha_f(0) \ge 1 - \alpha_f(\zeta_1) \Rightarrow \alpha_f^c(0) \ge \alpha_f^c(\zeta_1).
$$

Now $\widetilde{\alpha}_t(\zeta_1) \geq r \min\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}\$ $\Rightarrow [\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)]$ $\succcurlyeq rmin\{[\alpha_t^-(\zeta_1 \diamond \eta_1), \alpha_t^+(\zeta_1 \diamond \eta_1)], [\alpha_t^-(\eta_1), \alpha_t^+(\eta_1)]\}$ = $[min\{\alpha_t^-(\zeta_1 \diamond \eta_1), \alpha_t^-(\eta_1)\}, min\{\alpha_t^+(\zeta_1 \diamond \eta_1), \alpha_t^+(\eta_1)\}]$

> Therefore, $\alpha_t^-(\zeta_1) \ge \min{\{\alpha_t^-(\zeta_1 \diamond \eta_1), \alpha_t^-(\eta_1)\}},$ $\alpha_t^+(\zeta_1) \ge \min\{\alpha_t^+(\zeta_1 \diamond \eta_1), \alpha_t^+(\eta_1)\}.$

68 Satyanarayana, Baji, and Devanandam

Also
$$
\alpha_f(\zeta_1) \leq max{\alpha_f(\zeta_1 \circ \eta_1), \alpha_f(\eta_1)}
$$

\n $\Rightarrow 1 - \alpha_f(\zeta_1) \geq 1 - max{\alpha_f(\zeta_1 \circ \eta_1), \alpha_f(\eta_1)}$
\n $\Rightarrow \alpha_f^c(\zeta_1) \geq min{1 - \alpha_f(\zeta_1 \circ \eta_1), 1 - \alpha_f(\eta_1)}$
\n $\Rightarrow \alpha_f^c(\zeta_1) \geq min{\alpha_f^c(\zeta_1 \circ \eta_1), \alpha_f^c(\eta_1)}$.

Therefore, α_t^- , α_t^+ , α_i , and α_f^c are FIs of K. The converse part is obvious. \square

Theorem 5.6. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of K is an SB-NSI of K if and only if the non-connty set $\mathcal{U}(\tilde{\alpha}_t, [l_1, l_1])$, $\mathcal{U}(\alpha, m)$, and $\mathcal{L}(\alpha, m)$ are and only if the non-empty sets $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are
ideals of K for all m n C [0, 1] and $[l_1, l_2] \subset [I]$ ideals of K for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$.

Proof. The proof of theorem follows a similar approach to the proof presented in the Theorem [4.7.](#page-9-0)

Theorem 5.7. Given an ideal $\mathcal J$ of a BCK/BCI-A K, let $\mathcal N = (\widetilde{\alpha}_t,$ α_i, α_f) be an SB-NSS of K as defined in Equation [\(4.1\)](#page-11-0). Then $\mathcal{N} =$ $(\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of K such that $\mathcal{U}(\widetilde{\alpha}_t; [\eta_1, \eta_2]) = \mathcal{J}, \mathcal{U}(\alpha_i; m) =$
 \mathcal{J} and $\mathcal{L}(\alpha_i; n) = \mathcal{J}$ \mathcal{J} , and $\mathcal{L}(\alpha_f; n) = \mathcal{J}$.

Proof. Let $\zeta_1, \eta_1 \in \mathcal{K}$. If $\zeta_1 \diamond \eta_1 \in \mathcal{J}$ and $\eta_1 \in \mathcal{J}$, then $\zeta_1 \in \mathcal{J}$ and so

$$
\widetilde{\alpha}_t(\zeta_1) = [\eta_1, \eta_2] = rmin\{[\eta_1, \eta_2], [\eta_1, \eta_2]\} = rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

\n
$$
\alpha_i(\zeta_1) = m = min\{m, m\} = min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}
$$

\n
$$
\alpha_f(\zeta_1) = n = max\{n, n\} = max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}.
$$

