
Journal of Hyperstructures 11 (1) (2022), 84-108.

ISSN: 2322-1666 print/2251-8436 online

TOTAL FUZZY GRAPH COLORING

SMRITI SAXENA, ANTIKA THAPAR AND RICHA BANSAL

Abstract. In this paper, a hybrid genetic algorithm (HGA) is pro-
posed for the total fuzzy graph coloring (TFGC) problem. TFGC
comprises of a graph with fuzzy vertices and edges, seeks to obtain
an optimal k−coloring of that fuzzy graph such that the degree of
the sum of incompatible vertices and edges is minimized. TFGC is
also converted into an equivalent binary programming problem and
solved using a CPLEX solver. The performance of both methods is
examined on randomly generated fuzzy graphs and computational
results are reported. An application based on TFGC is also ex-
plored and solved using both proposed methods.

Key Words: Fuzzy graph, incompatibility degree, total chromatic number, binary program-

ming and hybrid genetic algorithm.

2010 Mathematics Subject Classification: Primary: 05C15; Secondary: 05C72, 05C85,

20D60.

1. Introduction

Fuzziness is the necessity of life as it is present almost everywhere
in our life. For example, in binary logic, a fan is assigned value 1 if it
is open, otherwise 0. But in the case of fuzzy logic, regulator of the
fan deals with fuzziness as its high speed denotes its high membership
degree and its low speed denotes its low membership degree. As fuzzy
sets deals with the concept of uncertainty, ambiguity and vagueness,
similarly fuzzy graph theory deals with uncertain or ambiguous practical

Received: 19 June 2021, Accepted: 15 November 2021. Communicated by Ahmad Yousefian

Darani;

∗Address correspondence to Antika Thapar; E-mail: antikathapar@gmail.com

c© 2022 University of Mohaghegh Ardabili.

84



Total fuzzy graph coloring 85

problems which can be modelled as graphs. Fuzzy graph theory has
numerous applications in modern science and technology especially in
the fields of information theory, neural networks, expert systems, cluster
analysis, medical diagnosis, control theory, etc.

The first definition of fuzzy graph was given by Kaufmann [4] in 1973,
based on Zadeh’s fuzzy relations [12]. But it was Rosenfeld [9] and
Yeh and Bang [11] who laid the foundations for fuzzy graph theory.
Generalization of basic concepts of graph theory like paths, cycles, trees,
connectedness and their properties in fuzzy graph theory has been done
by Rosenfeld [9].

Coloring of the graphs is the most decent, important and recreational
problem in the optimization field. Many real life problems can be solved
using coloring of graphs like scheduling, telecommunications, resource
allocation, bioinformatics, wiring printed circuits, management sciences,
etc. Coloring problem of classical graph is concerned with minimizing
the number of colors k to color a graph in such a way that no two
adjacent vertices receive the same color. The minimum value of k is
called chromatic number of the graph and the graph is said to be k−
colorable.

Many researches have been done over fuzzy graph colorings. Bershtein
and Bozhenuk [2] studied the coloring of fuzzy graphs and presented
definitions and properties of separation degree and fuzzy chromatic set
of fuzzy graphs along with the method for finding fuzzy chromatic set.
Eslahchi and Onagh [3] defined the fuzzy coloring of a fuzzy graph and
generalized the concepts of vertex-strength and chromatic sum of a crisp
graph to fuzzy graphs. They also proved an upper (or a lower) bound
for the chromatic fuzzy sum of a fuzzy graph.

Keshavarz [5] introduced a new vertex-coloring problem of a fuzzy
graph with crisp vertices and fuzzy edges. He designed a hybrid lo-
cal search genetic algorithm and also formulated binary programming
problem for the concerned problem. He also gave an application of his
proposed approach in cell site assignment problem by modelling it as a
fuzzy graph coloring problem.

Munoz et al. [7] gave an application of coloring fuzzy graphs based
on the successive coloring of α−cuts of the fuzzy graph in the traffic
lights problem using the concept of incompatibility and fuzzy linguistic
variables.

Behzad [1] posed independently a new concept of graph coloring
known as total coloring, in 1965. This is a mixed composition of both



86 S. Saxena, A. Thapar and R. Bansal

the graph colorings i.e. vertex coloring and edge coloring defined in
such a way that no two adjacent vertices and adjacent edges receive the
same color. The concept of total coloring has many applications like
match scheduling, network task efficiency and the famous total coloring
conjecture [10] which has been verified for some special restricted cases.

Total coloring of fuzzy graphs with fuzzy set of vertices and fuzzy set
of edges can be found in Lavanya and Sattanathan [6]. Poornima and
Ramaswamy [8] studied total coloring of fuzzy graph and analogous to
vertex and edge coloring of a fuzzy graph, they introduced the concepts
of (d, f) extended k− coloring where d is the dissimilarity degree defined
on a scale function f and on the color set k. They also developed
an algorithm for determining (d, f) total chromatic number of a fuzzy
graph.

Most of the research work on fuzzy graphs has been done on the
graph having crisp vertices and fuzzy edges. But, in this paper the most
general but hard to interpret case, in which both the vertices and edges
are fuzzy is considered.

