Journal of Hyperstructures 12 (1) (2023), 51-77. https://doi.org/10.22098/jhs.2023.2512 Research Paper

SB-NEUTROSOPHIC STRUCTURES IN BCK/BCI-ALGEBRAS

Bavanari Satyanarayana, Shake Baji ២ and Dola Devanandam

ABSTRACT. This article presents the novel set termed SB - neutrosophic set (SB-NSS), which extends the concept of the Neutrosophic set (NSS). We illustrate its fundamental operations with examples. This concept of SB-NSSs is applied to BCK/BCI-algebras, and we introduce the notion of SB-neutrosophic subalgebra (SB-NSSA), SB-neutrosophic ideal (SB-NSI), and related properties are investigated. Furthermore, we provide conditions for an SB-NSS to be an SB-NSSA, for an SB-NSS to be an SB-NSI, and for an SB-NSSA to be an SB-NSI. In a BCI-algebra, conditions for an SB-NSI to be an SB-NSSA are given.

Key Words: SB-neutrosophic set (SB-NSS), SB-neutrosophic subalgebra (SB-NSSA), SB-neutrosophic ideal (SB-NSI).

2020 Mathematics Subject Classification: Primary: 06F35; Secondary: 08A72, 03B52.

1. INTRODUCTION

The list of acronyms used in this article is given below with their corresponding extensions to help readers understand the terminology and concepts presented.

- BCK/BCI-Algebra: BCK/BCI-A
- BCK-Algebra: BCK-A

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright © 2023 The Author(s). Published by University of Mohaghegh Ardabili.

Received: 02 March 2023, Accepted: 22 April 2023. Communicated by Mahmood Bakhshi; *Address correspondence to Shake Baji; E-mail: shakebaji6@gmail.com.

- Fuzzy Set: FS
- Interval-Valued Fuzzy Set: IVFS
- Fuzzy Subalgebra: FSA
- Fuzzy Ideal: FI
- Intuitionistic Fuzzy Set: IFS
- Neutrosophic Set: NSS
- SB-Neutrosophic Set: SB-NSS
- SB-Neutrosophic Subalgebra: SB-NSSA
- SB-Neutrosophic Ideal: SB-NSI

In 1965, L.A. Zadeh [30] from the University of California introduced FSs, making it possible to analyse the extent to which elements belong to a set and innovate the handling of uncertainty in decisionmaking. In 1986, Atanasov [1] extended the concept further by generalising the FS to an IFS by including an additional function known as the non-membership function. The concept of NSS (NSS), introduced by Smarandache ([25], [26]), represents a more comprehensive framework that extends the concepts of Classical Set, FS, IFS, and Interval Valued Fuzzy (Intuitionistic) Set, providing a more extensive approach to handling indeterminate and inconsistent data. The study of BCK/BCI-As, initiated by Imai and Iseki ([5, 6]) in 1966, was based on the study of settheoretic difference and propositional calculi, marking a significant advancement in algebraic structures. As part of the broader development of BCI/BCK algebras, the study of ideals and their fuzzy extensions holds significant importance. Jun et al. ([17, 18, 19, 11]) examined the fuzzy characteristics of different ideals within BCI/BCK algebras. The literature, including articles [28, 2, 13, 14, 15, 16, 21, 22, 23, 27, 24], provides a more detailed description of neutrosophic algebraic structures. We have provided an illustration of the process through a framework diagram shown in Figure 1. Our intention is that this visual representation will enhance your understanding of the task.

This article aims to introduce a new generalisation of the NSS, called SB-NSS. A NSS consists of a membership function, an indeterminate membership function, and a non-membership function, each of which can be represented as FSs. When considering the generalisation of an NSS, we utilise an IVFS as a membership function, as it represents a broader generalisation of the FS. SB-neutrosophic structures are particularly beneficial in situations where there is a high degree of uncertainty in the data, especially concerning the membership function. Additionally, in scenarios where there is a low degree of uncertainty in

the indeterminate membership function and non-membership function, SB-Neutrosophic structures can also prove valuable.

Moreover, innovative research has led to the introduction of new concepts such as SB-NSSA, SB-NSI, closed SB-NSI, and related properties within the field of BCK/BCI-As. We present a comprehensive characterization of SB-NSSA and SB-NSI. Additionally, we discuss the homomorphic pre-image and translation of the SB-NSSA. Our findings demonstrate that every closed SB-NSI is an SB-NSSA in a BCI-A, while in a BCK-A, every SB-NSI is an SB-NSSA. In the context of an (s)-BCK-A, we establish that every SB-NSI can be considered an SB-neutrosophic o-subalgebra. Furthermore, we provide conditions for an SB-NSS to be an SB-NSI in an (s)-BCK-A.

2. Preliminaries

Definition 2.1. ([4], [7]) Let \mathcal{K} be a non-empty set with a binary operation " \diamond " and a constant "0" is called a BCI-A if it satisfies the following

axioms for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$

(2.1) $((\zeta_1 \diamond \eta_1) \diamond (\zeta_1 \diamond \theta_1)) \diamond (\theta_1 \diamond \eta_1) = 0$

(2.2)
$$(\zeta_1 \diamond (\zeta_1 \diamond \eta_1)) \diamond \eta_1 = 0$$

(2.3) $\zeta_1 \diamond \zeta_1 = 0$

(2.4)
$$\zeta_1 \diamond \eta_1 = 0, \eta_1 \diamond \zeta_1 = 0 \Rightarrow \zeta_1 = \eta_1$$

If the BCI-A ${\mathcal K}$ satisfies the following identity

(2.5)
$$0 \diamond \zeta_1 = 0$$
 for all $\zeta_1 \in \mathcal{K}$, then \mathcal{K} is called a BCK-algebra.

The following properties hold in any BCK/BCI-A (See [4, 10]),

(2.6)
$$\zeta_1 \diamond 0 = 0$$

(2.7)
$$\zeta_1 \le \eta_1 \Rightarrow \zeta_1 \diamond \theta_1 \le \eta_1 \diamond \theta_1, \theta_1 \diamond \eta_1 \le \theta_1 \diamond \zeta_1$$

(2.8)
$$(\zeta_1 \diamond \eta_1) \diamond \theta_1 = (\zeta_1 \diamond \theta_1) \diamond \eta_1$$

(2.9)
$$(\zeta_1 \diamond \theta_1) \diamond (\eta_1 \diamond \theta_1) \leq \zeta_1 \diamond \eta_1 \text{ for all } \zeta_1, \eta_1, \theta_1 \in \mathcal{K}.$$

where $\zeta_1 \leq \eta_1$ if and only if $\zeta_1 \diamond \eta_1 = 0$.

The following conditions hold in any BCI-A \mathcal{K} (See [4]),

(2.10)
$$\zeta_1 \diamond (\zeta_1 \diamond (\zeta_1 \diamond \eta_1)) = \zeta_1 \diamond \eta_1$$

(2.11)
$$0 \diamond (\zeta_1 \diamond \eta_1) = (0 \diamond \zeta_1) \diamond (0 \diamond \eta_1)$$

Definition 2.2. [4] A BCI-A \mathcal{K} is said to be p-semisimple if

$$(2.12) 0 \diamond (0 \diamond \zeta_1) = \zeta_1$$

for all $\zeta_1 \in \mathcal{K}$. In a p-semisimple BCI-A \mathcal{K} , the following holds for all $\zeta_1, \eta_1 \in \mathcal{K}$

$$(2.13) 0 \diamond (\zeta_1 \diamond \eta_1) = \eta_1 \diamond \zeta_1$$

(2.14)
$$\zeta_1 \diamond (\zeta_1 \diamond \eta_1) = \eta_1$$

Definition 2.3. [4] A BCI-A \mathcal{K} is said to be a weakly BCK-A if

$$(2.15) 0 \diamond \zeta_1 \le \zeta_1 \text{ for all } \zeta_1 \in \mathcal{K}$$

Definition 2.4. [4] A BCI-A \mathcal{K} is said to be associative if

(2.16)
$$(\zeta_1 \diamond \eta_1) \diamond \theta_1 = (\zeta_1 \diamond \theta_1) \diamond \eta_1 \text{ for all } \zeta_1, \eta_1, \theta_1 \in \mathcal{K}.$$

Definition 2.5. [10] An (s)-BCK-A, we mean a BCK-A \mathcal{K} such that, for any $\zeta_1, \eta_1 \in \mathcal{K}$, the set $\{\theta_1 \in \mathcal{K}/\theta_1 \diamond \zeta_1 \leq \eta_1\}$ has a greatest element, denoted by $\zeta_1 \circ \eta_1$.

Definition 2.6. A subset $\mathcal{H}(\neq \emptyset)$ of a BCK/BCI-A \mathcal{K} is called a subalgebra of \mathcal{K} if $\zeta_1 \diamond \eta_1 \in \mathcal{H}$ for all $\zeta_1, \eta_1 \in \mathcal{H}$.

Definition 2.7. [9] A subset $\mathcal{H}(\neq \emptyset)$ of a BCK/BCI-A \mathcal{K} is called an ideal of \mathcal{K} if

- (i) $0 \in \mathcal{H}$,
- (ii) $\eta_1, \zeta_1 \diamond \eta_1 \in \mathcal{H} \Rightarrow \zeta_1 \in \mathcal{H}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Definition 2.8. [4] A subset $\mathcal{H}(\neq \emptyset)$ of a BCI-A \mathcal{K} is called a closed ideal of \mathcal{K} if it is an ideal of \mathcal{K} that satisfies $\zeta_1 \in \mathcal{H} \Rightarrow 0 \diamond \zeta_1 \in \mathcal{H}$ for all $\zeta_1 \in \mathcal{K}$.

Definition 2.9. [30] Let \mathcal{K} be a non-empty set. A FS in \mathcal{K} is a mapping $\alpha_t : \mathcal{K} \to [0, 1]$.

Definition 2.10. [30] The complement of a FS α_t , denoted by $(\alpha_t)^c$, is also a FS defined as $(\alpha_t)^c = 1 - \alpha_t$ for all $\zeta_1 \in \mathcal{K}$. Also, $((\alpha_t)^c)^c = \alpha_t$.