If any one of $\zeta_1 \diamond \eta_1$ and η_1 is contained in J, say $\zeta_1 \diamond \eta_1 \in \mathcal{J}$, then $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) = [\eta_1, \eta_2], \ \alpha_i(\zeta_1 \diamond \eta_1) = m, \ \alpha_f(\zeta_1 \diamond \eta_1) = n, \ \widetilde{\alpha}_t(\eta_1) = [0, 0],$ $\alpha_i(\eta_1) = 0$, and $\alpha_f(\eta_1) = 1$. Hence,

$$
\widetilde{\alpha}_t(\zeta_1) \succcurlyeq [0,0] = rmin\{[\eta_1, \eta_2], [0,0]\} = rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}
$$

$$
\alpha_i(\zeta_1) \geq 0 = \min\{m,0\} = \min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}
$$

$$
\alpha_f(\zeta_1) \leq 1 = \max\{n,1\} = \max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}.
$$

If $\zeta_1 \circ \eta_1 \notin \mathcal{J}$ and $\eta_1 \notin \mathcal{J}$, then $\tilde{\alpha}_t(\zeta_1 \circ \eta_1) = [0, 0], \alpha_i(\zeta_1 \circ \eta_1) = 0$, $\alpha_f(\zeta_1 \diamond \eta_1) = 1$, $\widetilde{\alpha}_t(\eta_1) = [0, 0]$, $\alpha_i(\eta_1) = 0$, and $\alpha_f(\eta_1) = 1$. It follows that

$$
\widetilde{\alpha}_t(\zeta_1) \succcurlyeq [0,0] = rmin\{[0,0], [0,0]\} = rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1)\widetilde{\alpha}_t(\eta_1)\}
$$

$$
\alpha_i(\zeta_1) \geq 0 = min\{0,0\} = min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}
$$

$$
\alpha_f(\zeta_1) \leq 1 = max\{1,1\} = max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}.
$$

It is obvious that $\tilde{\alpha}_t(0) \succcurlyeq \tilde{\alpha}_t(\zeta_1), \alpha_i(0) \geq \alpha_i(\zeta_1)$, and $\alpha_f(0) \leq \alpha_f(\zeta_1)$ for all $\zeta_1 \in \mathcal{K}$. Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} . Obviously,
we have $\mathcal{U}(\tilde{\alpha}_t : [n, n_0]) = \mathcal{I}$, $\mathcal{U}(\alpha_t : m) = \mathcal{I}$ and $\mathcal{L}(\alpha_t : n) = \mathcal{I}$ we have $\mathcal{U}(\widetilde{\alpha}_t; [\eta_1, \eta_2]) = \mathcal{J}, \mathcal{U}(\alpha_i; m) = \mathcal{J}, \text{ and } \mathcal{L}(\alpha_f; n) = \mathcal{J}.$

Theorem 5.8. For any non-empty subset \mathcal{J} of \mathcal{K} , let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$
be an SB NSS of \mathcal{K} as defined in Faustion (1.1) If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_t)$ is be an SB-NSS of K as defined in Equation [\(4.1\)](#page-11-0). If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is
an SB-NSI of K, then *T* is an ideal of K an SB-NSI of K, then $\mathcal J$ is an ideal of K.

Proof. Obviously, $0 \in \mathcal{J}$. Let $\zeta_1, \eta_1 \in \mathcal{K}$ be such that $\zeta_1 \diamond \eta_1$ and $\eta_1 \in \mathcal{J}$. Then $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) = [\eta_1, \eta_2], \ \alpha_i(\zeta_1 \diamond \eta_1) = m, \ \alpha_f(\zeta_1 \diamond \eta_1) = n$, $\widetilde{\alpha}_t(\eta_1) = [\eta_1, \eta_2], \alpha_i(\eta_1) = m$, and $\alpha_f(\eta_1) = n$. Thus,

$$
\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} = [\eta_1, \eta_2]
$$

$$
\alpha_i(\zeta_1) \geq min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} = m
$$

$$
\alpha_f(\zeta_1) \leq max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\} = n
$$

and therefore, $\zeta_1 \in \mathcal{J}$. Hence, \mathcal{J} is an ideal of \mathcal{K} .

Theorem 5.9. In a BCK-A K, every SB-NSI is an SB-NSSA of K.