A total fuzzy graph coloring (TFGC) problem of a graph with fuzzy
vertices and fuzzy edges is proposed in this paper. The membership
degree of the vertices and edges of the fuzzy graph is considered as the
incompatibility degree of respective vertices and edges. If the adjacent
edges have the same color, then the common vertex between them is
said to be an incompatible vertex and the edge between the two adja-
cent vertices having the same color is said to be an incompatible edge.
The total incompatibility is defined as the sum of incompatibility degree
of incompatible edges and incompatible vertices. In the present paper,
for the TFGC problem, vertices and edges of a fuzzy graph are to be as-
signed k colors such that total incompatibility degree of the fuzzy graph
is minimized. TFGC problem is solved using following two methods:
1) TFGC is converted into an equivalent binary programming problem
and solved using CPLEX solver,
2) A new hybrid genetic algorithm (HGA) is proposed to deal with large
size fuzzy graphs.
The performance of both methods is examined on randomly generated
fuzzy graphs and computational results are reported. Furthermore, as
an application of TFGC problem, a political map coloring problem is
also solved using both proposed techniques.

The organization of this paper is as follows: Some basic definitions
related to fuzzy graph theory are given in Section 2. In Section 3,



Total fuzzy graph coloring 87

TFGC problem is converted to a binary programming problem to find
an optimal k−coloring. A new HGA followed by local search heuristic is
introduced in Section 4 to solve TFGC problem and parameter analysis
of HGA is given in Section 5. A comparison of experimental results
obtained from HGA and binary programming problem using CPLEX
solver is given in Section 6. An application of fuzzy graph coloring
problem in political map coloring is described and solved in Section 7
with conclusion in Section 8.

2. Preliminaries: Basic Definitions

In this section, some basic concepts of fuzzy graph theory and fuzzy
graph coloring are introduced with an example.

2.1. Fuzzy set. A fuzzy set A over a universal set X is defined by
a membership function A : X → [0, 1] which maps each x ∈ X to a
real number lying in the closed interval [0, 1], where A(x) denotes the
membership degree of x ∈ X in A.

2.2. Fuzzy graph. Let V and E denote the set of vertices and edges
of a graph G(V,E) respectively. A fuzzy graph is denoted as G(A,R),
where A is a fuzzy set on V and R is a fuzzy relation on V × V defined
such that R(u, v) ≤ min(A(u), A(v)),∀u, v ∈ V, u 6= v.

2.3. Fuzzy subgraph. A fuzzy graph H(Ṽ , B, R̃) is called a fuzzy sub-

graph of G(A,R) induced by Ṽ , if Ṽ ⊆ V, B is a fuzzy set on Ṽ such

that B(u) = A(u), ∀u ∈ Ṽ and R̃(u, v) = R(u, v),∀u, v ∈ Ṽ .

2.4. k−coloring of a fuzzy graph. A k−coloring of a fuzzy graph
G(A,R) is a coloring function Ck : V ∪ E → {1, 2, . . . , k} with no more
than k different colors. A graph is said to be k−colorable if it admits a
k−coloring. Here we use k colors for total coloring of fuzzy graphs.

2.5. Total incompatibility degree. Let G(A,R) be a fuzzy graph
with k−coloring Ck : V ∪ E → {1, 2, . . . , k}. We know that if two ad-
jacent vertices have the same color, then the edge between them is said
to be an incompatible edge. Similarly, if two adjacent edges have the
same color, then the vertex between them is said to be an incompatible
vertex. Let E(Ck) and V (Ck) denotes the set of incompatible edges
and set of incompatible vertices respectively. For an incompatible edge
(u, v) ∈ E(Ck), its degree of incompatibility is given by R(u, v) and for



88 S. Saxena, A. Thapar and R. Bansal

an incompatible vertex v ∈ V (Ck), its degree of incompatibility is given
as A(v). The total incompatibility (TI) and degree of total incompati-
bility (DTI) associated with Ck is defined as follows:

TI(Ck) =
∑

(u,v)∈E(Ck)

R(u, v) +
∑

v∈V (Ck)

A(v)

DTI(Ck) =

∑
(u,v)∈E(Ck)R(u, v) +

∑
v∈V (Ck)A(v)∑

(u,v)∈E R(u, v) +
∑

v∈V A(v)

2.6. Total chromatic number of a fuzzy graph. Let Ck
min denotes

the k−coloring of a fuzzy graph G(A,R) with minimum DTI, where
k = 1, 2, . . . , n, n ≤ |V |. Then the total chromatic number of G is defined
as χ(G) = {(k, 1−DTI(Ck

min))|k = 1, 2, . . . , n.} An optimal coloring set
is defined as τ(G) = (C1

min, C
2
min, . . . , C

k
min). The definition can be un-

derstood through an example below.

Example 1: Consider the fuzzy graph G(A,R) with vertex set V =
{u, v, w, x, y, z} and edge set E = {uv, uz, vw, vx,wx, xy, xz, yz} with
their incompatibility degrees defined as membership degrees as shown
in Figure 1. There are several ways to color the vertices and edges of
the given graph.

