
Journal of Hyperstructures 12 (1) (2023), 134-142.

https://doi.org/10.22098/jhs.2023.2517

Research Paper
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Abstract. Let A be a Banach algebra with unity 1, and θ : A →
A be an continuous automorphism. In this paper we characterize
a continuous linear map T : A → A which satisfies one of the
following conditions:

a, b ∈ A, ab = w =⇒ θ(a)T (b) = T (w),

a, b ∈ A, ab = w =⇒ T (a)θ(b) = T (w),

or
a, b ∈ A, ab = w =⇒ θ(a)T (b) = T (a)θ(b) = T (w),

where w 6= 0 is a left (right) separating point of A.
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1. Introduction

Let A be an algebra (ring). Recall that a linear (additive) map T :
A → A is said to be a right (left) centralizer if T (ab) = aT (b)(T (ab) =
T (a)b) for each a, b ∈ A. The map T is called a centralizer if it is
both a right centralizer and a left centralizer. In case A has a unity 1,
T : A → A is a right (left) centralizer if and only if T is of the form
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T (a) = aT (1)(T (a) = T (1)a) for all a ∈ A. Also, T is a centralizer if
and only if T (a) = aT (1) = T (1)a for each a ∈ A. The concept appears
naturally in C∗-algebras. In ring theory it is more common to work with
module homomorphisms. We refer the reader to [9, 10, 20] and references
therein for results concerning centralizers on rings and algebras. In
recent years, several authors studied the linear (additive) maps that
behave like homomorphisms, derivations or right (left) centralizers when
acting on special products (for instance, see [2, 3, 4, 5, 6, 14] and the
references therein). One of the interesting issues is to characterize the
structure of a linear (additive) map T : A → A satisfying

a, b ∈ A, ab = w =⇒ aT (b) = T (w) (Rw),

a, b ∈ A, ab = w =⇒ T (a)b = T (w) (Lw),

or

a, b ∈ A, ab = w =⇒ aT (b) = T (a)b = T (w) (Cw),

where w ∈ A is fixed. Clearly, each right (left) centralizer or centralizer
satisfies Rw (Lw) or Cw but in general, the converse is not true. In fact,
the characterization of a linear (additive) map T : A → A satisfying
one of the above conditions, one of the main questions is whether the
T is expressed in terms of a right (left) centralizer or centralizer? In
[3], Brešar proves that if R is a prime ring with a nontrival idempotent,
then every additive mapping satisfying C0 (i.e., Cw for w = 0) is a
centralizer. In [19], linear mappings satisfying C0 on triangular algebras
are characterized. In [21], additive mappings satisfying Rw (Lw) or Cw

for various types of elements w in B(H) are checked, whereH is a Hilbert
space. For more information on mappings satisfying Rw (Lw) or Cw,
we refer to [2, 7, 9, 10, 11, 12, 13, 16] and references therein.

Albas [1] generalized the notion of centralizers and introduced θ-
centralizers. For an algebra (ring) A, if θ : A → A is a homomorphism,
then a linear (additive) map T : A → A is said to be a right (left) θ-
centralizer if T (ab) = θ(a)T (b)(T (ab) = T (a)θ(b)) for each a, b ∈ A. In
special case that θ = idA, we see that a right (left) idA-centralizer is a
right (left) centralizer. T is said to be a θ-centralizer if it is both right
and left θ-centralizer. To learn about the studies done on θ-centralizers,
see [15, 17, 18] and the references therein. In continuation of these stud-
ies, in this article we consider the following conditions on the linear map
T : A → A:

a, b ∈ A, ab = w =⇒ θ(a)T (b) = T (w) (Rθ
w),
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a, b ∈ A, ab = w =⇒ T (a)θ(b) = T (w) (Lθw),

or

a, b ∈ A, ab = w =⇒ θ(a)T (b) = T (a)θ(b) = T (w) (Cθ
w),

where w ∈ A is fixed, and θ : A → A is a homomorphism. In particular,
in this paper we consider the conditions Rθ

w (Lθw) or Cθ
w for a continuous

linear map T : A → A, where A is a Banach algebra with unity 1,
θ : A → A is an continuous automorphism, and w 6= 0 is a left (right)
separating point of A. We say that w ∈ A is a left (right) separating
point of A if the condition wa = 0 (or aw = 0) for a ∈ A implies
x = 0. In fact, under these conditions we prove that T is a right (left)
θ-centralizer or θ-centralizer.