Proof. Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSI of a BCK-A \mathcal{K} . Since $(\zeta_1 \diamond \alpha_i) \diamond \zeta_i \leq n$, for all ζ_i , $m \in \mathcal{K}$, it follows from Proposition 5.3 that $(\eta_1) \diamond \zeta_1 \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, it follows from Proposition [5.3](#page-15-3) that

$$
\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}
$$
\n
$$
\alpha_i(\zeta_1 \diamond \eta_1) \ge \min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}
$$
\n
$$
\alpha_f(\zeta_1 \diamond \eta_1) \le \max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Hence, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of a BCK-A \mathcal{K} .

The converse of the Theorem [5.9](#page-18-0) may not be true, as shown in the following example.

Example 5.10. Consider a BCK-A $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1\}$ with a binary operation ' \diamond ' as shown in the Table [5.](#page-19-0) Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-
NSS of K as defined in the Table 6. Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an NSS of K as defined in the Table [6.](#page-19-1) Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SR NSI of a BCK A K because SB-NSSA of K However, it is not an SB-NSI of a BCK-A K because $\widetilde{\alpha}_t(\zeta_1) \preccurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}.$

In the following theorem, we provide a condition for an SB-NSSA to be an SB-NSI of a BCK-A.

Table 5. BCK-algebra

			η_1	H_1
\mathbf{I}	\cup	\cup	0	0
		O	0	
η_1	η_1		O	η_1
θ	θ.	θ_1	θ_1	

Table 6. SB-Neutrosophic set

Theorem 5.11. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSSA of a BCK-A K extinguing the conditions satisfying the conditions

(5.2)
$$
\zeta_1 \diamond \eta_1 \leq \theta_1 \Rightarrow \begin{pmatrix} \widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(\theta_1)\} \\ \alpha_i(\zeta_1) \geq min\{\alpha_i(\eta_1), \alpha_i(\theta_1)\} \\ \alpha_f(\zeta_1) \leq max\{\alpha_f(\eta_1), \alpha_f(\theta_1)\} \end{pmatrix}
$$

for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$. Then, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

Proof. For any $\zeta_1 \in \mathcal{K}$, we get

$$
\widetilde{\alpha}_{t}(0) = \widetilde{\alpha}_{t}(\zeta_{1} \diamond \zeta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}
$$
\n
$$
\succcurlyeq rmin\{[\alpha_{t}^{-}(\zeta_{1}), \alpha_{t}^{+}(\zeta_{1})], [\alpha_{t}^{-}(\zeta_{1}), \alpha_{t}^{+}(\zeta_{1})]\}
$$
\n
$$
= [\alpha_{t}^{-}(\zeta_{1}), \alpha_{t}^{+}(\zeta_{1})] = \widetilde{\alpha}_{t}(\zeta_{1}),
$$
\n
$$
\alpha_{i}(0) = \alpha_{i}(\zeta_{1} \diamond \zeta_{1}) \ge \min\{\alpha_{i}(\zeta_{1}), \alpha_{i}(\zeta_{1})\} = \alpha_{i}(\zeta_{1}),
$$
\n
$$
\alpha_{f}(0) = \alpha_{f}(\zeta_{1} \diamond \zeta_{1}) \le \max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\zeta_{1})\} = \alpha_{f}(\zeta_{1}).
$$

Since $\zeta_1 \diamond (\zeta_1 \diamond \eta_1) \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, it follows that

$$
\widetilde{\alpha}_{t}(\zeta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\}
$$
\n
$$
\alpha_{i}(\zeta_{1}) \geq min\{\alpha_{i}(\zeta_{1} \diamond \eta_{1}), \alpha_{i}(\eta_{1})\}
$$
\n
$$
\alpha_{f}(\zeta_{1}) \leq max\{\alpha_{f}(\zeta_{1} \diamond \eta_{1}), \alpha_{f}(\eta_{1})\}
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} . \Box

Definition 5.12. An SB-NSI of $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of a BCI-A K is said to be closed if $\tilde{\alpha}_t(\alpha_0, \alpha_1) \leq \tilde{\alpha}_t(\alpha_1)$ and $\alpha_t(\alpha_0, \alpha_1) \leq \alpha_t(\alpha_1)$ be closed if $\widetilde{\alpha}_t(0 \diamond \zeta_1) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \alpha_i(0 \diamond \zeta_1) \geq \alpha_i(\zeta_1), \text{ and } \alpha_f(0 \diamond \zeta_1) \leq \alpha_f(\zeta_1)$ for all $\zeta_1 \in \mathcal{K}$.