Figure 1. An example of a fuzzy graph

Using 1 color:



Total fuzzy graph coloring 89

C1
min = {(u, 1), (v, 1), (w, 1), (x, 1), (y, 1), (z, 1), (uv, 1), (uz, 1), (vw, 1),

(vx, 1), (wx, 1), (xy, 1), (xz, 1), (yz, 1)}
DTI(C1

min) = 0.2+0.77+0.8+0.7+0.6+0.5+0.31+0.4+0.78+0.72+0.71+0.65+0.6+0.53
0.2+0.77+0.8+0.7+0.6+0.5+0.31+0.4+0.78+0.72+0.71+0.65+0.6+0.53

= 8.27
8.27 = 1

Using 2 colors:
C2
min = {(u, 1), (v, 2), (w, 1), (x, 1), (y, 2), (z, 2), (uv, 1), (uz, 2), (vw, 1),

(vx, 2), (wx, 2), (xy, 1), (xz, 1), (yz, 2)}
DTI(C2

min) = 3.21
8.27 = 0.388

Using 3 colors:
C3
min = {(u, 1), (v, 2), (w, 1), (x, 3), (y, 1), (z, 2), (uv, 2), (uz, 1), (vw, 3),

(vx, 1), (wx, 2), (xy, 1), (xz, 2), (yz, 3)}
DTI(C3

min) = 0.7
8.27 = 0.0846

Using 4 colors:
C4
min = {(u, 1), (v, 2), (w, 3), (x, 1), (y, 3), (z, 2), (uv, 2), (uz, 1), (vw, 3),

(vx, 1), (wx, 2), (xy, 3), (xz, 4), (yz, 2)}
DTI(C4

min) = 0
8.27 = 0.

Similarly by using the 5 and 6 colors, DTI is 0. Hence, the fuzzy chro-
matic number and the best possible coloring set is χ(G) = {(1, 0), (2,
0.612), (3, 0.9154), (4, 1), (5, 1), (6, 1)}.

Total coloring of a fuzzy graph deals with assigning k colors to vertices
and edges of the graph such that DTI is minimized. In the next section,
a binary programming problem is formulated to solve the TFGC problem
of fuzzy graph such that DTI is minimized.

3. Total fuzzy graph coloring problem as a binary
programming problem

In this section, the problem of finding a k−coloring of G(A,R) with
minimum DTI is converted into a binary programming problem. For
this, some binary variables wr

i , xij , y
r
ij and zijl are introduced as follows:

wr
i =

{
1, if color r is assigned to the vertex i
0, otherwise



90 S. Saxena, A. Thapar and R. Bansal

xij =

{
1, if vertices i and j are assigned the same color
0, otherwise

yrij =

{
1, if color r is assigned to an edge (i, j)
0, otherwise

zijl =

{
1, if edges (i, j) and (j, l) are assigned the same color
0, otherwise

Let Ē = {(u, v) ∈ E|R(u, v) > 0}. Subsequently, the objective func-
tion of binary programming problem is formulated as follows:

(3.1) min TI =
∑

(i,j)∈Ē

R(i, j)xij +
∑

(i,j)∈Ē,(j,l)∈Ē

A(j)zijl

(3.2) s.t.

k∑
r=1

wr
i = 1, ∀i ∈ V

(3.3)

k∑
r=1

yrij = 1, ∀(i, j) ∈ Ē

(3.4)
∑
i∈V

wr
i +

∑
(i,j)∈Ē

yrij ≥ 1, r = 1, 2, . . . , k

(3.5) wr
i + wr

j − xij ≤ 1, (i, j) ∈ Ē

(3.6) yrij + yrjl − zijl ≤ 1, (i, j), (j, l) ∈ Ē

xij ∈ {0, 1}, ∀(i, j) ∈ Ē
zijl ∈ {0, 1}, ∀(i, j), (j, l) ∈ Ē
wr
i ∈ {0, 1}, ∀i ∈ V,∀r = 1, 2, . . . , k

yrij ∈ {0, 1}, ∀(i, j) ∈ Ē,∀r = 1, 2, . . . , k.

From equation (3.1), it is clear that the objective is to minimize the
TI. Constraint (3.2) guarantees that every vertex is assigned exactly
one color and similarly, constraint (3.3) guarantees that every edge is
assigned exactly one color. From constraint (3.4), for each color r there
exist atleast one vertex or edge assigned to it. From constraint (3.5), if



Total fuzzy graph coloring 91

wr
i = wr

j = 1, then xij = 1 and if wr
i +wr

j ≤ 1, then xij = 0 and similarly

in constraint (3.6), if yrij = yrjl = 1, then zijl = 1 and if yrij + yrjl ≤ 1,
then zijl = 0. If number of colors used to color the vertices and edges
of a fuzzy graph is 1, then DTI is also 1 and if number of colors are
equal to the total number of vertices, then DTI is 0 as we can color
vertices and edges of a fuzzy graph by colors not more than the number
of vertices. Thus, we should solve the given equations (3.1) to (3.6) for
the worst case of problem when number of colors lies between 2 to n− 1
and one has to find the chromatic number of a fuzzy graph coloring
problem using a sequence of optimal colorings of fuzzy graph’s vertices
and edges. Pseudocode for conversion of fuzzy graph coloring problem
into binary programming problem is given in Algorithm 1.