Definition 2.11. [29] A FS $\alpha_t : \mathcal{K} \to [0, 1]$ is called a FSA of \mathcal{K} if $\alpha_t(\zeta_1 \diamond \eta_1) \geq \min\{\alpha_t(\zeta_1), \alpha_t(\eta_1)\}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Definition 2.12. [20] A FS $\alpha_t : \mathcal{K} \to [0,1]$ of a BCK-A \mathcal{K} is said to be a FI of \mathcal{K} if

- (i) $\alpha_t(0) \ge \alpha_t(\zeta_1)$
- (ii) $\alpha_t(\zeta_1) \ge \min\{\alpha_t(\zeta_1 \diamond \eta_1), \alpha_t(\eta_1)\}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

An interval number, denoted as $\Theta = [\Theta^-, \Theta^+]$, represents a closed subinterval of [I], where $0 \leq \Theta^- \leq \Theta^+ \leq 1$. Here, [I] refers to the set of all interval numbers. The interval $[\Theta, \Theta]$ is indicated by the number $\Theta \in [0, 1]$ for whatever follows. Let us define the refined minimum (briefly, rmin) and refined maximum (briefly, rmax) of two elements in [I]. We also define the symbols \preccurlyeq , \succcurlyeq , and = in the case of two elements in [I]. Consider two interval numbers $\widetilde{\Theta}_1 = [\Theta_1^-, \Theta_1^+]$ and $\widetilde{\Theta}_2 = [\Theta_2^-, \Theta_2^+]$. Then

$$\circ rmin\{\widetilde{\Theta}_{1},\widetilde{\Theta}_{2}\} = [min\{\Theta_{1}^{-},\Theta_{2}^{-}\},min\{\Theta_{1}^{+},\Theta_{2}^{+}\}]$$

$$\circ rmax\{\widetilde{\Theta}_{1},\widetilde{\Theta}_{2}\} = [max\{\Theta_{1}^{-},\Theta_{2}^{-}\},max\{\Theta_{1}^{+},\Theta_{2}^{+}\}]$$

$$\circ \widetilde{\Theta}_{1} \succcurlyeq \widetilde{\Theta}_{2} \Leftrightarrow \Theta_{1}^{-} \ge \Theta_{2}^{-},\Theta_{1}^{+} \ge \Theta_{2}^{+}$$

$$\circ \widetilde{\Theta}_{1} \preccurlyeq \widetilde{\Theta}_{2} \Leftrightarrow \Theta_{1}^{-} \le \Theta_{2}^{-},\Theta_{1}^{+} \le \Theta_{2}^{+}$$

$$\circ \ \Theta_{1} = \Theta_{2} \Leftrightarrow \Theta_{1}^{-} = \Theta_{2}^{-}, \ \Theta_{1}^{+} = \Theta_{2}^{+}$$

Let $\widetilde{\Theta}_{i} \in [I]$ where $i \in \Box$. We define
 $\circ \ rinf \widetilde{\Theta}_{i} = \begin{bmatrix} inf \Theta_{i}^{-}, inf \Theta_{i}^{+} \\ i \in \Box \end{bmatrix}$
 $\circ \ rsup \widetilde{\Theta}_{i} = \begin{bmatrix} sup \Theta_{i}^{-}, sup \Theta_{i}^{+} \\ i \in \Box \end{bmatrix}$

Definition 2.13. [3] Let \mathcal{K} be a non-empty set. A function $\tilde{\alpha} : \mathcal{K} \to [I]$ is called an IVFS in \mathcal{K} . Let $[I]^{\mathcal{K}}$ represent the set of all IVFSs in \mathcal{K} . For every $\tilde{\alpha} \in [I]^{\mathcal{K}}$ and $\zeta_1 \in \mathcal{K}$, $\tilde{\alpha}(\zeta_1) = [\alpha^-(\zeta_1), \alpha^+(\zeta_1)]$ is called the membership degree of an element $\zeta_1 \in \tilde{\alpha}$, where $\alpha^- : \mathcal{K} \to [I]$ and $\alpha^+ : \mathcal{K} \to [I]$ are FSs in \mathcal{K} which are called a lower FS and an upper FS in \mathcal{K} , respectively. For simplicity, we denote $\tilde{\alpha} = [\alpha^-, \alpha^+]$.

Definition 2.14. [26] Let \mathcal{K} be a non-empty set. A NSS in \mathcal{K} is a structure of the form

$$\mathcal{N} = \{ \langle \zeta_1; \alpha_t(\zeta_1), \alpha_i(\zeta_1), \alpha_f(\zeta_1) \rangle : \zeta_1 \in \mathcal{K} \},\$$

where $\alpha_t : \mathcal{K} \to [0,1]$ is a degree of membership, $\alpha_i : \mathcal{K} \to [0,1]$ is a degree of indeterminacy, and $\alpha_f : \mathcal{K} \to [0,1]$ is a degree of a nonmembership.

3. SB-NEUTROSOPHIC STRUCTURES

Definition 3.1. Let \mathcal{K} be a non-empty set. An SB-neutrosophic set (SB-NSS) in \mathcal{K} is a structure of the form

(3.1)
$$\mathcal{N} = \{ \langle \zeta; \widetilde{\alpha}_t(\zeta), \alpha_i(\zeta), \alpha_f(\zeta) \rangle \mid \zeta \in \mathcal{K} \}$$

where α_i and α_f are FSs in \mathcal{K} , which are called a degree of indeterminacy and degree of non-membership, respectively. $\tilde{\alpha}_t$ is an IVFS in \mathcal{K} , which is called an interval valued degree of membership.

For the sake of simplicity, we will denote the SB-NSS as $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f).$

Remark 3.2. In an SB-NSS $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$, if we take $\widetilde{\alpha}_t : \mathcal{K} \to [I]$, $\zeta \mapsto [\alpha_t^-(\zeta), \alpha_t^+(\zeta)]$ with $\alpha_t^-(\zeta) = \alpha_t^+(\zeta)$, then $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is a NSS in \mathcal{K} .

Example 3.3. Let $\mathcal{K} = \{5, 15, 30, 55, 85\}$ be a set representing the ages of individuals. We define an SB-NSS \mathcal{N} of \mathcal{K} to represent the Interval-valued degree of membership, degree of indeterminacy, and degree of

SB-neutrosophic Structures in $\operatorname{BCK}/\operatorname{BCI-Algebras}$

non-membership of each age to the category 'young people' as $\mathcal{N} = \left\{\frac{([0.1,0.3],0.2.0.7)}{5}, \frac{([0.9,1],0.6,0.1)}{15}, \frac{([0.7,1],0.9,0.1)}{30}, \frac{([0.1,0.6],0.4,0.9)}{55}, \frac{([0,0.1],0.2,1)}{85}\right\}.$

Definition 3.4. Let $\mathcal{N}_1 = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ and $\mathcal{N}_2 = (\widetilde{\beta}_t, \beta_i, \beta_f)$ be SB-NSSs of \mathcal{K} . We say that \mathcal{N}_1 is a subset of \mathcal{N}_2 , denoted by $\mathcal{N}_1 \subseteq \mathcal{N}_2$, if it satisfies

$$\widetilde{\alpha}_t(\zeta) \succcurlyeq \widetilde{\beta}_t(\zeta), \quad \alpha_i(\zeta) \ge \beta_i(\zeta), \quad \alpha_f(\zeta) \le \beta_f(\zeta) \text{ for all } \zeta \in \mathcal{K}.$$

If $\mathcal{N}_1 \subseteq \mathcal{N}_2$ and $\mathcal{N}_2 \subseteq \mathcal{N}_1$, then we say that $\mathcal{N}_1 = \mathcal{N}_2$.

Definition 3.5. For every two SB-NSSs \mathcal{N}_1 and \mathcal{N}_2 of \mathcal{K} , the union, intersection, and complement are defined as follows

$$\mathcal{N}_{1} \cup \mathcal{N}_{2} = \{(\zeta, rmax(\widetilde{\alpha}_{t}(\zeta), \beta_{t}(\zeta)), \\ max(\alpha_{i}(\zeta), \beta_{i}(\zeta)), min(\alpha_{f}(\zeta), \beta_{f}(\zeta)))\}.$$

$$\mathcal{N}_{1} \cap \mathcal{N}_{2} = \{(\zeta, rmin(\widetilde{\alpha}_{t}(\zeta), \widetilde{\beta}_{t}(\zeta)), \\ min(\alpha_{i}(\zeta), \beta_{i}(\zeta)), max(\alpha_{f}(\zeta), \beta_{f}(\zeta)))\}.$$

$$\mathcal{N}_{1}^{C} = \{\widetilde{\alpha}_{t}^{c}(\zeta), \alpha_{i}^{c}(\zeta), \alpha_{f}^{c}(\zeta)\}.$$
where
$$\widetilde{\alpha}_{t}^{c}(\zeta) = [1 - \alpha_{t}^{+}(\zeta), 1 - \alpha_{t}^{-}(\zeta)], \\ \alpha_{i}^{c}(\zeta) = 1 - \alpha_{i}(\zeta), \\ \alpha_{f}^{c}(\zeta) = 1 - \alpha_{f}(\zeta), \text{ for all } \zeta \in \mathcal{K}.$$

Example 3.6. Let us consider SB-NSSs \mathcal{N}_1 and \mathcal{N}_2 of $\mathcal{K} = \{\zeta_1, \eta_1, \theta_1\}$. The full description of SB-NSS \mathcal{N}_1 is

$$\mathcal{N}_1 = \{ (\zeta_1, \widetilde{\alpha}_t(\zeta_1), \alpha_i(\zeta_1), \alpha_f(\zeta_1)), (\eta_1, \widetilde{\alpha}_t(\eta_1), \alpha_i(\eta_1), \alpha_f(\eta_1)), \\ (\theta_1, \widetilde{\alpha}_t(\theta_1), \alpha_i(\theta_1), \alpha_f(\theta_1)) \}. (or)$$

 $\mathcal{N}_{1} = \left\{ \frac{(\tilde{\alpha}_{t}(\zeta_{1}), \alpha_{i}(\zeta_{1}), \alpha_{f}(\zeta_{1}))}{\zeta_{1}}, \frac{(\tilde{\alpha}_{t}(\eta_{1}), \alpha_{i}(\eta_{1}), \alpha_{f}(\eta_{1}))}{\eta_{1}}, \frac{(\tilde{\alpha}_{t}(\theta_{1}), \alpha_{i}(\theta_{1}), \alpha_{f}(\theta_{1}))}{\theta_{1}} \right\}$ For example,

$$\mathcal{N}_{1} = \left\{ \frac{([0.3, 0.8], 0.5, 0.1)}{\zeta_{1}}, \frac{([0.1, 0.5], 0.3, 0.7)}{\eta_{1}}, \frac{([0.2, 0.7], 0.1, 0.4)}{\theta_{1}} \right\}$$
$$\mathcal{N}_{2} = \left\{ \frac{([0.1, 0.5], 0.6, 0.5)}{\zeta_{1}}, \frac{([0.3, 0.9], 0.2, 0.6)}{\eta_{1}}, \frac{([0.5, 0.7], 0.7, 0.8)}{\theta_{1}} \right\}$$

Then

$$\mathcal{N}_1 \cup \mathcal{N}_2 = \left\{ \frac{([0.3, 0.8], 0.6, 0.1)}{\zeta_1}, \frac{([0.3, 0.9], 0.3, 0.6)}{\eta_1}, \frac{([0.5, 0.7], 0.7, 0.4)}{\theta_1} \right\}$$

Satyanarayana, Baji, and Devanandam

$$\mathcal{N}_1 \cap \mathcal{N}_2 = \left\{ \frac{([0.1, 0.5], 0.5, 0.5)}{\zeta_1}, \frac{([0.1, 0.5], 0.2, 0.7)}{\eta_1}, \frac{([0.2, 0.7], 0.1, 0.8)}{\theta_1} \right\}$$
$$\mathcal{N}_1^C = \left\{ \frac{([0.2, 0.7], 0.5, 0.9)}{\zeta_1}, \frac{([0.5, 0.9], 0.7, 0.3)}{\eta_1}, \frac{([0.3, 0.8], 0.9, 0.6)}{\theta_1} \right\}.$$

Proposition 3.7. Let \mathcal{N}_1 , \mathcal{N}_2 , and \mathcal{N}_3 be an SB-NSSs of \mathcal{K} . Then

- (i) $\mathcal{N}_1 \cup \mathcal{N}_2 = \mathcal{N}_1 \cup \mathcal{N}_2$.
- (ii) $\mathcal{N}_1 \cap \mathcal{N}_2 = \mathcal{N}_1 \cap \mathcal{N}_2$
- $\begin{array}{l} (\widetilde{i} \widetilde{i} \widetilde{i}) \quad \mathcal{N}_1 \cup (\mathcal{N}_2 \cup \mathcal{N}_3) = (\mathcal{N}_1 \cup \mathcal{N}_2) \cup \mathcal{N}_3 \\ (\widetilde{i} v) \quad \mathcal{N}_1 \cap (\mathcal{N}_2 \cap \mathcal{N}_3) = (\mathcal{N}_1 \cap \mathcal{N}_2) \cap \mathcal{N}_3 \end{array}$

Proposition 3.8. If \mathcal{N} be an SB-NSS of \mathcal{K} , then $(\mathcal{N}^c)^c = \mathcal{N}$.