Theorem 5.13. In a BCI-A K , every closed SB-NSI is an SB-NSSA.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be a closed SB-NSI of a BCI-A \mathcal{K} . By using Definition [5.1,](#page-14-0) (2.8) , (2.2) , and Definition 5.12 , we obtain for all $\zeta_1, \eta_1 \in \mathcal{K}$

$$
\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) \succeq rmin\{\widetilde{\alpha}_{t}((\zeta_{1} \diamond \eta_{1}) \diamond \zeta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}\n= rmin\{\widetilde{\alpha}_{t}((\zeta_{1} \diamond \zeta_{1}) \diamond \eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}\n= rmin\{\widetilde{\alpha}_{t}(0 \diamond \eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\} \succsim rmin\{\widetilde{\alpha}_{t}(\eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\},\n\alpha_{i}(\zeta_{1} \diamond \eta_{1}) \geq min\{\alpha_{i}((\zeta_{1} \diamond \eta_{1}) \diamond \zeta_{1}), \alpha_{i}(\zeta_{1})\}\n= min\{\alpha_{i}((\zeta_{1} \diamond \zeta_{1}) \diamond \eta_{1}), \alpha_{i}(\zeta_{1})\}\n= min\{\alpha_{i}(0 \diamond \eta_{1}), \alpha_{i}(\zeta_{1})\} \geq min\{\alpha_{i}(\eta_{1}), \alpha_{i}(\zeta_{1})\},\n\alpha_{f}(\zeta_{1} \diamond \eta_{1}) \leq max\{\alpha_{f}((\zeta_{1} \diamond \zeta_{1}) \diamond \zeta_{1}), \alpha_{f}(\zeta_{1})\}\n= max\{\alpha_{f}((\zeta_{1} \diamond \zeta_{1}) \diamond \eta_{1}), \alpha_{f}(\zeta_{1})\}\n= max\{\alpha_{f}(0 \diamond \eta_{1}), \alpha_{f}(\zeta_{1})\} \leq max\{\alpha_{f}(\eta_{1}), \alpha_{f}(\zeta_{1})\}.
$$

Hence, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Theorem 5.14. In a weakly BCK-A K , every SB-NSI is closed.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSI of a weakly BCK-A \mathcal{K} . By using Definition [5.1](#page-14-0) and [\(2.15\)](#page-3-2), for any $\zeta_1 \in \mathcal{K}$, we obtain

$$
\widetilde{\alpha}_{t}(0 \diamond \zeta_{1}) \succeq rmin\{\widetilde{\alpha}_{t}((0 \diamond \zeta_{1}) \diamond \zeta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}\n= rmin\{\widetilde{\alpha}_{t}(0), \widetilde{\alpha}_{t}(\zeta_{1})\} = \widetilde{\alpha}_{t}(\zeta_{1}),\n\alpha_{i}(0 \diamond \zeta_{1}) \geq min\{\alpha_{i}((0 \diamond \zeta_{1}) \diamond \zeta_{1}), \alpha_{i}(\zeta_{1})\}\n= min\{\alpha_{i}(0), \alpha_{i}(\zeta_{1})\} = \alpha_{i}(\zeta_{1}),\n\alpha_{f}(0 \diamond \zeta_{1}) \leq max\{\alpha_{f}((0 \diamond \zeta_{1}) \diamond \zeta_{1}), \alpha_{f}(\zeta_{1})\}\n= max\{\alpha_{f}(0), \alpha_{f}(\zeta_{1})\} = \alpha_{f}(\zeta_{1}).
$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of \mathcal{K} .

Corollary 5.15. In a weakly BCK-A, every SB-NSI is an SB-NSSA of $\mathcal{K}.$

In the following example, we show that any SB-NSSA may not be an SB-NSI of a BCI-A.