Algorithm 1 TFGC problem as a binary programming problem

1: Given edge incompatibility degreeR(u, v) and vertex incompatibility
degree A(v) of a graph G(A,R)

2: Assign random colors from 1 to k to vertices and edges
3: TI ←

∑
(u,v)∈E R(u, v) +

∑
v∈V A(v);

4: for p from 1 to population size do
5: for i from 1 to |V | do
6: for j from 1 to |E| do
7: for r from 1 to k do
8: if wr

i = 1 or yrij = 1 then

9: Ck
min(i) = r;

10: end if
11: end for
12: end for
13: end for
14: TI∗k ←

∑
(u,v)∈Ē R(u, v) +

∑
v∈V A(v);

15: DTI(Ck
min)←− TI∗k

TI ;
16: end for
17: τ(G) = (C1

min, C
2
min, . . . , C

k
min),

18: χ(G) = {(k, 1−DTI(Ck
min)|k = 1, 2, . . . , n)}.

Since classical graph coloring problem is NP−hard, so finding exact
method to solve fuzzy graph coloring problem is also a difficult task. In
this situation, heuristics with effectively less complexity are very useful



92 S. Saxena, A. Thapar and R. Bansal

for solving the given graph coloring problem. In this paper, a new effi-
cient meta-heuristic algorithm is designed in which genetic algorithm is
combined with local search heuristic. The proposed method is described
in the next section.

4. Hybrid genetic algorithm

Basic concept of simple genetic algorithm is described in this section
followed by proposed HGA with local search heuristic.

4.1. Genetic algorithm. Genetic algorithm is used to solve optimiza-
tion problems by finding the minimum or maximum value of a function.
It is one of the branch of the evolutionary algorithms inspired by the
biological process of reproduction, natural selection, inheritance, and
crossover (also called recombination). A genetic algorithm starts with
building an initial random solutions of the given problem. Then a fit-
ness value is assigned to each solution. Now these solutions are modified
by three operators namely reproduction (selection), crossover and muta-
tion and the new set of solutions of the given problem are generated. So,
again for the next generation, fitness value of each solution is evaluated
and this process continues until the termination condition gets satisfied.
Note that the best solution is preserved in each generation.

Reproduction operator makes only copies of good solutions but no
new solution is created by it. New solutions are generated by crossover
and mutation operators. In crossover operator, some part of random
solution gets exchanged with some other solution and new populations
are generated by taking two populations at a time. For maintaining di-
versity in the population, mutation operator is applied by interchanging
the one element of a random solution with another one. The working of
genetic algorithm is shown in Figure 2.

To improve efficiency of the genetic algorithm, local search heuristic
can be embedded into it. We proposed a HGA for TFGC problem with
a local search heuristic embedded in it.

4.2. Hybrid Genetic Algorithm for TFGC with local search
heuristic. The components of proposed HGA are explained below.

Initial population: The first step of HGA is population initialization.
Here the population named as edge vertex is a collection of arrays of
size 1× (|V |+ ¯|E|). Each array consists of vertices from index 1 to index



Total fuzzy graph coloring 93

Figure 2. Flowchart of working of genetic algorithm

|V | and edges from index |V |+1 to index |V |+ ¯|E| in which k colors are
assigned randomly from the set {1, 2, . . . , n} for a given fuzzy graph. In
this paper, each array is referred to as a solution. The size of the popu-
lation named as pop size is obtained by parameter tuning discussed in
Section 5.

Fitness of a solution: Fitness of each solution is obtained by evaluating
DTI as defined in Section 2.5. Between two solutions, the one having
lower value of DTI is considered as a better solution as compared to the
other one.

Selection: Firstly, a new population named as selection pop is initialized
as an empty matrix with size same as that of edge vertex. Then tourna-
ment selection operator is applied on edge vertex to obtain a population
of good solutions. In this operator, tournaments are played between two
consecutive solutions. The procedure starts by comparing the DTI of
first and second solution of edge vertex and the one having lower value
of DTI is copied in the selection pop at the first position. Again, the



94 S. Saxena, A. Thapar and R. Bansal

next two consecutive solutions in edge vertex are picked and better so-
lution is placed at the second position of selection pop. Continuing in
the same way, it is to be noted that the last solution of edge vertex
will play tournament with solution preceding to it and with first solu-
tion of edge vertex as shown in Algorithm 2. Hence, each solution in
edge vertex participates in tournament exactly two times and will have
zero, one or two copies of it in selection pop. In this way, selection pop
have copies of good solutions while keeping pop size constant.

Algorithm 2 Tournament selection

1: Initialize selection pop = edge vertex.
2: for i from 1 to pop size− 1 do
3: if DTI(i) <= DTI(i+ 1) then
4: selection pop(i) = edge vertex(i);
5: else
6: selection pop(i) = edge vertex(i+ 1);
7: end if
8: end for
9: if DTI(1) <= DTI(pop size) then

10: selection pop(pop size) = edge vertex(1);
11: else
12: selection pop(pop size) = edge vertex(pop size);
13: end if

Crossover: After tournament selection operator, two-point crossover is
applied on selection pop. Firstly, selection pop is copied in an empty
matrix named as crossover pop. Then, two random solutions are chosen
from selection pop (see Figure 3(a)). These are called parent solutions.
Two different random natural numbers are generated between index 2
and index (|V | + |Ē| − 1). Then colors between these two indices of
both parent solutions are interchanged. The new generated solutions
are called child solutions as shown in Figure 3(b). After this, fitness
of both child solutions is calculated and compared. If any one of them
or both of child solutions are found better than their respective parent
solutions, then they replace their parents in crossover pop. In the similar
way, two parents are again selected randomly from selection pop and
their child replaces them in crossover pop, if found better. Algorithm 3
shows the particulars of two point crossover. This process is repeated c



Total fuzzy graph coloring 95

times; where c = crossover rate × pop size. The crossover rate is fixed
using parameter tuning discussed in Section 5.