Proposition 3.9. If \mathcal{N}_1 and \mathcal{N}_2 be an SB-NSSs of \mathcal{K} , then

(i) $\mathcal{N}_1 \subseteq \mathcal{N}_2 \Leftrightarrow \mathcal{N}_2^c \subseteq \mathcal{N}_1^c$ (ii) $\mathcal{N}_1 \cup \mathcal{N}_2 = \mathcal{N}_1 \Leftrightarrow \mathcal{N}_2 \subseteq \mathcal{N}_1$ (iii) $\mathcal{N}_1 \cap \mathcal{N}_2 = \mathcal{N}_1 \Leftrightarrow \mathcal{N}_1 \subseteq \mathcal{N}_2$.

4. SB-NEUTROSOPHIC SUBALGEBRA

Definition 4.1. Let \mathcal{K} be a BCK/BCI-A. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ in \mathcal{K} is called an SB-neutrosophic subalgebra (SB-NSSA) of \mathcal{K} if it follows (SB-NSSA 1) $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}$ (SB-NSSA 2) $\alpha_i(\zeta_1 \diamond \eta_1) \ge \min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}$

(SB-NSSA 3) $\alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Example 4.2. Let us consider a set $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1\}$ with the binary operation ' \diamond ' as given in the Table 1. Then, ($\mathcal{K}; \diamond, 0$) is a BCK-A.

TABLE 1. BCK-algebra.

\diamond	0	ζ_1	η_1	θ_1
0	0	0	0	0
ζ_1	ζ_1	0	0	ζ_1
η_1	η_1	ζ_1	0	η_1
θ_1	θ_1	θ_1	θ_1	0

Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} defined by Table 2. It is routine to verify that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

TABLE 2. SB-NSS

\mathcal{K}	$\widetilde{lpha}_t(\zeta)$	$\alpha_i(\zeta)$	$\alpha_f(\zeta)$
0	[0.5, 0.9]	0.8	0.3
ζ_1	[0.4, 0.7]	0.6	0.5
η_1	[0.2, 0.8]	0.7	0.4
θ_1	[0.3, 0.6]	0.3	1

Proposition 4.3. If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} , then

$$\widetilde{\alpha}_t(0) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \alpha_i(0) \ge \alpha_i(\zeta_1), and \ \alpha_f(0) \le \alpha_f(\zeta_1)$$

for all $\zeta_1 \in \mathcal{K}$.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSSA. Then, for any $\zeta_1 \in \mathcal{K}$, we have

$$\widetilde{\alpha}_{t}(0) = \widetilde{\alpha}_{t}(\zeta_{1} \diamond \zeta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}$$

$$= rmin\{[\alpha_{t}^{-}(\zeta_{1}), \alpha_{t}^{+}(\zeta_{1})], [\alpha_{t}^{-}(\zeta_{1}), \alpha_{t}^{+}(\zeta_{1})]\}$$

$$= [\alpha_{t}^{-}(\zeta_{1}), \alpha_{t}^{+}(\zeta_{1})] = \widetilde{\alpha}_{t}(\zeta_{1}),$$

$$\alpha_{i}(0) = \alpha_{i}(\zeta_{1} \diamond \zeta_{1}) \ge min\{\alpha_{i}(\zeta_{1})\alpha_{i}(\zeta_{1})\} = \alpha_{i}(\zeta_{1}),$$

$$\alpha_{f}(0) = \alpha_{f}(\zeta_{1} \diamond \zeta_{1}) \le max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\zeta_{1})\} = \alpha_{f}(\zeta_{1}).$$

Hence, the proof is completed.

Proposition 4.4. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} . If there exists a sequence $\{(\zeta_1)_n\}$ in \mathcal{K} such that

$$\lim_{n \to \infty} \widetilde{\alpha}_t(\zeta_{1_n}) = [1, 1], \lim_{n \to \infty} \alpha_i(\zeta_{1_n}) = 1 \text{ and } \lim_{n \to \infty} \alpha_f(\zeta_{1_n}) = 0,$$

then $\widetilde{\alpha}_t(0) = [1, 1], \ \alpha_i(0) = 1, \ and \ \alpha_f(0) = 0.$

Proof. Using the Proposition 4.3, we have $\tilde{\alpha}_t(0) \succeq \tilde{\alpha}_t(\zeta_{1n}), \alpha_i(0) \ge \alpha_i(\zeta_{1n})$, and $\alpha_f(0) \le \alpha_f(\zeta_{1n})$ for every positive integer n. Note that

$$[1,1] \succcurlyeq \widetilde{\alpha}_t(0) \succcurlyeq \lim_{n \to \infty} \widetilde{\alpha}_t(\zeta_{1n}) = [1,1]$$
$$1 \ge \alpha_i(0) \ge \lim_{n \to \infty} \alpha_i(\zeta_{1n}) = 1$$
$$0 \le \alpha_f(0) \le \lim_{n \to \infty} \alpha_f(\zeta_{1n}) = 0.$$

Therefore, $\tilde{\alpha}_t(0) = [1, 1], \alpha_i(0) = 1$, and $\alpha_f(0) = 0$.

Theorem 4.5. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} . Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} if and only if $\tilde{\alpha}_t^-$, $\tilde{\alpha}_t^+$, α_i , and α_f^c are FSAs of \mathcal{K} .

Proof. Suppose that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} , then

$$\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1 \diamond \eta_1) \ge min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1 \diamond \eta_1) \le max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Now

$$[\alpha_t^-(\zeta_1 \diamond \eta_1), \alpha_t^+(\zeta_1 \diamond \eta_1)] \approx rmin\{[\alpha_t^-(\zeta_1), \alpha_t^+(\zeta_1)], [\alpha_t^-(\eta_1), \alpha_t^+(\eta_1)]\} = [min\{\alpha_t^-(\zeta_1), \alpha_t^-(\eta_1)\}, min\{\alpha_t^+(\zeta_1), \alpha_t^+(\eta_1)\}]$$
$$\Rightarrow \alpha_t^-(\zeta_1 \diamond \eta_1) \ge min\{\alpha_t^-(\zeta_1), \alpha_t^-(\eta_1)\} \text{ and } \alpha_t^+(\zeta_1 \diamond \eta_1) \ge min\{\alpha_t^+(\zeta_1), \alpha_t^+(\eta_1)\}.$$

Also,
$$\alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}\$$

 $\Rightarrow 1 - \alpha_f(\zeta_1 \diamond \eta_1) \geq 1 - max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}\$
 $\Rightarrow \alpha_f^c(\zeta_1 \diamond \eta_1) \geq min\{1 - \alpha_f(\zeta_1), 1 - \alpha_f(\eta_1)\}\$
 $\Rightarrow \alpha_f^c(\zeta_1 \diamond \eta_1) \geq min\{\alpha_f^c(\zeta_1), \alpha_f^c(\eta_1)\}\$

Hence, α_t^- , α_t^+ , α_i , and α_f^c are FSAs of \mathcal{K} . The converse part is obvious.

Definition 4.6. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} . We define the following level sets

$$\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]) = \{\zeta_1 \in \mathcal{K} : \widetilde{\alpha}_t(\zeta_1) \succcurlyeq [l_1, l_2]\}$$
$$\mathcal{U}(\alpha_i; m) = \{\zeta_1 \in \mathcal{K} : \alpha_i(\zeta_1) \ge m\}$$
$$\mathcal{L}(\alpha_f; n) = \{\zeta_1 \in \mathcal{K} : \alpha_f(\zeta_1) \le n\}$$

where $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$.

Theorem 4.7. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of \mathcal{K} is an SB-NSSA of \mathcal{K} if and only if the non-empty level sets $\mathcal{U}(\tilde{\alpha}_t; [l_1, l_2]), \mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are subalgebras of \mathcal{K} for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$.

Proof. Suppose that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} . Let $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$ be such that $\mathcal{U}(\tilde{\alpha}_t; [l_1, l_2]), \mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are non-empty. For any $a_1, a_2, b_1, b_2, c_1, c_2 \in \mathcal{K}$ if $a_1, a_2 \in \mathcal{U}(\tilde{\alpha}_t; [l_1, l_2])$,

$$b_1, b_2 \in \mathcal{U}(\alpha_i; m), \text{ and } c_1, c_2 \in \mathcal{L}(\alpha_f; n), \text{ then}$$

$$\widetilde{\alpha}_t(a_1 \diamond a_2) \succcurlyeq rmin\{\widetilde{\alpha}_t(a_1), \widetilde{\alpha}_t(a_2)\} \succcurlyeq rmin\{[l_1, l_2], [l_1, l_2]\} = [l_1, l_2]$$

$$\alpha_i(b_1 \diamond b_2) \ge min\{\alpha_i(b_1), \alpha_i(b_2)\} \ge min\{m, m\} = m$$

$$\alpha_f(c_1 \diamond c_2) \le max\{\alpha_f(c_1), \alpha_f(c_2)\} \le max\{n, n\} = n$$

Therefore, $a_1 \diamond a_2 \in \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]), b_1 \diamond b_2 \in \mathcal{U}(\alpha_i; m)$, and $c_1 \diamond c_2 \in \mathcal{L}(\alpha_f; n)$. Hence, $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]), \mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are subalgebras of \mathcal{K} .

Conversely, assume that the non-empty sets $\mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2]), \mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are subalgebras of \mathcal{K} for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$. Suppose that

$$\widetilde{\alpha}_t(a_0 \diamond b_0) \prec rmin\{\widetilde{\alpha}_t(a_0), \widetilde{\alpha}_t(b_0)\}$$

for some $a_0, b_0 \in \mathcal{K}$. Let $\widetilde{\alpha}_t(a_0) = [\delta_1, \delta_2], \ \widetilde{\alpha}_t(b_0) = [\delta_3, \delta_4]$ and $\widetilde{\alpha}_t(a_0 \diamond b_0) = [l_1, l_2]$. Then,

$$\begin{split} [l_1, l_2] \prec rmin\{[\delta_1, \delta_2], [\delta_3, \delta_4]\} \\ &= [min\{\delta_1, \delta_3\}, min\{\delta_2, \delta_4\}] \\ \Rightarrow l_1 < min\{\delta_1, \delta_3\} \text{ and } l_2 < min\{\delta_2, \delta_4\}. \end{split}$$

Taking,

$$\begin{split} [\eta_1, \eta_2] &= \frac{1}{2} [\widetilde{\alpha}_t(a_0 \diamond b_0) + rmin\{\widetilde{\alpha}_t(a_0), \widetilde{\alpha}_t(b_0)\}] \\ &= \frac{1}{2} [[l_1, l_2] + [min\{\delta_1, \delta_3\}, min\{\delta_2, \delta_4\}]] \\ &= [\frac{1}{2} (l_1 + min\{\delta_1, \delta_3\}), \frac{1}{2} (l_2 + min\{\delta_2, \delta_4\})]. \end{split}$$

It follows that

$$l_1 < \eta_1 = \frac{1}{2}(l_1 + \min\{\delta_1, \delta_3\}) < \min\{\delta_1, \delta_3\} \text{ and} \\ l_2 < \eta_2 = \frac{1}{2}(l_2 + \min\{\delta_2, \delta_4\}) < \min\{\delta_2, \delta_4\}.$$

Hence, $[min\{\delta_1, \delta_3\}, min\{\delta_2, \delta_4\}] \succ [\eta_1, \eta_2] \succ [l_1, l_2] = \widetilde{\alpha}_t(a_0 \diamond b_0)$. Therefore, $a_0 \diamond b_0 \notin \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$. On the other hand, we have

$$\widetilde{\alpha}_t(a_0) = [\delta_1, \delta_2] \succcurlyeq [min\{\delta_1, \delta_3\}, min\{\delta_2, \delta_4\}] \succ [\eta_1, \eta_2]$$

$$\widetilde{\alpha}_t(b_0) = [\delta_3, \delta_4] \succcurlyeq [min\{\delta_1, \delta_3\}, min\{\delta_2, \delta_4\}] \succ [\eta_1, \eta_2].$$

that is $a_0, b_0 \in \mathcal{U}(\widetilde{\alpha}_t; [l_1, l_2])$. This is a contradiction and, therefore, we have $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Also, if $\alpha_i(a_0 \diamond b_0) < \min\{\alpha_i(a_0), \alpha_i(b_0)\}\$ for some $a_0, b_0 \in \mathcal{K}$, then $a_0, b_0 \in \mathcal{U}(\alpha_i; m_0)$ but $a_0 \diamond b_0 \notin \mathcal{U}(\alpha_i; m_0)$ for $m_0 = \min\{\alpha_i(a_0), \alpha_i(b_0)\}$. This is a contradiction, and thus $\alpha_i(\zeta_1 \diamond \eta_1) \ge \min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}\$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Similarly, we can show that $\alpha_f(\zeta_1 \diamond \eta_1) \le \max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}\$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Consequently, $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)\$ is an SB-NSSA of \mathcal{K} .