Throughout this paper all algebras and vector spaces will be over the
complex field C. In Section 2, we study Condition Rθ

w. Section 3 is
dedicated to Condition Lθw. In Section 4, we examine Condition Cθ

w.

2. Equivalent characterization of right θ-centralizers

In this section we study Condition Rθ
w for a continuous linear map

on a unital Banach algebra, in which w 6= 0 is a left separating point.

Remark 2.1. Let A be a unital Banach algebra, and θ : A → A be an
automorphism. Then 0 6= w ∈ A is a left (right) separating point of
A if and only if θ(w) is a left (right) separating point of A. Suppose
that 0 6= w is a left separating point, and θ(w)a = 0 for a ∈ A. Since
θ−1 : A → A is an automorphism, it follows that θ−1(θ(w)a) = 0.
Hence, wθ−1(a) = 0. From the fact that w is a left separating point,
it follows that θ−1(a) = 0, and we have a = 0. Conversely, if θ(w) is
a left separating point, by above conclusion and the fact that θ−1 is
an automorphism, it is obtained that w is a left separating point. It is
proved similarly for the right separating points.

Theorem 2.2. Assume that A is a Banach algebra with unity 1, and
θ : A → A is a continuous automorphism. Suppose that w in A is a
left separating point, and T : A → A is a continuous linear map. The
following are equivalent:

(i) T satisfies Rθ
w;

(ii) T is a right θ-centralizer.

Proof. (i) ⇒ (ii): Since w1 = w, it follows that

T (w) = θ(w)T (1).
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Let a ∈ A be an arbitrary element and λ ∈ C. We have

w exp(λa) exp(−λa) = w,

where exp is the exponential function in A. Since θ is a continuous
automorphism, we have θ(exp(a)) = exp(θ(a)) for all a ∈ A. Hence

T (w) = T (w exp(λa)(exp(−λa))

= θ(w)θ(exp(λa))T (exp(−λa))

= θ(w) exp(λθ(a))T (

∞∑
m=0

(−1)mλm

m!
am)

=
∞∑
m=0

(−1)mλm

m!
θ(w) exp(λθ(a))T (am)

=
∞∑
m=0

(−1)mλm

m!

( ∞∑
n=0

λn

n!
θ(w)θ(a)n

)
T (am)

=
∞∑
m=0

∞∑
n=0

(−1)mλm+n

m!n!
θ(w)θ(a)nT (am)

= θ(w)T (1) +
∞∑
k=1

λk

( ∑
m+n=k

(−1)m

m!n!
θ(w)θ(a)nT (am)

)
,

since T is a continuous linear map. Therefore,

∞∑
k=1

λk

( ∑
m+n=k

(−1)m

m!n!
θ(w)θ(a)nT (am)

)
= 0

for any λ ∈ C, because T (w) = θ(w)T (1). It results that∑
m+n=k

(−1)m

m!n!
θ(w)θ(a)nT (am) = 0

for all a ∈ A and k ∈ N. Let k = 1, we find that

θ(w)θ(a)T (1)− θ(w)T (a) = 0.

for all a ∈ A. Consequently,

θ(w)(θ(a)T (1)− T (a)) = 0.

for all a ∈ A. By Remark 2.1, θ(w) is a left separating point, so

T (a) = θ(a)T (1),
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for all a ∈ A and hence

T (ab) = θ(a)θ(b)T (1) = θ(a)T (b)

for all a, b ∈ A, i.e., T is a right θ-centralizer.
(ii) ⇒ (i): is clear. �

Since the unity 1 is a left separating point, we obtain the following
corollary.

Corollary 2.3. Let A be a Banach algebra with unity 1, and θ : A → A
be a continuous automorphism. Assume that T : A → A is a continuous
linear map. The following are equivalent:

(i) T satisfies Rθ
1;

(ii) T is a right θ-centralizer.

Taking θ = idA in Theorem 2.2, we get the following result which is
a generalization of [9, Theorem 2.4].

Corollary 2.4. Let A be a Banach algebra with unity 1. Suppose that
w in A is a left separating point (especially w = 1), and T : A → A is a
continuous linear map. The following are equivalent:

(i) T satisfies Rw;
(ii) T is a right centralizer.