Figure 3. (a) Parent solutions from selection pop
(b) child solutions after crossover

Algorithm 3 Two point crossover

1: Initialize crossover pop = selection pop.
2: Initialize child solutions = selection pop.
3: for i from 1 to pop size × crossover rate do
4: child = [ ];
5: p1, p2 ←− choose two random parent solutions from
selection pop

6: n1, n2←− choose two random natural numbers between indices
2 and (|V |+ |Ē| − 1)

7: if (n1 <= n2) then
8: child(p1, n1 : n2) = crossover pop(p1, n1 : n2);
9: crossover pop(p1, n1 : n2 = crossover pop(p2, n1 : n2);

10: crossover pop(p2, n1 : n2) = child(p1, n1 : n2);
11: end if
12: end for
13: for u = 1 : pop size do
14: if DTI of crossover pop(u) < DTI of child solutions(u) then
15: child solutions(u) = crossover pop(u);
16: end if
17: end for

Mutation: Here, transposition mutation operator is applied on some so-
lutions of crossover pop. At first, crossover pop is copied into a new
empty matrix namely mutation pop. Then one solution (current solu-
tion) is chosen randomly from crossover pop and two integers are ran-
domly chosen between indices 1 and (|V |+|Ē|) and colors at these indices



96 S. Saxena, A. Thapar and R. Bansal

of the solution are swapped. This new solution replaces the current so-
lution in mutation pop. This process is repeated m times; where m =
mutation rate × pop size as given in Algorithm 4. The mutation rate is
fixed using parameter tuning discussed in Section 5. Mutation operator
is just like a background operator in which most possible solutions can
enter in the population. It is basically the reordering of the colors of
solutions in the population.

Algorithm 4 Transposition mutation

1: Initialize mutation pop = crossover pop.
2: for i from 1 to pop size × mutation rate do
3: child = [ ];
4: c1←− choose a random solution from crossover pop
5: n1, n2←− choose two random natural numbers between indices

1 and (|V |+ |Ē|)
6: new = mutation pop(c1, n1);
7: mutation pop(c1, n1) = mutation pop(c1, n2);
8: mutation pop(c1, n2) = new;
9: end for

Local search heuristic: The performance of genetic algorithm is enhanced
when it is combined with local search heuristics for solving optimization
problems. In this paper, first of all mutation pop is copied into a new
empty matrix named as local pop and a solution is selected randomly
from mutation pop. Then, colors at incompatible index (i.e. incompat-
ible vertex and incompatible edge) of this solution are replaced with
different remaining colors. At each replacement, modified DTI is cal-
culated with respect to the new color assigned at that particular index.
Then, the color for which DTI is found least is assigned at that partic-
ular index. This iterative process is repeated l times, where l = local
search rate × pop size. Here local search rate is fixed using parameter
tuning as discussed in Section 5. The particulars of the presented local
search operator are given in Algorithm 5.

Then local pop is copied into edge vertex so that edge vertex is mod-
ified. This modified edge vertex is then used in the next generation of
genetic algorithm that undergoes for selection, crossover, mutation and
local search again. Number of iterations used here are fixed using pa-
rameter tuning (see Section 5). The general structure of the presented
HGA is illustrated in Algorithm 6.



Total fuzzy graph coloring 97

Algorithm 5 Local search heuristic

1: Initialize local pop = mutation pop,DTI∗ = DTI (of local pop),
T otal = 0, temp = [ ].

2: for p from 1 to pop size × local search rate do
3: count = 0;
4: f1←− choose a random solution from mutation pop
5: while count ≤ pop size × local search rate do
6: Total = DTI∗(f1);
7: j ←− find incompatible vertices and edges of f1
8: for r from 1 to k do //k = no. of colors
9: temp(f1, j) = mutation pop(f1, j);

10: mutation pop(f1, j) = r;
11: Evaluate DTI∗(f1)
12: if DTI∗(f1) < Total then
13: Total = DTI∗(f1);
14: else
15: mutation pop(f1, j) = temp(f1, j);
16: DTI∗(f1) = Total;
17: end if
18: end for
19: if DTI∗(f1) < DTI(f1) then
20: count = 0;
21: else
22: count = count+ 1;
23: end if
24: end while
25: end for

5. Tuning of HGA parameters

To explore the effect of different parameters on the performance of
HGA, experiments are performed to fine tune the parameters namely
population size, number of iterations, crossover rate, mutation rate and
local search rate. The experiments on different sized random graphs are
conducted to set the parameters of HGA. The pseudocode to generate
random connected graphs is given in Algorithm 7.

We generated random graphs ranging from vertex size 10 to 50 with
edge density 40% of |V |(|V | − 1)/2. For experimental purpose, five



98 S. Saxena, A. Thapar and R. Bansal

Algorithm 6 Hybrid genetic algorithm

1: Initialize degmin =0, minDTI = inf.
2: Generate initial population edge vertex by assigning random colors

to vertices and edges.
3: for count from 1 to w do // w = number of iterations
4: Evaluate DTI for edge vertex.
5: Apply tournament selection operator on edge vertex to get
selection pop.