Corollary 4.8. If $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} , then the sets $\mathcal{K}_{\widetilde{\alpha}_t} = \{\zeta_1 \in \mathcal{K} \mid \widetilde{\alpha}_t(\zeta_1) = \widetilde{\alpha}_t(0)\}, \ \mathcal{K}_{\alpha_i} = \{\zeta_1 \in \mathcal{K} \mid \alpha_i(\zeta_1) = \alpha_i(0)\}, \ and \ \mathcal{K}_{\alpha_f} = \{\zeta_1 \in \mathcal{K} \mid \alpha_f(\zeta_1) = \alpha_f(0)\} \ are \ subalgebras \ of \ \mathcal{K}.$

We say that the subalgebras $\mathcal{U}(\tilde{\alpha}_t; [l_1, l_2]), \mathcal{U}(\alpha_i; m)$ and $\mathcal{L}(\alpha_f; n)$ are SB-subalgebras of $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$.

Theorem 4.9. Every subalgebra of \mathcal{K} can be realized as an SB-subalgebra of an SB-NSSA of \mathcal{K} .

Proof. Let \mathcal{J} be a subalgebra of \mathcal{K} , and let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be a SB-NSS in \mathcal{K} defined by

(4.1)
$$\widetilde{\alpha}_t(\zeta_1) = \begin{cases} [\eta_1, \eta_2], \text{ if } \zeta_1 \in \mathcal{J} \\ [0, 0], \text{ otherwise} \end{cases}, \alpha_i(\zeta_1) = \begin{cases} m, \text{ if } \zeta_1 \in \mathcal{J} \\ 0, \text{ otherwise} \end{cases}, and$$

 $\alpha_f(\zeta_1) = \begin{cases} n, \text{ if } \zeta_1 \in \mathcal{J} \\ 1, \text{ otherwise} \end{cases} \text{ where } \eta_1, \eta_2, \text{ and } m \in (0,1] \text{ with } \eta_1 < \eta_2, \\ \text{and } n \in [0,1). \text{ It is clear that } \mathcal{U}(\widetilde{\alpha}_t; [\eta_1, \eta_2]) = \mathcal{J}, \mathcal{U}(\alpha_i; m) = \mathcal{J}, \text{ and } \\ \mathcal{L}(\alpha_f; n) = \mathcal{J}. \\ \text{Let } \zeta_1, \eta_1 \in \mathcal{K}. \text{ If } \zeta_1, \eta_1 \in \mathcal{J}, \text{ then } \zeta_1 \diamond \eta_1 \in \mathcal{J} \text{ and so} \end{cases}$

$$\begin{split} \widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) &= [\eta_1, \eta_2] = rmin\{[\eta_1, \eta_2], [\eta_1, \eta_2]\} = rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}\\ \alpha_i(\zeta_1 \diamond \eta_1) &= m = min\{m, m\} = min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}\\ \alpha_f(\zeta_1 \diamond \eta_1) &= n = max\{n, n\} = max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}. \end{split}$$

If any one of ζ_1 and η_1 is contained in \mathcal{J} , say $\zeta_1 \in \mathcal{J}$, then $\widetilde{\alpha}_t(\zeta_1) = [\eta_1, \eta_2]$, $\alpha_i(\zeta_1) = m$, $\alpha_f(\zeta_1) = n$, $\widetilde{\alpha}_t(\eta_1) = [0, 0]$, $\alpha_i(\eta_1) = 0$, and $\alpha_f(\eta_1) = 1$. Hence,

$$\begin{aligned} \widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) &\succcurlyeq [0,0] = rmin\{[\eta_{1},\eta_{2}], [0,0]\} = rmin\{\widetilde{\alpha}_{t}(\zeta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\} \\ \alpha_{i}(\zeta_{1} \diamond \eta_{1}) &\ge 0 = min\{m,0\} = min\{\alpha_{i}(\zeta_{1}), \alpha_{i}(\eta_{1})\} \\ \alpha_{f}(\zeta_{1} \diamond \eta_{1}) &\le 1 = max\{n,1\} = max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\eta_{1})\}. \end{aligned}$$

If $\zeta_1, \eta_1 \notin \mathcal{J}$, then $\widetilde{\alpha}_t(\zeta_1) = [0, 0], \alpha_i(\zeta_1) = 0, \alpha_f(\zeta_1) = 1, \widetilde{\alpha}_t(\eta_1) = [0, 0], \alpha_i(\eta_1) = 0$, and $\alpha_f(\eta_1) = 1$. It follows that

$$\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) \succcurlyeq [0,0] = rmin\{[0,0], [0,0]\} = rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\}$$

$$\alpha_i(\zeta_1 \diamond \eta_1) \ge 0 = min\{0,0\} = min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\}$$

$$\alpha_f(\zeta_1 \diamond \eta_1) \le 1 = max\{1,1\} = max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\}.$$

Therefore, $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Theorem 4.10. For any non-empty set \mathcal{J} of \mathcal{K} , let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} as defined in (4.1). If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} , then \mathcal{J} is a subalgebra of \mathcal{K} .

Proof. Let $\zeta_1, \eta_1 \in \mathcal{J}$. Then $\widetilde{\alpha}_t(\zeta_1) = [\eta_1, \eta_2], \ \alpha_i(\zeta_1) = m, \ \alpha_f(\zeta_1) = n,$ $\widetilde{\alpha}_t(\eta_1) = [\eta_1, \eta_2], \ \alpha_i(\eta_1) = m, \ \text{and} \ \alpha_f(\eta_1) = n.$ Thus $\widetilde{\alpha}_t(\zeta_1, \alpha_1) > \min\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\} = [n_t, n_t]$

$$\alpha_t(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\alpha_t(\zeta_1), \alpha_t(\eta_1)\} = [\eta_1, \eta_2]$$

$$\alpha_i(\zeta_1 \diamond \eta_1) \ge min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\} = m$$

$$\alpha_f(\zeta_1 \diamond \eta_1) \le max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\} = n$$

Therefore, $\zeta_1 \diamond \eta_1 \in \mathcal{J}$. Hence, \mathcal{J} is a subalgebra of \mathcal{K} .

Theorem 4.11. Given an SB-NSSA $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ of a BCI-A \mathcal{K} , let $\mathcal{N}^\diamond = (\widetilde{\alpha}_t^\diamond, \alpha_i^\diamond, \alpha_f^\diamond)$ be an SB-NSS defined by $\widetilde{\alpha}_t^\diamond(\zeta_1) = \widetilde{\alpha}_t(0 \diamond \zeta_1)$, $\alpha_i^\diamond(\zeta_1) = \alpha_i(0 \diamond \zeta_1)$, and $\alpha_f^\diamond(\zeta_1) = \alpha_f(0 \diamond \zeta_1)$ for all $\zeta_1 \in \mathcal{K}$. Then $\mathcal{N}^\diamond = (\widetilde{\alpha}_t^\diamond, \alpha_i^\diamond, \alpha_f^\diamond)$ is an SB-NSSA of \mathcal{K} .

Proof. In a BCI-A, we have that $0 \diamond (\zeta_1 \diamond \eta_1) = (0 \diamond \zeta_1) \diamond (0 \diamond \eta_1)$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$\begin{split} \widetilde{\alpha}_{t}^{\diamond}(\zeta_{1} \diamond \eta_{1}) &= \widetilde{\alpha}_{t}(0 \diamond (\zeta_{1} \diamond \eta_{1})) = \widetilde{\alpha}_{t}((0 \diamond \zeta_{1}) \diamond (0 \diamond \eta_{1})) \\ &\succcurlyeq rmin\{\widetilde{\alpha}_{t}(0 \diamond \zeta_{1}), \widetilde{\alpha}_{t}(0 \diamond \eta_{1})\} = rmin\{\widetilde{\alpha}_{t}^{\diamond}(\zeta_{1}), \widetilde{\alpha}_{t}^{\diamond}(\eta_{1})\}, \\ \alpha_{i}^{\diamond}(\zeta_{1} \diamond \eta_{1}) &= \alpha_{i}(0 \diamond (\zeta_{1} \diamond \eta_{1})) = \alpha_{i}((0 \diamond \zeta_{1}) \diamond (0 \diamond \eta_{1})) \\ &\geq min\{\alpha_{i}(0 \diamond \zeta_{1}), \alpha_{i}(0 \diamond \eta_{1})\} = min\{\alpha_{i}^{\diamond}(\zeta_{1}), \alpha_{i}^{\diamond}(\eta_{1})\}, \\ \alpha_{f}^{\diamond}(\zeta_{1} \diamond \eta_{1}) = \alpha_{f}(0 \diamond (\zeta_{1} \diamond \eta_{1})) = \alpha_{f}((0 \diamond \zeta_{1}) \diamond (0 \diamond \eta_{1})) \\ &\leq max\{\alpha_{f}(0 \diamond \zeta_{1}), \alpha_{f}(0 \diamond \eta_{1})\} = max\{\alpha_{f}^{\diamond}(\zeta_{1}), \alpha_{f}^{\diamond}(\eta_{1})\} \end{split}$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Therefore, $\mathcal{N}^{\diamond} = (\widetilde{\alpha}_t^{\diamond}, \alpha_i^{\diamond}, \alpha_f^{\diamond})$ is an SB-NSSA of \mathcal{K} .