Example 5.16. Consider a BCI-A $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1, \zeta_4, \zeta_5\}$ with binary operation ' \diamond' as shown in the Table [7.](#page-21-0) Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS
of K defined in the Table 8. It is reuting to verify that $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_t, \alpha_t)$ of K defined in the Table [8.](#page-21-1) It is routine to verify that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$
is an SB NSSA of K. However, it is not an SB NSL of K since $\tilde{\alpha}_t(\zeta)$ is an SB-NSSA of K. However, it is not an SB-NSI of K since $\tilde{\alpha}_t(\zeta_4) \prec$ $rmin\{\widetilde{\alpha}_t(\zeta_4\diamond\theta_1),\widetilde{\alpha}_t(\theta_1)\}.$

Table 7. BCI-algebra

◇	0	ζ_1	η_1	θ_1	ζ_4	ζ_5
0	0	$\overline{0}$	θ_1	η_1	θ_1	θ_1
ζ_1	ζ_1	0	θ_1	η_1	θ_1	θ_1
η_1	η_1	η_1	0	θ_1	0	0
θ_1	θ_1	θ_1	η_1	0	η_1	η_1
ζ_4	ζ_4	η_1	ζ_1	θ_1	0	ζ_1
ζ_5	ζ5	η_1	ζ_1	θ_1	ζ_1	0

Table 8. SB-Neutrosophic set

Theorem 5.17. In a p-semisimple BCI-A K, the following are equivalent

(i) $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of K.
(ii) $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB NSSA of K.

(ii) $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K.

Proof. (*i*) \Rightarrow (*ii*) See Theorem [5.13.](#page-20-1) $(ii) \Rightarrow (i)$ Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} . For any $\zeta_1 \in \mathcal{K}$, we obtain $\widetilde{\alpha}_t(0) = \widetilde{\alpha}_t(\zeta_1 \diamond \zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\zeta_1)\} = \widetilde{\alpha}_t(\zeta_1)$ $\alpha_i(0) = \alpha_i(\zeta_1 \diamond \zeta_1) \ge \min{\{\alpha_i(\zeta_1), \alpha_i(\zeta_1)\}} = \alpha_i(\zeta_1)$ $\alpha_f(0) = \alpha_f(\zeta_1 \diamond \zeta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1).$

Hence,

$$
\widetilde{\alpha}_t(0 \diamond \zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\zeta_1)\} = \widetilde{\alpha}_t(\zeta_1)
$$
\n
$$
\alpha_i(0 \diamond \zeta_1) \geq min\{\alpha_i(0), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1)
$$
\n
$$
\alpha_f(0 \diamond \zeta_1) \leq max\{\alpha_f(0), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1)
$$

for all $\zeta_1 \in \mathcal{K}$. Let $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$
\widetilde{\alpha}_{t}(\zeta_{1}) = \widetilde{\alpha}_{t}(\eta_{1} \diamond (\eta_{1} \diamond \zeta_{1})) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\eta_{1}), \widetilde{\alpha}_{t}(\eta_{1} \diamond \zeta_{1})\}\n= rmin\{\widetilde{\alpha}_{t}(\eta_{1}), \widetilde{\alpha}_{t}(0 \diamond (\zeta_{1} \diamond \eta_{1}))\} \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\},\n\alpha_{i}(\zeta_{1}) = \alpha_{i}(\eta_{1} \diamond (\eta_{1} \diamond \zeta_{1})) \geq min\{\alpha_{i}(\eta_{1}), \alpha_{i}(\eta_{1} \diamond \zeta_{1})\}\n= min\{\alpha_{i}(\eta_{1}), \alpha_{i}(0 \diamond (\zeta_{1} \diamond \eta_{1}))\} \geq min\{\alpha_{i}(\zeta_{1} \diamond \eta_{1}), \alpha_{i}(\eta_{1})\},\n\alpha_{f}(\zeta_{1}) = \alpha_{f}(\eta_{1} \diamond (\eta_{1} \diamond \zeta_{1})) \leq max\{\alpha_{f}(\eta_{1}), \alpha_{f}(\eta_{1} \diamond \zeta_{1})\}\n= max\{\alpha_{f}(\eta_{1}), \alpha_{f}(0 \diamond (\zeta_{1} \diamond \eta_{1}))\} \leq max\{\alpha_{f}(\zeta_{1} \diamond \eta_{1}), \alpha_{f}(\eta_{1})\}.
$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of \mathcal{K} .