6: Apply two-point crossover on selection pop to obtain
crossover pop.

7: Apply mutation operator on crossover pop to obtain
mutation pop.

8: Apply local search operator on mutation pop so that local pop
is obtained.

9: Update DTI for local pop.
10: Find degmin. // degmin= minimum value of DTI

obtained in each iteration
11: if degmin < minDTI then // minDTI= least value of DTI
12: minDTI = degmin;
13: end if
14: edge vertex = local pop;
15: end for

instances are generated for each vertex size and HGA is performed on all
5 instances and avgDTI is calculated which is the average of minDTI
(least value of DTI) obtained at the end for each instance. We have
considered a fuzzy graph with |V | = 10, |Ē| = 18 and k = 4 fixed for
this entire section. The details of experiments carried out for each HGA
parameter are explained below:

Algorithm 7 Pseudocode to generate random fuzzy graphs

1: em←− edge vertex matrix
2: for x from 1 to edge density d do
3: generate two different random integers r1, c1 between 1 and |V |
4: em(r1, c1)←− random number between 0 and 1
5: em(c1, r1) = em(r1, c1);
6: end for



Total fuzzy graph coloring 99

Population size: Algorithm’s performance generally improves as the size
of the population increases. But it affects the elapsed time of algorithm
if number of iterations is constant. By fixing the parameters, muta-
tion rate=0.05, crossover rate=0.5, local search rate= 0.4 and num-
ber of iterations=10, the effect of population size on DTI and elapsed
time has been examined. HGA is executed by taking pop size equal to
|V |, |V |/2, |V |/3, |V |/4 and |V |/5 with different number of colors. For
each fixed pop size, avgDTI is calculated for a particular color.

Figure 4. Effect of population size on avgDTI

Figure 5. Effect of population size on elapsed time

The results shown in Figure 4 and Figure 5 signifies that large size
of population have small effect on avgDTI but have large impact on
elapsed time. Hence rather than increasing the pop size, if we increase



100 S. Saxena, A. Thapar and R. Bansal

the number of times the algorithm run, HGA improves outcomes. So,
pop size is fixed as |V |/2 for further experiments.

Crossover rate: Experimental results for HGA parameter namely cross-
over rate are shown in Table 1 and Table 2 with different crossover
rates lying between 0 and 1. For each fixed crossover rate, avgDTI is
calculated for a given fuzzy graph with mutation rate=0.05. Table 1
shows the experimental results with local search rate=0.4 and Table
2 shows the effect of crossover rate on avgDTI and elapsed time with-
out local search. It can be observed from both tables that HGA when
executed with local search heuristic provides better value of avgDTI
as compared to when is executed without local search but simultane-
ously time behaves unfavorably. But in consideration of minimizing
avgDTI, time does not plays any significant role. For further experi-
ments, crossover rate is fixed as 0.5 as it gives better results in both the
cases.

Table 1. Effect of different crossover rates on avgDTI
and elapsed time with local search rate

Crossover Rates avgDTI Elapsed T ime(sec)
1 0.0564 4.1366

0.9 0.05054 4.3058
0.8 0.0759 4.153
0.7 0.07654 4.3348
0.6 0.7074 4.0856
0.5 0.10468 3.9698
0.4 0.22356 4.0992
0.3 0.10932 4.0728
0.2 0.1002 4.037
0.1 0.07772 4.3038
0 0.08938 3.9756

Mutation rate: Table 3 and Table 4 show the experimental results
of different mutation rates lying between 0 and 1 for HGA parameter
mutation rate. The experimental results with local search rate=0.4 are
shown in Table 3 and Table 4 show the effect of mutation rate on
avgDTI without local search. For each fixed mutation rate, avgDTI



Total fuzzy graph coloring 101

Table 2. Effect of different crossover rates on avgDTI
and elapsed time

Crossover Rates avgDTI Elapsed T ime(sec)
1 0.2423 1.0062

0.9 0.23914 1.0262
0.8 0.21638 1.8238
0.7 0.21164 3.0764
0.6 0.21694 3.6644
0.5 0.22394 1.4532
0.4 0.2194 1.352
0.3 0.25118 1.0352
0.2 0.28364 1.0324
0.1 0.26762 1.035
0 0.24946 1.031

Table 3. Effect of different mutation rates on avgDTI
and elapsed time with local search rate

Mutation Rates avgDTI Elapsed T ime(sec)
0.1 0.08368 5.792
0.09 0.06624 4.2026
0.08 0.0793 4.1448
0.07 0.07348 4.2844
0.06 0.0819 4.1064
0.05 0.06782 4.12
0.04 0.07394 4.149
0.03 0.041984 4.073
0.02 0.05156 4.2992
0.01 0.1041 4.0294

0 0.047 3.7568

is calculated for a given fuzzy graph. It can be observed from both ta-
bles that HGA when executed with local search heuristic provides better
value of avgDTI in comparison to without local search but simultane-
ously time behaves oppositely. Mutation rate is fixed as 0.05 as it gives
better results in both the cases for further experiments.