Theorem 4.12. Let $\phi : \mathcal{K} \to \mathcal{Y}$ be a homomorphism of a BCK/BCI-A. If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{Y} , then $\phi^{-1}(\mathcal{N}) = (\phi^{-1}(\tilde{\alpha}_t), \phi^{-1}(\alpha_i), \phi^{-1}(\alpha_f))$ is an SB-NSSA of \mathcal{K} , where $\phi^{-1}(\tilde{\alpha}_t)(\zeta_1) = \tilde{\alpha}_t(\phi(\zeta_1)), \phi^{-1}(\alpha_i)(\zeta_1) = \alpha_i(\phi(\zeta_1))$, and $\phi^{-1}(\alpha_f)(\zeta_1) = \alpha_f(\phi(\zeta_1))$ for all $\zeta_1 \in \mathcal{K}$. *Proof.* Let $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$\phi^{-1}(\widetilde{\alpha}_{t})(\zeta_{1} \diamond \eta_{1}) = \widetilde{\alpha}_{t}(\phi(\zeta_{1} \diamond \eta_{1})) = \widetilde{\alpha}_{t}(\phi(\zeta_{1}) \diamond \phi(\eta_{1}))$$

$$\approx rmin\{\widetilde{\alpha}_{t}(\phi(\zeta_{1})), \widetilde{\alpha}_{t}(\phi(\eta_{1}))\}$$

$$= rmin\{\phi^{-1}(\widetilde{\alpha}_{t})(\zeta_{1}), \phi^{-1}(\widetilde{\alpha}_{t})(\eta_{1})\},$$

$$\phi^{-1}(\alpha_{i})(\zeta_{1} \diamond \eta_{1}) = \alpha_{i}(\phi(\zeta_{1} \diamond \eta_{1})) = \alpha_{i}(\phi(\zeta_{1}) \diamond \phi(\eta_{1}))$$

$$\geq min\{\alpha_{i}(\phi(\zeta_{1})), \alpha_{i}(\phi(\eta_{1}))\}\}$$

$$= min\{\phi^{-1}(\alpha_{i})(\zeta_{1}), \phi^{-1}(\alpha_{i})(\eta_{1})\},$$

$$\phi^{-1}(\alpha_{f})(\zeta_{1} \diamond \eta_{1}) = \alpha_{f}(\phi(\zeta_{1} \diamond \eta_{1})) = \alpha_{f}(\phi(\zeta_{1}) \diamond \phi(\eta_{1}))$$

$$\leq max\{\alpha_{f}(\phi(\zeta_{1})), \alpha_{f}(\phi(\eta_{1}))\}\}$$

$$= max\{\phi^{-1}(\alpha_{f})(\zeta_{1}), \phi^{-1}(\alpha_{f})(\eta_{1})\}.$$

Hence, $\phi^{-1}(\mathcal{N}) = (\phi^{-1}(\widetilde{\alpha}_t), \phi^{-1}(\alpha_i), \phi^{-1}(\alpha_f))$ is an SB-NSSA of \mathcal{K} . \Box

Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} . We denote

$$\begin{split} \mathfrak{b} &= [1,1] - rsup\{\widetilde{\alpha}_t(\zeta_1) \mid \zeta_1 \in \mathcal{K}\},\\ \mathfrak{s} &= 1 - sup\{\alpha_i(\zeta_1) \mid \zeta_1 \in \mathcal{K}\},\\ \mathfrak{n} &= inf\{\alpha_f(\zeta_1) \mid \zeta_1 \in \mathcal{K}\}. \end{split}$$

For any $\hat{a} \in [[0,0], \mathfrak{b}], b \in [0,\mathfrak{s}]$, and $c \in [0,\mathfrak{n}]$ we define $\widetilde{\alpha}_t^{\hat{a}}(\zeta_1) = \widetilde{\alpha}_t(\zeta_1) + \hat{a}, \alpha_i{}^b(\zeta_1) = \alpha_i(\zeta_1) + b$, and $\alpha_f{}^c = \alpha_f(\zeta_1) - c$ then $\mathcal{N}^T = (\widetilde{\alpha}_t^{\hat{a}}, \alpha_i{}^b, \alpha_f{}^c)$ is an SB-NSS in \mathcal{K} , which is called a (\hat{a}, b, c) -translative SB-NSS of \mathcal{K} .

Theorem 4.13. If $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} , then the (\widehat{a}, b, c) -translative SB-NSS of $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is also an SB-NSSA of \mathcal{K} .

Proof. For any $\zeta_1, \eta_1 \in \mathcal{K}$, we have,

$$\begin{split} \widetilde{\alpha}_{t}^{\hat{a}}(\zeta_{1} \diamond \eta_{1}) &= \widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) + \hat{a} \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\} + \hat{a} \\ &= rmin\{\widetilde{\alpha}_{t}(\zeta_{1}) + \hat{a}, \widetilde{\alpha}_{t}(\eta_{1}) + \hat{a}\} = rmin\{\widetilde{\alpha}_{t}^{\hat{a}}(\zeta_{1}), \widetilde{\alpha}_{t}^{\hat{a}}(\eta_{1})\}, \\ \alpha_{i}^{b}(\zeta_{1} \diamond \eta_{1}) &= \alpha_{i}(\zeta_{1} \diamond \eta_{1}) + b \ge min\{\alpha_{i}(\zeta_{1}), \alpha_{i}(\eta_{1})\} + b \\ &= min\{\alpha_{i}(\zeta_{1}) + b, \alpha_{i}(\eta_{1}) + b\} = min\{\alpha_{i}^{b}(\zeta_{1}), \alpha_{i}^{b}(\eta_{1})\}, \\ \alpha_{f}^{c}(\zeta_{1} \diamond \eta_{1}) &= \alpha_{f}(\zeta_{1} \diamond \eta_{1}) - c \le max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\eta_{1})\} - c \\ &= max\{\alpha_{f}(\zeta_{1}) - c, \alpha_{f}(\eta_{1}) - c\} = max\{\alpha_{f}^{c}(\zeta_{1}), \alpha_{f}^{c}(\eta_{1})\}. \end{split}$$
Therefore, $\mathcal{N}^{T} = (\widetilde{\alpha}_{t}^{\hat{a}}, \alpha_{i}^{b}, \alpha_{f}^{c})$ is an SB-NSSA of \mathcal{K} .

Theorem 4.14. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} such that its (\hat{a}, b, c) -translative SB-NSS is an SB-NSSA of \mathcal{K} for $\hat{a} \in [[0, 0], \mathfrak{b}]$, $b \in [0, \mathfrak{s}]$, and $c \in [0, \mathfrak{n}]$. Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Proof. Assume that $\mathcal{N}^T = (\widetilde{\alpha}_t^{\hat{a}}, \alpha_i^{\ b}, \alpha_f^{\ c})$ is an SB-NSSA of \mathcal{K} for $\hat{a} \in [[0,0], \mathfrak{b}], \ b \in [0,\mathfrak{s}], \ \text{and} \ c \in [0,\mathfrak{n}].$ Let $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$\begin{split} \widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) + \widehat{a} &= \widetilde{\alpha}_t^{\widehat{a}}(\zeta_1 \diamond \eta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t^{\widehat{a}}(\zeta_1), \widetilde{\alpha}_t^{\widehat{a}}(\eta_1)\} \\ &= rmin\{\widetilde{\alpha}_t(\zeta_1) + \widehat{a}, \widetilde{\alpha}_t(\eta_1) + \widehat{a}\} \\ &= rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\} + \widehat{a}, \\ \alpha_i(\zeta_1 \diamond \eta_1) + b &= \alpha_i^{\ b}(\zeta_1 \diamond \eta_1) \ge min\{\alpha_i^{\ b}(\zeta_1), \alpha_i^{\ b}(\eta_1)\} \\ &= min\{\alpha_i(\zeta_1) + b, \alpha_i(\eta_1) + b\} \\ &= min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\} + b, \\ \alpha_f(\zeta_1 \diamond \eta_1) - c &= \alpha_f^{\ c}(\zeta_1 \diamond \eta_1) \le max\{\alpha_f^{\ c}(\zeta_1), \alpha_f^{\ c}(\eta_1)\} \\ &= max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\} - c. \end{split}$$

It follows that

$$\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\}\$$
$$\alpha_{i}(\zeta_{1} \diamond \eta_{1}) \ge min\{\alpha_{i}(\zeta_{1}), \alpha_{i}(\eta_{1})\}\$$
$$\alpha_{f}(\zeta_{1} \diamond \eta_{1}) \le max\{\alpha_{f}(\zeta_{1}), \alpha_{f}(\eta_{1})\}\$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Hence, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

5. SB-NEUTROSOPHIC IDEAL

Definition 5.1. Let \mathcal{K} be a BCK/BCI-A. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ in \mathcal{K} is called an SB-neutrosophic ideal (SB-NSI) of \mathcal{K} if it satisfies (SB-NSI 1) $\tilde{\alpha}_t(0) \succcurlyeq \tilde{\alpha}_t(\zeta_1), \alpha_i(0) \ge \alpha_i(\zeta_1), \text{ and } \alpha_f(0) \le \alpha_f(x)$ (SB-NSI 2) $\tilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\tilde{\alpha}_t(\zeta_1 \diamond \eta_1), \tilde{\alpha}_t(\eta_1)\}$ (SB-NSI 3) $\alpha_i(\zeta_1) \ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}$ (SB-NSI 4) $\alpha_f(\zeta_1) \le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}$ for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Example 5.2. Consider a set $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1\}$ with the binary operation ' \diamond ' as given in the Table 3. Then $(\mathcal{K}; \diamond, 0)$ is a BCI-A.

Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} as defined in the Table 4. It is routine to verify that $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

TABLE 3. BCI-algebra

\diamond	0	ζ_1	η_1	θ_1
0	0	0	0	θ_1
ζ_1	ζ_1	0	0	θ_1
η_1	η_1	η_1	0	θ_1
θ_1	θ_1	θ_1	θ_1	0

TABLE 4. SB-Neutrosophic set

\mathcal{K}	$\widetilde{lpha}_t(\zeta)$	$\alpha_i(\zeta)$	$\alpha_f(\zeta)$
0	[0.8, 1]	0.9	0.1
ζ_1	[0.7, 0.8]	0.7	0.3
η_1	[0.4, 0.6]	0.5	0.6
θ_1	[0.2, 0.5]	0.1	0.8

Proposition 5.3. Let \mathcal{K} be a BCK/BCI-A. Then every SB-NSI $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ of \mathcal{K} satisfies the following assertion

(5.1)
$$\zeta_1 \diamond \eta_1 \leq \theta_1 \Rightarrow \begin{pmatrix} \widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(\theta_1)\} \\ \alpha_i(\zeta_1) \geq min\{\alpha_i(\eta_1), \alpha_i(\theta_1)\} \\ \alpha_f(\zeta_1) \leq max\{\alpha_f(\eta_1), \alpha_f(\theta_1)\} \end{pmatrix}$$

for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$.

Proof. Let $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$ be such that $\zeta_1 \diamond \eta_1 \leq \theta_1$. Then

$$\begin{split} \widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t((\zeta_1 \diamond \eta_1) \diamond \theta_1), \widetilde{\alpha}_t(\theta_1)\} \\ &= rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\theta_1)\} = \widetilde{\alpha}_t(\theta_1), \\ \alpha_i(\zeta_1 \diamond \eta_1) \geq min\{\alpha_i((\zeta_1 \diamond \eta_1) \diamond \theta_1), \alpha_i(\theta_1)\} \\ &= min\{\alpha_i(0), \alpha_i(\theta_1)\} = \alpha_i(\theta_1), \\ \alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f((\zeta_1 \diamond \eta_1) \diamond \theta_1), \alpha_f(\theta_1)\} \\ &= max\{\alpha_f(0), \alpha_f(\theta_1)\} = \alpha_f(\theta_1). \end{split}$$

It follows that for all $\zeta_1, \eta_1 \in \mathcal{K}$, we have

$$\begin{split} \widetilde{\alpha}_t(\zeta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} \succcurlyeq rmin\{\widetilde{\alpha}_t(\theta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1) &\ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} \ge min\{\alpha_i(\theta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1) &\le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\} \le max\{\alpha_f(\theta_1), \alpha_f(\eta_1)\}. \end{split}$$

Hence, the proof is completed.

Theorem 5.4. Every SB-NSS in a BCK/BCI-A \mathcal{K} satisfying (SB-NSI 1) and assertion (5.1) in Proposition 5.3 is an SB-NSI of \mathcal{K} .

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in \mathcal{K} satisfying (SB-NSI 1) and assertion (5.1). Since $\zeta_1 \diamond (\zeta_1 \diamond \eta_1) \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, we have,

$$\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1) \ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1) \le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}.$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

Theorem 5.5. Given an SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ in a BCK/BCI-A \mathcal{K} . Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} if and only if α_t^- , α_t^+ , α_i , and α_f^c are FIs of \mathcal{K} .