Since every associative BCI-A is a p-semisimple, we have the following corollary

Corollary 5.18. In an associative BCI-A K, the following are equivalent

(i) $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of K.

(ii) $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB NSSA of K. (ii) $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of K.

Definition 5.19. Let K be an (s)-BCK-A. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is called an SB poutrosophic a subglooper of K if the following assortions is called an SB-neutrosophic \circ -subalgebra of K if the following assertions are valid

 $\widetilde{\alpha}_t(\zeta_1 \circ \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}\$ $\alpha_i(\zeta_1 \circ \eta_1) \geq min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}\$ $\alpha_f(\zeta_1 \circ \eta_1) \leq \max{\alpha_f(\zeta_1), \alpha_f(\eta_1)}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Lemma 5.20. Every SB-NSI of a BCK/BCI-A K satisfies the following assertion

$$
\zeta_1 \le \eta_1 \Rightarrow \widetilde{\alpha}_t(\zeta_1) \succcurlyeq \widetilde{\alpha}_t(\eta_1), \alpha_i(\zeta_1) \ge \alpha_i(\eta_1), \text{ and } \alpha_f(\zeta_1) \le \alpha_f(\eta_1)
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Proof. Assume that $\zeta_1 \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Then $\zeta_1 \diamond \eta_1 = 0$ and so $\widetilde{\alpha}_t(\zeta_1) \geqslant rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} = rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\eta_1)\} = \widetilde{\alpha}_t(\eta_1)$

$$
\alpha_i(\zeta_1) \ge \min\{\alpha_i(\zeta_1 \circ \eta_1), \alpha_i(\eta_1)\} = \min\{\alpha_i(0), \alpha_i(\eta_1)\} = \alpha_i(\eta_1)
$$

$$
\alpha_f(\zeta_1) \le \max\{\alpha_f(\zeta_1 \circ \eta_1), \alpha_f(\eta_1)\} = \max\{\alpha_f(0), \alpha_f(\eta_1)\} = \alpha_f(\eta_1).
$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Theorem 5.21. In an (s) -BCK-A, every SB-NSI is an SB - neutrosophic \circ -subalgebra.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSI of an (s)-BCK-A \mathcal{K} . Since $(\zeta_1 \circ \eta_1) \circ \zeta_1 \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, we obtain

$$
\widetilde{\alpha}_{t}(\zeta_{1} \circ \eta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}((\zeta_{1} \circ \eta_{1}) \circ \zeta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\} \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}
$$
\n
$$
\alpha_{i}(\zeta_{1} \circ \eta_{1}) \geq min\{\alpha_{i}((\zeta_{1} \circ \eta_{1}) \circ \zeta_{1}), \alpha_{i}(\zeta_{1})\} \geq min\{\alpha_{i}(\eta_{1}), \alpha_{i}(\zeta_{1})\}
$$
\n
$$
\alpha_{f}(\zeta_{1} \circ \eta_{1}) \leq max\{\alpha_{f}((\zeta_{1} \circ \eta_{1}) \circ \zeta_{1}), \alpha_{f}(\zeta_{1})\} \leq max\{\alpha_{f}(\eta_{1}), \alpha_{f}(\zeta_{1})\}.
$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-neutrosophic \circ -subalgebra of \mathcal{K} . \Box

Theorem 5.22. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in an (s)-BCK-A
 \mathcal{K} , Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_t, \alpha_t)$ is an SB NSL of K if and only if the following K. Then $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of K if and only if the following
assertion is valid assertion is valid

(5.3)
$$
\zeta_1 \leq \eta_1 \circ \theta_1 \Rightarrow \begin{pmatrix} \tilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\tilde{\alpha}_t(\eta_1), \tilde{\alpha}_t(\theta_1)\} \\ \alpha_i(\zeta_1) \geq min\{\alpha_i(\eta_1), \alpha_i(\theta_1)\} \\ \alpha_f(\zeta_1) \leq max\{\alpha_f(\eta_1), \alpha_f(\theta_1)\} \end{pmatrix}
$$

for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$.