102 S. Saxena, A. Thapar and R. Bansal

Table 4. Effect of different mutation rates on avgDTI
and elapsed time

Mutation Rates avgDTI Elapsed T ime(sec)
0.1 0.2265 2.1656
0.09 0.24082 1.0314
0.08 0.23728 1.0312
0.07 0.22782 1.022
0.06 0.20248 1.0278
0.05 0.20774 1.034
0.04 0.25286 1.022
0.03 0.26198 1.025
0.02 0.26004 1.0248
0.01 0.2013 0.8246

0 0.246 1.032

Local search rate: From previous results, the conclusion is made that
the local search rate plays a vital role in finding the minimum DTI.
For different values of local search rate, the Figure 6 shows the results
of local search operator without mutation, without crossover, without
crossover and mutation and with crossover and mutation.

Figure 6. Effect of local search rate on avgDTI

The experimental results show that the local search operator with
mutation and crossover yields good results. So, the local search rate is



Total fuzzy graph coloring 103

fixed as 0.4 for further experiments.

Figure 7. Effect of number of iterations on avgDTI

Number of iterations: Results are obtained by taking number of itera-
tions from 10 to 100 while keeping all other parameters of HGA as fixed
as in case of tuning of pop size, crossover rate, mutation rate and local
search rate. It is clear from Figure 7 that number of iterations with
and without local search have great impact on avgDTI. Hence, in 10 it-
erations with local search heuristic, it gives better result in a reasonable
time.

6. Experimental results

Finally we fixed all HGA parameters as follows: pop size = |V | \ 2,
crossover rate = 0.504, mutation rate = 0.050, local search rate = 0.40
and number of iterations = 10. HGA is coded in MATLAB with Intel
(R) Core(TM) 2 Duo CPU E6550 @2.33 GHz processor with 2 GB RAM.

Table 5. Fuzzy graph coloring results: 5 vertices and 4 edges

Number of colors(k) Optimal CPLEX value Optimal HGA value
4 0 0
3 0.00046 0.00046
2 0.044782 0.03832



104 S. Saxena, A. Thapar and R. Bansal

Table 6. Fuzzy graph coloring results: 10 vertices and
18 edges

Number of colors(k) Optimal CPLEX value Optimal HGA value
6 0 0.0226
5 0.01715 0.02584
4 0.02987 0.04002
3 0.192352 0.18924
2 0.392675 0.37508

Table 7. Fuzzy graph coloring results: 15 vertices and
42 edges

Number of colors(k) Optimal CPLEX value Optimal HGA value
10 0 0.0275
9 0 0.0303
8 0 0.14402
7 0 0.16422
6 0.0074 0.086
5 0.02 0.1049
4 0.033 0.1588
3 0.778 0.2788
2 0.389 0.04801

Table 8. Fuzzy graph coloring results: 20 vertices and
76 edges

Number of colors(k) Optimal CPLEX value Optimal HGA value
8 0 0.0845
7 0 0.1099
6 0 0.13374
5 0.1529 0.1523
4 0.189592 0.19194
3 0.447372 0.23958
2 1.066 0.39794

To check the effectiveness of proposed HGA, the experimental re-
sults for random graphs are compared with those obtained from CPLEX
solver. Performance of both CPLEX and HGA are reported in Table



Total fuzzy graph coloring 105

5, Table 6, Table 7 and Table 8 for all random graphs. Thus, the
performance of HGA is acceptable when the quantity of colors is not
vast, is concluded from given 4 tables.

7. Application of fuzzy graph coloring of fuzzy graphs

Various applications of fuzzy graph coloring are presented in litera-
ture. An illustrative example of the political map coloring to confirm the
applicability of this new concept of HGA is described in the following
subsection.

7.1. Political map coloring. To show legal boundaries of continents,
countries, states, regions, cities and water bodies, political maps are
constructed. If particular region or area is colored on the basis of their
political boundaries and political relationships, then determination of
countries or particular area will be more easy. But these relationships
are imprecise in real world. So, the concept of fuzzy graph coloring is
very essential and can be applied here. In this problem, we have taken
a country which can be separated on the basis of their political relation-
ships or political boundaries in such a way that no two adjacent states
receives the same color. Proposed algorithm gave an alternative solution
and better solution for those problems where conventional deterministic
methods fails to find the optimal solution.

A fuzzy graph G(A,R) of given map (see Figure 8) is constructed
in Figure 9, where the vertices represent states and an edge (i, j)
is included in the edge set when the states shares the same bound-
ary. Let the membership values of the vertices of the fuzzy graph are
(S1, 0.4), (S2, 0.5), (S3, 0.65), (S4, 0.8), (S5, 0.7), (S6, 0.2), (S7, 0.5) and
(S8, 0.2) and these represents the intensity of the state with respect to
economy, arms, education, food capacity, technology etc. Membership
values of edges of the fuzzy graph are ((S1, S2), 0.4), ((S1, S5), 0.3), ((S1,
S6), 0.3), ((S1, S7), 0.9), ((S1, S8), 0.3), ((S2, S5), 1), ((S3, S4), 0.71), ((
S3, S5), 0.7), ((S5, S6), 0.1), ((S5, S7), 0.2) and ((S7, S8), 0.6) denoting
the strength of the political relationship between states. In this given
problem, the edge (states political relationship) between two vertices
(states) sharing same boundary is said to be an incompatible edge if
they share the same color and if edges sharing same boundaries are col-
ored using the same color, then common vertex between them is said
to be incompatible vertex. The objective is to minimize the TI defined



106 S. Saxena, A. Thapar and R. Bansal

Figure 8. Political map

Figure 9. Fuzzy graph of political map



Total fuzzy graph coloring 107

as the sum of incompatible edges and incompatible vertices of the fuzzy
graph and using minimum number of colors. So, fuzzy chromatic num-
ber for political map coloring problem is to be find. Using the proposed
HGA, the results for the given problem are shown in Table 9 for dif-
ferent number of colors. The performance of the proposed HGA is also
compared with CPLEX solver.