Proof. Suppose that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} . Then we have, for all $\zeta_1, \eta_1 \in \mathcal{K}$.

$$\begin{aligned} \widetilde{\alpha}_t(0) &\succcurlyeq \widetilde{\alpha}_t(\zeta_1), \ \alpha_i(0) \ge \alpha_i(\zeta_1), \ \text{and} \ \alpha_f(0) \le \alpha_f(\zeta_1) \\ \widetilde{\alpha}_t(\zeta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1) \ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1) \le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}. \end{aligned}$$

$$\begin{split} \widetilde{\alpha}_t(0) &\succcurlyeq \widetilde{\alpha}_t(\zeta_1) \Rightarrow [\alpha_t^{-}(0), \alpha_t^{+}(0)] \succcurlyeq [\alpha_t^{-}(\zeta_1), \alpha_t^{+}(\zeta_1)] \\ \Rightarrow \alpha_t^{-}(0) \geq \alpha_t^{-}(\zeta_1) \text{ and } \alpha_t^{+}(0) \geq \alpha_t^{+}(\zeta_1). \\ \alpha_f(0) \leq \alpha_f(\zeta_1) \Rightarrow 1 - \alpha_f(0) \geq 1 - \alpha_f(\zeta_1) \Rightarrow \alpha_f^{c}(0) \geq \alpha_f^{c}(\zeta_1). \end{split}$$

Now $\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}$ $\Rightarrow [\alpha_t^{-}(\zeta_1), \alpha_t^{+}(\zeta_1)]$ $\succcurlyeq rmin\{[\alpha_t^{-}(\zeta_1 \diamond \eta_1), \alpha_t^{+}(\zeta_1 \diamond \eta_1)], [\alpha_t^{-}(\eta_1), \alpha_t^{+}(\eta_1)]\}$ $= [min\{\alpha_t^{-}(\zeta_1 \diamond \eta_1), \alpha_t^{-}(\eta_1)\}, min\{\alpha_t^{+}(\zeta_1 \diamond \eta_1), \alpha_t^{+}(\eta_1)\}]$

> Therefore, $\alpha_t^-(\zeta_1) \ge \min\{\alpha_t^-(\zeta_1 \diamond \eta_1), \alpha_t^-(\eta_1)\},\$ $\alpha_t^+(\zeta_1) \ge \min\{\alpha_t^+(\zeta_1 \diamond \eta_1), \alpha_t^+(\eta_1)\}.$

Satyanarayana, Baji, and Devanandam

Also
$$\alpha_f(\zeta_1) \leq max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}\$$

 $\Rightarrow 1 - \alpha_f(\zeta_1) \geq 1 - max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}\$
 $\Rightarrow \alpha_f^c(\zeta_1) \geq min\{1 - \alpha_f(\zeta_1 \diamond \eta_1), 1 - \alpha_f(\eta_1)\}\$
 $\Rightarrow \alpha_f^c(\zeta_1) \geq min\{\alpha_f^c(\zeta_1 \diamond \eta_1), \alpha_f^c(\eta_1)\}.$

Therefore, α_t^- , α_t^+ , α_i , and α_f^c are FIs of \mathcal{K} . The converse part is obvious.

Theorem 5.6. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of \mathcal{K} is an SB-NSI of \mathcal{K} if and only if the non-empty sets $\mathcal{U}(\tilde{\alpha}_t; [l_1, l_2])$, $\mathcal{U}(\alpha_i; m)$, and $\mathcal{L}(\alpha_f; n)$ are ideals of \mathcal{K} for all $m, n \in [0, 1]$ and $[l_1, l_2] \in [I]$.

Proof. The proof of theorem follows a similar approach to the proof presented in the Theorem 4.7.

Theorem 5.7. Given an ideal \mathcal{J} of a BCK/BCI-A \mathcal{K} , let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} as defined in Equation (4.1). Then $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} such that $\mathcal{U}(\widetilde{\alpha}_t; [\eta_1, \eta_2]) = \mathcal{J}, \mathcal{U}(\alpha_i; m) = \mathcal{J}, and \mathcal{L}(\alpha_f; n) = \mathcal{J}.$

Proof. Let $\zeta_1, \eta_1 \in \mathcal{K}$. If $\zeta_1 \diamond \eta_1 \in \mathcal{J}$ and $\eta_1 \in \mathcal{J}$, then $\zeta_1 \in \mathcal{J}$ and so

$$\begin{aligned} \widetilde{\alpha}_t(\zeta_1) &= [\eta_1, \eta_2] = rmin\{[\eta_1, \eta_2], [\eta_1, \eta_2]\} = rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1) &= m = min\{m, m\} = min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1) &= n = max\{n, n\} = max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}. \end{aligned}$$

If any one of $\zeta_1 \diamond \eta_1$ and η_1 is contained in \mathcal{J} , say $\zeta_1 \diamond \eta_1 \in \mathcal{J}$, then $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) = [\eta_1, \eta_2], \ \alpha_i(\zeta_1 \diamond \eta_1) = m, \ \alpha_f(\zeta_1 \diamond \eta_1) = n, \ \widetilde{\alpha}_t(\eta_1) = [0, 0], \ \alpha_i(\eta_1) = 0, \ \text{and} \ \alpha_f(\eta_1) = 1$. Hence,

$$\begin{aligned} \widetilde{\alpha}_{t}(\zeta_{1}) &\succeq [0,0] = rmin\{[\eta_{1},\eta_{2}], [0,0]\} = rmin\{\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\} \\ \alpha_{i}(\zeta_{1}) &\geq 0 = min\{m,0\} = min\{\alpha_{i}(\zeta_{1} \diamond \eta_{1}), \alpha_{i}(\eta_{1})\} \\ \alpha_{f}(\zeta_{1}) &\leq 1 = max\{n,1\} = max\{\alpha_{f}(\zeta_{1} \diamond \eta_{1}), \alpha_{f}(\eta_{1})\}. \end{aligned}$$

If $\zeta_1 \diamond \eta_1 \notin \mathcal{J}$ and $\eta_1 \notin \mathcal{J}$, then $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) = [0,0]$, $\alpha_i(\zeta_1 \diamond \eta_1) = 0$, $\alpha_f(\zeta_1 \diamond \eta_1) = 1$, $\widetilde{\alpha}_t(\eta_1) = [0,0]$, $\alpha_i(\eta_1) = 0$, and $\alpha_f(\eta_1) = 1$. It follows that

$$\begin{aligned} \widetilde{\alpha}_t(\zeta_1) &\succcurlyeq [0,0] = rmin\{[0,0], [0,0]\} = rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1)\widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1) &\ge 0 = min\{0,0\} = min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1) &\le 1 = max\{1,1\} = max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}. \end{aligned}$$

It is obvious that $\widetilde{\alpha}_t(0) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \alpha_i(0) \ge \alpha_i(\zeta_1), \text{ and } \alpha_f(0) \le \alpha_f(\zeta_1) \text{ for all } \zeta_1 \in \mathcal{K}.$ Therefore, $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} . Obviously, we have $\mathcal{U}(\widetilde{\alpha}_t; [\eta_1, \eta_2]) = \mathcal{J}, \mathcal{U}(\alpha_i; m) = \mathcal{J}, \text{ and } \mathcal{L}(\alpha_f; n) = \mathcal{J}.$

Theorem 5.8. For any non-empty subset \mathcal{J} of \mathcal{K} , let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} as defined in Equation (4.1). If $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} , then \mathcal{J} is an ideal of \mathcal{K} .

Proof. Obviously, $0 \in \mathcal{J}$. Let $\zeta_1, \eta_1 \in \mathcal{K}$ be such that $\zeta_1 \diamond \eta_1$ and $\eta_1 \in \mathcal{J}$. Then $\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) = [\eta_1, \eta_2], \ \alpha_i(\zeta_1 \diamond \eta_1) = m, \ \alpha_f(\zeta_1 \diamond \eta_1) = n, \ \widetilde{\alpha}_t(\eta_1) = [\eta_1, \eta_2], \ \alpha_i(\eta_1) = m, \ \text{and} \ \alpha_f(\eta_1) = n$. Thus,

$$\widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} = [\eta_1, \eta_2]$$
$$\alpha_i(\zeta_1) \ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} = m$$
$$\alpha_f(\zeta_1) \le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\} = n$$

and therefore, $\zeta_1 \in \mathcal{J}$. Hence, \mathcal{J} is an ideal of \mathcal{K} .

Theorem 5.9. In a BCK-A \mathcal{K} , every SB-NSI is an SB-NSSA of \mathcal{K} .

Proof. Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSI of a BCK-A \mathcal{K} . Since $(\zeta_1 \diamond \eta_1) \diamond \zeta_1 \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, it follows from Proposition 5.3 that

$$\begin{aligned} \widetilde{\alpha}_t(\zeta_1 \diamond \eta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1 \diamond \eta_1) \geq min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1 \diamond \eta_1) \leq max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\} \end{aligned}$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Hence, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of a BCK-A \mathcal{K} .

The converse of the Theorem 5.9 may not be true, as shown in the following example.

Example 5.10. Consider a BCK-A $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1\}$ with a binary operation ' \diamond ' as shown in the Table 5. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} as defined in the Table 6. Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} However, it is not an SB-NSI of a BCK-A \mathcal{K} because $\tilde{\alpha}_t(\zeta_1) \preccurlyeq rmin\{\tilde{\alpha}_t(\zeta_1 \diamond \eta_1), \tilde{\alpha}_t(\eta_1)\}.$

In the following theorem, we provide a condition for an SB-NSSA to be an SB-NSI of a BCK-A.

TABLE 5. BCK-algebra

\diamond	0	ζ_1	η_1	θ_1
0	0	0	0	0
ζ_1	ζ_1	0	0	ζ_1
η_1	η_1	ζ_1	0	η_1
θ_1	θ_1	θ_1	θ_1	0

TABLE 6. SB-Neutrosophic set

\mathcal{K}	$\widetilde{lpha}_t(\zeta)$	$\alpha_i(\zeta)$	$\alpha_f(\zeta)$
0	[0.5, 0.9]	0.8	0.3
ζ_1	[0.4, 0.7]	0.3	0.4
η_1	[0.5, 0.9]	0.3	0.5
θ_1	[0.1, 0.3]	0.7	1

Theorem 5.11. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSSA of a BCK-A \mathcal{K} satisfying the conditions

(5.2)
$$\zeta_1 \diamond \eta_1 \leq \theta_1 \Rightarrow \begin{pmatrix} \widetilde{\alpha}_t(\zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(\theta_1)\} \\ \alpha_i(\zeta_1) \geq min\{\alpha_i(\eta_1), \alpha_i(\theta_1)\} \\ \alpha_f(\zeta_1) \leq max\{\alpha_f(\eta_1), \alpha_f(\theta_1)\} \end{pmatrix}$$

for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$. Then, $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

Proof. For any $\zeta_1 \in \mathcal{K}$, we get

$$\begin{aligned} \widetilde{\alpha}_t(0) &= \widetilde{\alpha}_t(\zeta_1 \diamond \zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\zeta_1)\} \\ &\succeq rmin\{[\alpha_t^{-}(\zeta_1), \alpha_t^{+}(\zeta_1)], [\alpha_t^{-}(\zeta_1), \alpha_t^{+}(\zeta_1)]\} \\ &= [\alpha_t^{-}(\zeta_1), \alpha_t^{+}(\zeta_1)] = \widetilde{\alpha}_t(\zeta_1), \\ \alpha_i(0) &= \alpha_i(\zeta_1 \diamond \zeta_1) \ge min\{\alpha_i(\zeta_1), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1), \\ \alpha_f(0) &= \alpha_f(\zeta_1 \diamond \zeta_1) \le max\{\alpha_f(\zeta_1), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1). \end{aligned}$$

Since $\zeta_1 \diamond (\zeta_1 \diamond \eta_1) \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, it follows that

$$\widetilde{\alpha}_{t}(\zeta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\} \\ \alpha_{i}(\zeta_{1}) \ge min\{\alpha_{i}(\zeta_{1} \diamond \eta_{1}), \alpha_{i}(\eta_{1})\} \\ \alpha_{f}(\zeta_{1}) \le max\{\alpha_{f}(\zeta_{1} \diamond \eta_{1}), \alpha_{f}(\eta_{1})\}$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$. Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} . \Box

Definition 5.12. An SB-NSI of $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ of a BCI-A \mathcal{K} is said to be closed if $\widetilde{\alpha}_t(0 \diamond \zeta_1) \succcurlyeq \widetilde{\alpha}_t(\zeta_1), \alpha_i(0 \diamond \zeta_1) \ge \alpha_i(\zeta_1), \text{ and } \alpha_f(0 \diamond \zeta_1) \le \alpha_f(\zeta_1)$ for all $\zeta_1 \in \mathcal{K}$.