3. Equivalent characterization of left θ-centralizers

This section is devoted to a continuous linear map with property Lθw
on a unital Banach algebra, in which w 6= 0 is a right separating point.

Theorem 3.1. Let A be a Banach algebra with unity 1, and θ : A → A be
a continuous automorphism. Let w in A be a right separating point, and
T : A → A be a continuous linear map. The following are equivalent:

(i) T satisfies Lθw;
(ii) T is a left θ-centralizer.

Proof. (i) ⇒ (ii): It follows from 1w = w, that

T (w) = T (1)θ(w).

Suppose that a ∈ A be an arbitrary element and λ ∈ C. We have

exp(−λa) exp(λa)w = w.

Hence

T (w) = T (exp(−λa)(exp(λa)w) = T (exp(−λa)) exp(λθ(a))θ(w).
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Now, according to these points, using Remark 2.1 and a method similar
to the proof of Theorem 2.2 on the above equation, the proof is obtained.
(ii) ⇒ (i): is clear. �

The following conclusion is clear.

Corollary 3.2. Assume that A is a Banach algebra with unity 1, and
θ : A → A is a continuous automorphism. Let T : A → A be a
continuous linear map. The following are equivalent:

(i) T satisfies Lθ1;
(ii) T is a left θ-centralizer.

The next result is obvious.

Corollary 3.3. Let A be a Banach algebra with unity 1. Assume that w
in A is a right separating point (especially w = 1), and T : A → A is a
continuous linear map. The following are equivalent:

(i) T satisfies Lw;
(ii) T is a left centralizer.

4. Equivalent characterization of θ-centralizers

In this section, we study Condition Cθ
w for a continuous linear map

on a unital Banach algebra, in which w 6= 0 is a left or right separating
point.

Theorem 4.1. Let A be a Banach algebra with unity 1, and θ : A → A
be a continuous automorphism. Assume that w in A is a left or right
separating point, and T : A → A is a continuous linear map. The
following are equivalent:

(i) T satisfies Cθ
w;

(ii) T is a θ-centralizer.

Proof. (i)⇒ (ii): Suppose that w is a right separating point and a, b ∈ A
with ab = w. By assumption T (a)θ(b) = T (w). It follows from Theorem
3.1 that T (a) = T (1)θ(a) for all a ∈ A. Suppose that a ∈ A is an
invertible element. So a−1aw = w, and by assumption θ(a−1)T (aw) =
T (w). Since θ is an automorphism, we have θ(a−1) = θ(a)−1, and hence
T (aw) = θ(a)T (w). So

T (1)θ(a)θ(w) = θ(a)T (1)θ(w).

It follows from Remark 2.1 that θ(w) is a right separating point, and we
get

θ(a)T (1) = T (1)θ(a)
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for all invertible element a ∈ A. Let a ∈ A be arbitrary and λ ∈ C
such that |λ| ≥ ‖a‖. So λ1 − a is invertible in A and θ(λ1 − a)T (1) =
T (1)θ(λ1 − a). Hence θ(a)T (1) = T (1)θ(a) for all a ∈ A (because
θ(1) = 1). Now, we have

T (a) = θ(a)T (1) = T (1)θ(a)

for all a ∈ A.
Let w be a left separating point and a, b ∈ A with ab = w. By as-

sumption θ(a)T (b) = T (w). From Theorem 2.2, it follows that T (a) =
θ(a)T (1) for all a ∈ A. Assume that a ∈ A is an invertible ele-
ment. So waa−1 = w, and by assumption T (wa)θ(a)−1 = T (w). Thus
θ(w)θ(a)T (1) = θ(w)T (1)θ(a). That is θ(a)T (1) = T (1)θ(a) for all in-
vertible element a ∈ A, because w is a left separating point. Now, with
a proof similar to the above, we get the result.
(ii) ⇒ (i): is clear. �

The following result is straightforward.

Corollary 4.2. Suppose that A is a Banach algebra with unity 1, and
θ : A → A is a continuous automorphism. Let T : A → A be a
continuous linear map. The following are equivalent:

(i) T satisfies Cθ
1;

(ii) T is a θ-centralizer.

Also, we have the following result.

Corollary 4.3. Suppose that A is a Banach algebra with unity 1. Assume
that w in A is a right or left separating point (especially w = 1), and
T : A → A is a continuous linear map. The following are equivalent:

(i) T satisfies Cw;
(ii) T is a centralizer.
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