Table 9. Political map coloring results with 8 vertices
and 11 edges

Number of colors(k) HGA CPLEX
5 0 0
4 0.1163 0.11627
3 0.1163 0.1691
2 0.2326 0.7691
1 1 1

Thus, from Table 9 it is clear that atmost 5 colors are used for
coloring of political map.

8. Conclusion

On fuzzy graphs with fuzzy vertices and fuzzy edges, the problem of
TFGC is defined. Membership grades of fuzzy vertices and fuzzy edges
is defined by incompatibility degrees of respective vertices and respective
edges. Using this representation, DTI is defined. A binary program-
ming problem is formulated and a HGA is proposed using the concept
of minimum DTI to identify an optimal k−coloring.The performance of
both approaches is examined on randomly generated fuzzy graphs and
computational results are reported. Furthermore, as an application of
this problem, a political map coloring problem is also solved using both
proposed techniques.

There are some suggestions to extend or improve the proposed work.
* By constructing the new metaheuristics to solve the proposed model.
* By taking combination of crisp edges and fuzzy vertices, some enhance-
ments may be made to the given proposed approach on fuzzy graphs.
* By calculating the total chromatic number in a different way.
* Making changes to the proposed algorithm for very large sized graphs.



108 S. Saxena, A. Thapar and R. Bansal

References

[1] M. Behzad, Graphs and their chromatic numbers, Ph.D Thesis, Michigan State
University, (1967).

[2] L. S. Bershtein and A. V. Bozhenuk, Fuzzy coloring for fuzzy graphs, The 10th
IEEE International Conference on Fuzzy Systems, 3 (2001), 1101-1103.

[3] C. Eslahchi and B. N. Onagh, Vertex-strength of fuzzy graphs, International Jour-
nal of Mathematics and Mathematical Sciences, (2006), 43614-1.

[4] A. Kaufmann, Introduction a la Theorie des Sous-Ensembles Flous, Masson,
Paris, (1973).

[5] E. Keshavarz, Vertex-coloring of fuzzy graphs: A new approach, Journal of Intel-
ligent and Fuzzy Systems, 30 (2016), 883-893.

[6] S. Lavanya and R. Sattanathan, Fuzzy total coloring of fuzzy graphs, International
Journal of Information Technology and Knowledge Management, 2 (2009), 37-39.

[7] Susana Munoz, M. Teresa Ortuno, Javier Ramirez and Javier Yanez, Coloring
fuzzy graphs, Omega, 33 (2005), 211-221.

[8] B. Poornima and V. Ramaswamy, Total coloring of a fuzzy graph, International
Journal of Computational and Applied Mathematics, 5 (2010), 11-23.

[9] A. Rosenfeld, Fuzzy graphs, Fuzzy sets and their applications to cognitive and
decision processes, Academic press, (1975), 77-95.

[10] H. P. Yap, Total Colorings of Graphs, Lecture Notes in Mathematics, Springer-
Verlag, 1623 (1996), Berlin.

[11] R. T. Yeh and S. Y. Bang, Fuzzy relations, fuzzy graphs, and their applications to
clustering analysis, In Fuzzy sets and their applications to Cognitive and Decision
Processes, (1975), 125-149.

[12] L. A. Zadeh, Similarity relations and fuzzy orderings, Information sciences, 3
(1971), 177-200.

Smriti Saxena
Department of Mathematics, Dayalbagh Educational Institute, P.O.Box 282005, Agra,
INDIA
Email: smriti23saxena@gmail.com

Antika Thapar
Department of Mathematics, Dayalbagh Educational Institute, P.O.Box 282005, Agra,
INDIA
Email: antikathapar@gmail.com

Richa Bansal
Department of Mathematics, Dayalbagh Educational Institute, P.O.Box 282005, Agra,
INDIA
Email: richabansal2007@gmail.com


	1. Introduction
	2. Preliminaries: Basic Definitions
	2.1. Fuzzy set
	2.2. Fuzzy graph
	2.3. Fuzzy subgraph
	2.4. k-coloring of a fuzzy graph
	2.5. Total incompatibility degree
	2.6. Total chromatic number of a fuzzy graph

	3. Total fuzzy graph coloring problem as a binary programming problem
	4. Hybrid genetic algorithm
	4.1. Genetic algorithm
	4.2. Hybrid Genetic Algorithm for TFGC with local search heuristic

	5. Tuning of HGA parameters
	6. Experimental results
	7. Application of fuzzy graph coloring of fuzzy graphs
	7.1. Political map coloring 

	8. Conclusion
	References