Theorem 5.13. In a BCI-A \mathcal{K} , every closed SB-NSI is an SB-NSSA.

Proof. Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be a closed SB-NSI of a BCI-A \mathcal{K} . By using Definition 5.1, (2.8), (2.2), and Definition 5.12, we obtain for all $\zeta_1, \eta_1 \in \mathcal{K}$

$$\begin{split} \widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}((\zeta_{1} \diamond \eta_{1}) \diamond \zeta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\} \\ &= rmin\{\widetilde{\alpha}_{t}((\zeta_{1} \diamond \zeta_{1}) \diamond \eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\} \\ &= rmin\{\widetilde{\alpha}_{t}(0 \diamond \eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\} \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\eta_{1}), \widetilde{\alpha}_{t}(\zeta_{1})\}, \\ \alpha_{i}(\zeta_{1} \diamond \eta_{1}) \ge min\{\alpha_{i}((\zeta_{1} \diamond \eta_{1}) \diamond \zeta_{1}), \alpha_{i}(\zeta_{1})\} \\ &= min\{\alpha_{i}((\zeta_{1} \diamond \zeta_{1}) \diamond \eta_{1}), \alpha_{i}(\zeta_{1})\} \\ &= min\{\alpha_{i}(0 \diamond \eta_{1}), \alpha_{i}(\zeta_{1})\} \ge min\{\alpha_{i}(\eta_{1}), \alpha_{i}(\zeta_{1})\}, \\ \alpha_{f}(\zeta_{1} \diamond \eta_{1}) \le max\{\alpha_{f}((\zeta_{1} \diamond \eta_{1}) \diamond \zeta_{1}), \alpha_{f}(\zeta_{1})\} \\ &= max\{\alpha_{f}((\zeta_{1} \diamond \zeta_{1}) \diamond \eta_{1}), \alpha_{f}(\zeta_{1})\} \\ &= max\{\alpha_{f}(0 \diamond \eta_{1}), \alpha_{f}(\zeta_{1})\} \le max\{\alpha_{f}(\eta_{1}), \alpha_{f}(\zeta_{1})\}. \end{split}$$
even, $\mathcal{N} = (\widetilde{\alpha}_{t}, \alpha_{i}, \alpha_{f})$ is an SB-NSSA of \mathcal{K} .

Hence, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Theorem 5.14. In a weakly BCK-A \mathcal{K} , every SB-NSI is closed.

Proof. Let $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSI of a weakly BCK-A \mathcal{K} . By using Definition 5.1 and (2.15), for any $\zeta_1 \in \mathcal{K}$, we obtain

$$\begin{split} \widetilde{\alpha}_t(0 \diamond \zeta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t((0 \diamond \zeta_1) \diamond \zeta_1), \widetilde{\alpha}_t(\zeta_1)\} \\ &= rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\zeta_1)\} = \widetilde{\alpha}_t(\zeta_1), \\ \alpha_i(0 \diamond \zeta_1) &\geq min\{\alpha_i((0 \diamond \zeta_1) \diamond \zeta_1), \alpha_i(\zeta_1)\} \\ &= min\{\alpha_i(0), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1), \\ \alpha_f(0 \diamond \zeta_1) &\leq max\{\alpha_f((0 \diamond \zeta_1) \diamond \zeta_1), \alpha_f(\zeta_1)\} \\ &= max\{\alpha_f(0), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1). \end{split}$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of \mathcal{K} .

Corollary 5.15. In a weakly BCK-A, every SB-NSI is an SB-NSSA of K.

In the following example, we show that any SB-NSSA may not be an SB-NSI of a BCI-A.

Example 5.16. Consider a BCI-A $\mathcal{K} = \{0, \zeta_1, \eta_1, \theta_1, \zeta_4, \zeta_5\}$ with binary operation '\$` as shown in the Table 7. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS of \mathcal{K} defined in the Table 8. It is routine to verify that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} . However, it is not an SB-NSI of \mathcal{K} since $\tilde{\alpha}_t(\zeta_4) \prec rmin\{\tilde{\alpha}_t(\zeta_4 \diamond \theta_1), \tilde{\alpha}_t(\theta_1)\}$.

TABLE 7. BCI-algebra

\diamond	0	ζ_1	η_1	θ_1	ζ_4	ζ_5
0	0	0	θ_1	η_1	θ_1	θ_1
ζ_1	ζ_1	0	θ_1	η_1	θ_1	θ_1
η_1	η_1	η_1	0	θ_1	0	0
θ_1	θ_1	θ_1	η_1	0	η_1	η_1
ζ_4	ζ_4	η_1	ζ_1	θ_1	0	ζ_1
ζ_5	ζ_5	η_1	ζ_1	θ_1	ζ_1	0

TABLE 8. SB-Neutrosophic set

\mathcal{K}	$\widetilde{lpha}_t(\zeta_1)$	$\alpha_i(\zeta_1)$	$\alpha_f(\zeta_1)$
0	[0.5, 0.8]	0.9	0.1
ζ_1	[0.1, 0.3]	0.3	0.7
η_1	[0.5, 0.8]	0.9	0.1
θ_1	[0.5, 0.8]	0.9	0.1
ζ_4	[0.1, 0.3]	0.3	0.7
ζ_5	[0.1, 0.3]	0.3	0.7

Theorem 5.17. In a p-semisimple BCI-A \mathcal{K} , the following are equivalent

(i) $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of \mathcal{K} .

(ii) $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Proof. (i) \Rightarrow (ii) See Theorem 5.13. (ii) \Rightarrow (i) Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} . For any $\zeta_1 \in \mathcal{K}$, we obtain $\tilde{\alpha}_t(0) = \tilde{\alpha}_t(\zeta_1 \diamond \zeta_1) \succcurlyeq rmin\{\tilde{\alpha}_t(\zeta_1), \tilde{\alpha}_t(\zeta_1)\} = \tilde{\alpha}_t(\zeta_1)$ $\alpha_i(0) = \alpha_i(\zeta_1 \diamond \zeta_1) \ge min\{\alpha_i(\zeta_1), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1)$ $\alpha_f(0) = \alpha_f(\zeta_1 \diamond \zeta_1) \le max\{\alpha_f(\zeta_1), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1).$

Hence,

$$\widetilde{\alpha}_t(0 \diamond \zeta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\zeta_1)\} = \widetilde{\alpha}_t(\zeta_1)$$

$$\alpha_i(0 \diamond \zeta_1) \ge min\{\alpha_i(0), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1)$$

$$\alpha_f(0 \diamond \zeta_1) \le max\{\alpha_f(0), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1)$$

for all $\zeta_1 \in \mathcal{K}$. Let $\zeta_1, \eta_1 \in \mathcal{K}$. Then

$$\begin{split} \widetilde{\alpha}_t(\zeta_1) &= \widetilde{\alpha}_t(\eta_1 \diamond (\eta_1 \diamond \zeta_1)) \succcurlyeq rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(\eta_1 \diamond \zeta_1)\} \\ &= rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(0 \diamond (\zeta_1 \diamond \eta_1))\} \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\}, \\ \alpha_i(\zeta_1) &= \alpha_i(\eta_1 \diamond (\eta_1 \diamond \zeta_1)) \ge min\{\alpha_i(\eta_1), \alpha_i(\eta_1 \diamond \zeta_1)\} \\ &= min\{\alpha_i(\eta_1), \alpha_i(0 \diamond (\zeta_1 \diamond \eta_1))\} \ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\}, \\ \alpha_f(\zeta_1) &= \alpha_f(\eta_1 \diamond (\eta_1 \diamond \zeta_1)) \le max\{\alpha_f(\eta_1), \alpha_f(\eta_1 \diamond \zeta_1)\} \\ &= max\{\alpha_f(\eta_1), \alpha_f(0 \diamond (\zeta_1 \diamond \eta_1))\} \le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\}. \end{split}$$

Therefore, $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of \mathcal{K} .

Since every associative BCI-A is a p-semisimple, we have the following corollary

Corollary 5.18. In an associative BCI-A \mathcal{K} , the following are equivalent

(i) $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is a closed SB-NSI of \mathcal{K} . (ii) $\mathcal{N} = (\widetilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSSA of \mathcal{K} .

Definition 5.19. Let \mathcal{K} be an (s)-BCK-A. An SB-NSS $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is called an SB-neutrosophic \circ -subalgebra of \mathcal{K} if the following assertions are valid

 $\begin{aligned} \widetilde{\alpha}_t(\zeta_1 \circ \eta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\eta_1)\} \\ \alpha_i(\zeta_1 \circ \eta_1) &\ge min\{\alpha_i(\zeta_1), \alpha_i(\eta_1)\} \\ \alpha_f(\zeta_1 \circ \eta_1) &\le max\{\alpha_f(\zeta_1), \alpha_f(\eta_1)\} \text{ for all } \zeta_1, \eta_1 \in \mathcal{K}. \end{aligned}$

Lemma 5.20. Every SB-NSI of a BCK/BCI-A \mathcal{K} satisfies the following assertion

$$\zeta_1 \leq \eta_1 \Rightarrow \widetilde{\alpha}_t(\zeta_1) \succcurlyeq \widetilde{\alpha}_t(\eta_1), \alpha_i(\zeta_1) \geq \alpha_i(\eta_1), \text{ and } \alpha_f(\zeta_1) \leq \alpha_f(\eta_1)$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Proof. Assume that $\zeta_1 \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$. Then $\zeta_1 \diamond \eta_1 = 0$ and so

$$\begin{split} \widetilde{\alpha}_t(\zeta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond \eta_1), \widetilde{\alpha}_t(\eta_1)\} = rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\eta_1)\} = \widetilde{\alpha}_t(\eta_1) \\ \alpha_i(\zeta_1) &\ge min\{\alpha_i(\zeta_1 \diamond \eta_1), \alpha_i(\eta_1)\} = min\{\alpha_i(0), \alpha_i(\eta_1)\} = \alpha_i(\eta_1) \\ \alpha_f(\zeta_1) &\le max\{\alpha_f(\zeta_1 \diamond \eta_1), \alpha_f(\eta_1)\} = max\{\alpha_f(0), \alpha_f(\eta_1)\} = \alpha_f(\eta_1). \end{split}$$

for all $\zeta_1, \eta_1 \in \mathcal{K}$.

Theorem 5.21. In an (s)-BCK-A, every SB-NSI is an SB - neutrosophic \circ -subalgebra.