Proof. Assume that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of K Let $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$ be such that $\zeta_1 \leq \eta_1 \circ \theta_1$. Then we have

$$
\tilde{\alpha}_{t}(\zeta_{1}) \geq r \min \{ \tilde{\alpha}_{t}(\zeta_{1} \circ (\eta_{1} \circ \theta_{1})), \tilde{\alpha}_{t}(\eta_{1} \circ \theta_{1}) \} = r \min \{ \tilde{\alpha}_{t}(0), \tilde{\alpha}_{t}(\eta_{1} \circ \theta_{1}) \} \n= \tilde{\alpha}_{t}(\eta_{1} \circ \theta_{1}) \geq r \min \{ \tilde{\alpha}_{t}(\eta_{1}), \tilde{\alpha}_{t}(\theta_{1}) \}, \n\alpha_{i}(\zeta_{1}) \geq \min \{ \alpha_{i}(\zeta_{1} \circ (\eta_{1} \circ \theta_{1})), \alpha_{i}(\eta_{1} \circ \theta_{1}) \} = \min \{ \alpha_{i}(0), \alpha_{i}(\eta_{1} \circ \theta_{1}) \} \n= \alpha_{i}(\eta_{1} \circ \theta_{1}) \geq \min \{ \alpha_{i}(\eta_{1}), \alpha_{i}(\theta_{1}) \}, \n\alpha_{f}(\zeta_{1}) \leq \max \{ \alpha_{f}(\zeta_{1} \circ (\eta_{1} \circ \theta_{1})), \alpha_{f}(\eta_{1} \circ \theta_{1}) \} = \max \{ \alpha_{f}(0), \alpha_{f}(\eta_{1} \circ \theta_{1}) \} \n= \alpha_{f}(\eta_{1} \circ \theta_{1}) \leq \max \{ \alpha_{f}(\eta_{1}), \alpha_{f}(\theta_{1}) \}.
$$

Conversely, let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSS in an (s)-BCK-A \mathcal{K}
is fring the condition (5.3). Since $0 \leq \tilde{\alpha}$ of for all $\zeta \in \mathcal{K}$ we have satisfying the condition [\(5.3\)](#page-23-0). Since $0 \le \zeta_1 \circ \zeta_1$ for all $\zeta_1 \in \mathcal{K}$, we have

$$
\widetilde{\alpha}_t(0) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\zeta_1)\} = \widetilde{\alpha}_t(\zeta_1)
$$
\n
$$
\alpha_i(0) \geq min\{\alpha_i(\zeta_1), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1)
$$
\n
$$
\alpha_f(0) \leq max\{\alpha_f(\zeta_1), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1).
$$

Since $\zeta_1 \leq (\zeta_1 \diamond \eta_1) \circ \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, we obtain

$$
\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \circ \eta_1), \widetilde{\alpha}_t(\eta_1)\}
$$
\n
$$
\alpha_i(\zeta_1) \geq min\{\alpha_i(\zeta_1 \circ \eta_1), \alpha_i(\eta_1)\}
$$
\n
$$
\alpha_f(\zeta_1) \leq max\{\alpha_f(\zeta_1 \circ \eta_1), \alpha_f(\eta_1)\}
$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

6. conclusion

In this research, we introduced the new concept of SB-neutrosophic sets (SB-NSS), a powerful extension of the NSS, and illustrated its basic operations with examples. The application of SB-NSS to BCK/BCI-As led us to the definition of SB-NSSA and SB-NSI, where we thoroughly explored their properties. In particular, we established crucial conditions for identifying various relationships between SB-NSS, SB-NSSA, and SB-NSI within the context of BCK/BCI-As. Our study also included a comprehensive discussion of homomorphic pre-image and translation of an SB-NSSA, which provided valuable insights into the practical implications of these concepts. The study opens possibilities for future research extending the application of SB-NSS to implicative, positive implicative, and commutative ideals, as well as to the field of soft SB-neutrosophic ideals. These extensions have the potential to provide valuable insights and solutions to complex real-world challenges and improve our understanding of algebraic-structures.

Acknowledgments

The authors would like to thank the reviewers for their valuable feedback, which played a crucial role in refining this article.