Proof. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSI of an (s)-BCK-A \mathcal{K} . Since $(\zeta_1 \circ \eta_1) \diamond \zeta_1 \leq \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, we obtain

$$\begin{aligned} \widetilde{\alpha}_t(\zeta_1 \circ \eta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t((\zeta_1 \circ \eta_1) \diamond \zeta_1), \widetilde{\alpha}_t(\zeta_1)\} \succeq rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(\zeta_1)\} \\ \alpha_i(\zeta_1 \circ \eta_1) &\ge min\{\alpha_i((\zeta_1 \circ \eta_1) \diamond \zeta_1), \alpha_i(\zeta_1)\} \ge min\{\alpha_i(\eta_1), \alpha_i(\zeta_1)\} \\ \alpha_f(\zeta_1 \circ \eta_1) &\le max\{\alpha_f((\zeta_1 \circ \eta_1) \diamond \zeta_1), \alpha_f(\zeta_1)\} \le max\{\alpha_f(\eta_1), \alpha_f(\zeta_1)\}. \end{aligned}$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-neutrosophic \circ -subalgebra of \mathcal{K} . \Box

Theorem 5.22. Let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ be an SB-NSS in an (s)-BCK-A \mathcal{K} . Then $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} if and only if the following assertion is valid

(5.3)
$$\zeta_{1} \leq \eta_{1} \circ \theta_{1} \Rightarrow \begin{pmatrix} \widetilde{\alpha}_{t}(\zeta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\eta_{1}), \widetilde{\alpha}_{t}(\theta_{1})\} \\ \alpha_{i}(\zeta_{1}) \geq min\{\alpha_{i}(\eta_{1}), \alpha_{i}(\theta_{1})\} \\ \alpha_{f}(\zeta_{1}) \leq max\{\alpha_{f}(\eta_{1}), \alpha_{f}(\theta_{1})\} \end{pmatrix}$$

for all $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$.

Proof. Assume that $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} Let $\zeta_1, \eta_1, \theta_1 \in \mathcal{K}$ be such that $\zeta_1 \leq \eta_1 \circ \theta_1$. Then we have

$$\begin{split} \widetilde{\alpha}_t(\zeta_1) &\succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1 \diamond (\eta_1 \circ \theta_1)), \widetilde{\alpha}_t(\eta_1 \circ \theta_1)\} = rmin\{\widetilde{\alpha}_t(0), \widetilde{\alpha}_t(\eta_1 \circ \theta_1)\} \\ &= \widetilde{\alpha}_t(\eta_1 \circ \theta_1) \succcurlyeq rmin\{\widetilde{\alpha}_t(\eta_1), \widetilde{\alpha}_t(\theta_1)\}, \\ \alpha_i(\zeta_1) &\ge min\{\alpha_i(\zeta_1 \diamond (\eta_1 \circ \theta_1)), \alpha_i(\eta_1 \circ \theta_1)\} = min\{\alpha_i(0), \alpha_i(\eta_1 \circ \theta_1)\} \\ &= \alpha_i(\eta_1 \circ \theta_1) \ge min\{\alpha_i(\eta_1), \alpha_i(\theta_1)\}, \\ \alpha_f(\zeta_1) &\le max\{\alpha_f(\zeta_1 \diamond (\eta_1 \circ \theta_1)), \alpha_f(\eta_1 \circ \theta_1)\} = max\{\alpha_f(0), \alpha_f(\eta_1 \circ \theta_1)\} \\ &= \alpha_f(\eta_1 \circ \theta_1) \le max\{\alpha_f(\eta_1), \alpha_f(\theta_1)\}. \end{split}$$

Conversely, let $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSS in an (s)-BCK-A \mathcal{K} satisfying the condition (5.3). Since $0 \leq \zeta_1 \circ \zeta_1$ for all $\zeta_1 \in \mathcal{K}$, we have

$$\widetilde{\alpha}_t(0) \succcurlyeq rmin\{\widetilde{\alpha}_t(\zeta_1), \widetilde{\alpha}_t(\zeta_1)\} = \widetilde{\alpha}_t(\zeta_1)$$

$$\alpha_i(0) \ge min\{\alpha_i(\zeta_1), \alpha_i(\zeta_1)\} = \alpha_i(\zeta_1)$$

$$\alpha_f(0) \le max\{\alpha_f(\zeta_1), \alpha_f(\zeta_1)\} = \alpha_f(\zeta_1).$$

74

Since $\zeta_1 \leq (\zeta_1 \diamond \eta_1) \circ \eta_1$ for all $\zeta_1, \eta_1 \in \mathcal{K}$, we obtain

$$\widetilde{\alpha}_{t}(\zeta_{1}) \succcurlyeq rmin\{\widetilde{\alpha}_{t}(\zeta_{1} \diamond \eta_{1}), \widetilde{\alpha}_{t}(\eta_{1})\}$$
$$\alpha_{i}(\zeta_{1}) \ge min\{\alpha_{i}(\zeta_{1} \diamond \eta_{1}), \alpha_{i}(\eta_{1})\}$$
$$\alpha_{f}(\zeta_{1}) \le max\{\alpha_{f}(\zeta_{1} \diamond \eta_{1}), \alpha_{f}(\eta_{1})\}$$

Therefore, $\mathcal{N} = (\tilde{\alpha}_t, \alpha_i, \alpha_f)$ is an SB-NSI of \mathcal{K} .

6. CONCLUSION

In this research, we introduced the new concept of SB-neutrosophic sets (SB-NSS), a powerful extension of the NSS, and illustrated its basic operations with examples. The application of SB-NSS to BCK/BCI-As led us to the definition of SB-NSSA and SB-NSI, where we thoroughly explored their properties. In particular, we established crucial conditions for identifying various relationships between SB-NSS, SB-NSSA, and SB-NSI within the context of BCK/BCI-As. Our study also included a comprehensive discussion of homomorphic pre-image and translation of an SB-NSSA, which provided valuable insights into the practical implications of these concepts. The study opens possibilities for future research extending the application of SB-NSS to implicative, positive implicative, and commutative ideals, as well as to the field of soft SB-neutrosophic ideals. These extensions have the potential to provide valuable insights and solutions to complex real-world challenges and improve our understanding of algebraic-structures.

Acknowledgments

The authors would like to thank the reviewers for their valuable feedback, which played a crucial role in refining this article.

References

- K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy sets and Systems, 20 (1986), 87–96.
- [2] R. A. Borzooei, X. Zhang, F. Smarandache and Y. B. Jun, Commutative generalized neutrosophic ideals in BCK-algebras, Symmetry, 10 (2018), 350.
- [3] M. B. Gorzaczany, A method of inference in approximate reasoning based on interval valued fuzzys ets, Fuzzy Sets and Systems, 21 (1987), 1–17.
- [4] Y. S. Huang, *BCI-algebra*, Science Press, Beijing, (2006), 21.
- [5] Y. Imai and K. Iski, On Axiom Systems of Propositional Calculi XIV, in Proceedings of the Japan Academy, (1966), 19–22.

- [6] K. Iski, An algebra related with a propositional calculus, Proceedings of the Japan Academy, Series A, Mathematical Sciences, 42 (2009), doi: 10.3792/pja/1195522171.
- [7] K. Iseki, On BCI-algebras, Math. Semin. Notes, 8 (1980), 125–130.
- [8] K. Iseki, On ideals in BCK-algebras, Math. Seminar Notes (presently Kobe J. Math.), 3 (1975), 1–12.
- [9] K. Iseki and S. Tanaka, Ideal theory of BCK-algebras, Math. Japonica, 21 (1976), 351–366.
- [10] J. Meng and Y. B. Jun, *BCK-Algebras*, Kyung Moon Sa Co., Seoul, Republic of Korea, (1994).
- [11] J. Meng, Y. B. Jun and H. S. Kim, Fuzzy implicative ideals of BCK-algebras, Fuzzy Sets and Systems, 89 (1997), 243–248.
- [12] Y. B. Jun and E. H. Roh, *MBJ-neutrosophic ideals of BCK/BCI-algebras*, Open Mathematics, **17** (2019), 588–601.
- [13] Y. B. Jun, Neutrosophic subalgebras of several types in BCK/BCI-algebras, Ann.Fuzzy Math.Inform., 14 (2017), 75–86.
- [14] Y. B. Jun, S. Kim, and F. Smarandache, Interval neutrosophic sets with applications in BCK/BCI-algebra, Axioms, 7 (2018), 23.
- [15] Y. B. Jun, F. Smarandache and H. Bordbar, Neutrosophic N-Structures Applied to BCK/BCI-Algebras Information, 8 (2017), 128.
- [16] Y. B. Jun, F. Smarandache, S. Z. Song and M. Khan, Neutrosophic positive implicative N-ideals in BCK-algebras, Axioms, 7 (2018), 3.
- [17] Y. B. Jun and S. Z. Song, Fuzzy set theory applied to implicative ideals in BCKalgebras, Bulletin of the Korean Mathematical Society, 43 (2006), 461–470. 2006.
- [18] Y. B. Jun and X. L. Xin, Involutory and invertible fuzzy BCK algebras, Fuzzy Sets and Systems, 117 (2001), 463–469.
- [19] Y. B. Jun and J. Meng, Fuzzy commutative ideals in BCI algebras, Communications of the Korean Mathematical Society, 9 (1994), 19–25.
- [20] Y. B. Jun, Characterization of fuzzy ideals by their level ideals in BCK/BCI algebras, Math. Japonica, 38 (1993), 67–71.
- [21] M. Khan, S. Anis, F. Smarandache and Y. B. Jun, *Neutrosophic N-structures in semigroups and their applications*, Collected Papers. Volume XIII: On various scientific topics, (2022) 353.
- [22] M. A. Ozt rk and Y. B. Jun, Neutrosophic ideals in BCK/BCI-algebras based on neutrosophic points, J.Int.Math.Virtual Inst., 8 (2018), 1–17.
- [23] A. B. Saeid and Y. B. Jun, Neutrosophic subalgebras of BCK/BCI-algebras based on neutrosophic points, Ann.Fuzzy Math.Inform., 14 (2017), 87–97.
- [24] S. Z. Song, F. Smarandache and Y. B. Jun, Neutrosophic commutative N-ideals in BCK-algebras, Information, 8 (2017), 130.
- [25] F. Smarandache, Neutrosophic set-a generalization of the intuitionistic fuzzy set, In 2006 IEEE international conference on granular computing, (2006), 38–42.
- [26] F. Smarandache, A unifying field in logics: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability: neutrosophic logic. Neutrosophy, neutrosophic set, neutrosophic probability, Infinite Study, (2005).
- [27] F. Smarandache and P. Surapati, New Trends in Neutrosophic Theory and Application, Brussels, Belgium, EU: Pons editions, (2016).

SB-neutrosophic Structures in $\operatorname{BCK}/\operatorname{BCI-Algebras}$

- [28] M. M. Takallo, R. A. Borzooei and Y. B. Jun, *MBJ-neutrosophic structures and its applications in BCK/BCI-algebras*, Neutrosophic Sets and Syst., **23** (2018), 72–84.
- [29] O. G. Xi, Fuzzy BCK-algebras, Math. Japonica, 36 (1991), 935–942.
- [30] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353.
- [31] L. A. Zadeh, The Concept of a linguistic variable and its applications to approximate reasoning-I, Information.Sci Control, 8 (1975), 199–249.

B. Satyanarayana

Department of Mathematics, Acharya Nagarjuna University, Guntur-522 510, Andhra Pradesh, India

Email:drbsn63@yahoo.co.in

Shake Baji

Department of Mathematics, Sir C. R. Reddy college of Engineering, Eluru-534 007, Andhra Pradesh, India

Email:shakebaji6@gmail.com

D. Devanandam

Government degree college, Chintalpudi-534 460, Eluru, Andhra Pradesh, India Email:ddn1998in@gmail.com