REFERENCES

- [1] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986), 87–96.
- [2] R. A. Borzooei, X. Zhang, F. Smarandache and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry, 10 (2018), 350.
- [3] M. B. Gorzaczany, A method of inference in approximate reasoning based on interval valued fuzzys ets, Fuzzy Sets and Systems, 21 (1987), 1–17.
- [4] Y. S. Huang, *BCI-algebra*, Science Press, Beijing, (2006), 21.
- [5] Y. Imai and K. Iski, On Axiom Systems of Propositional Calculi XIV, in Proceedings of the Japan Academy, (1966), 19–22.
- [6] K. Iski, An algebra related with a propositional calculus , Proceedings of the Japan Academy, Series A, Mathematical Sciences, 42 (2009), doi: 10.3792/pja/1195522171.
- [7] K. Iseki, On $BCI\text{-}alebras$, Math. Semin. Notes, 8 (1980), 125–130.
- [8] K. Iseki, On ideals in BCK-algebras, Math. Seminar Notes (presently Kobe J. Math.), 3 (1975), 1–12.
- [9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351–366.
- [10] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, Republic of Korea, (1994).
- [11] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems, 89 (1997), 243–248.
- [12] Y. B. Jun and E. H. Roh, MBJ-neutrosophic ideals of BCK/BCI-algebras, Open Mathematics, 17 (2019), 588–601.
- [13] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann.Fuzzy Math.Inform., 14 (2017), 75–86.
- [14] Y. B. Jun, S. Kim, and F. Smarandache, Interval neutrosophic sets with applications in $BCK/BCI-algebra$, Axioms, 7 (2018), 23.
- [15] Y. B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N -Structures Applied to BCK/BCI-Algebras Information, 8 (2017), 128.
- [16] Y. B. Jun, F. Smarandache, S. Z. Song and M. Khan, Neutrosophic positive *implicative N-ideals in BCK-algebras, Axioms, 7 (2018), 3.*
- [17] Y. B. Jun and S. Z. Song, Fuzzy set theory applied to implicative ideals in BCKalgebras, Bulletin of the Korean Mathematical Society, 43 (2006), 461–470. 2006.
- [18] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK algebras, Fuzzy Sets and Systems, 117 (2001), 463–469.
- [19] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI algebras, Communications of the Korean Mathematical Society, 9 (1994), 19–25.
- [20] Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK/BCI $algebras$, Math. Japonica, **38** (1993), 67–71.
- [21] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, Neutrosophic N-structures in semigroups and their applications, Collected Papers. Volume XIII: On various scientific topics, (2022) 353.
- [22] M. A. Ozt rk and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J.Int.Math.Virtual Inst., 8 (2018), 1–17.
- [23] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann.Fuzzy Math.Inform., 14 (2017), 87–97.
- [24] S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information, 8 (2017), 130.
- [25] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, In 2006 IEEE international conference on granular computing, (2006), 38–42.
- [26] F. Smarandache, A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: neutrsophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, Infinite Study, (2005).
- [27] F. Smarandache and P. Surapati, New Trends in Neutrosophic Theory and Application, Brussels, Belgium, EU: Pons editions, (2016).

- [28] M. M. Takallo, R. A. Borzooei and Y. B. Jun, MBJ-neutrosophic structures and its applications in BCK/BCI-algebras, Neutrosophic Sets and Syst., 23 (2018), 72–84.
- [29] O. G. Xi, Fuzzy BCK-algebras, Math. Japonica, 36 (1991), 935–942.
- [30] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
- [31] L. A. Zadeh, The Concept of a linguistic variable and its applications to approximate reasoning-I, Information.Sci Control, 8 (1975), 199–249.

B. Satyanarayana

Department of Mathematics, Acharya Nagarjuna University, Guntur-522 510, Andhra Pradesh, India

Email:drbsn63@yahoo.co.in

Shake Baji

Department of Mathematics, Sir C. R. Reddy college of Engineering, Eluru-534 007, Andhra Pradesh, India

Email:shakebaji6@gmail.com

D. Devanandam

Government degree college, Chintalpudi-534 460, Eluru, Andhra Pradesh, India Email:ddn1998in@gmail.com