Journal of Hyperstructures 1 (1) (2012), 14-26. ISSN: 2251-8436

STRONGLY S-DENSE MONOMORPHISMS

H. BARZEGAR

ABSTRACT. Let \mathcal{M} be a class of (mono)morphisms in a category \mathcal{A} . To study mathematical notions, such as injectivity, tensor products and flatness, one needs to have some categorical and algebraic information about the pair $(\mathcal{A},\mathcal{M})$. In this paper we take \mathcal{A} to be the category **Act-S** of *S*-acts, for a semigroup *S*, and \mathcal{M}_{sd} to be the class of strongly *s*-dense monomorphisms and study the categorical properties, such as limits and colimits, of this class.

Key Words: Strongly s-dense, Semigroup, Limit, Colimit.2010 Mathematics Subject Classification: Primary: 20M30; Secondary: 20M50.

1. INTRODUCTION AND PRELIMINARIES

To study mathematical notions in a category \mathcal{A} with respect to a class \mathcal{M} of its morphisms, one should know some of the categorical properties of the pair $(\mathcal{A}, \mathcal{M})$. In this paper we take \mathcal{A} to be the category **Act-S** and \mathcal{M}_{sd} to be a particular interesting class of monomorphisms, to be called *strongly-s-dense(st-s-dense)* monomorphisms, and investigate its categorical properties.

Let us first recall the definition and some ingredients of the category **Act-S** needed in the sequel. For more information and the notions not mentioned here see, for example, [8].

Received: 22 March 2012, Accepted: 27 July 2012. Communicated by A. Yousefian Darani *Address correspondence to H. Barzegar; E-mail: h56bar@shahryariau.ac.ir

^{© 2012} University of Mohaghegh Ardabili.

¹⁴

Recall that, for a semigroup S, a set A is a right S-act (or an S-set) if there is, a so called, an action $\mu : A \times S \to A$ such that, denoting $\mu(a,s) := as, a(st) = (as)t$ and, if S is a monoid with 1, a1 = a.

Each semigroup S can be considered as an S-act with the action given by its multiplication. Notice that, adjoining an external left identity 1 to a semigroup S, an S-act $S^1 := S \cup \{1\}$ is obtained.

The definitions of a subact B of A, written as $B \subseteq A$, an extension of A, a congruence ρ on A, a quotient A/ρ of A, and a homomorphism between S-acts are clear. The category of all (right) S-acts and homomorphisms between them is denoted by **Act-S**.

The class of all S-acts is an equational class, and so the category **Act-S** is complete (has all products and equalizers). In fact, limits in this category are computed as in the category **Set** of sets and equipped with a natural action. In particular, the terminal object of **Act-S** is the singleton $\{0\}$, with the obvious S-action. Also, for S-acts A, B, their cartesian product $A \times B$ with the S-action defined by (a,b)s = (as,bs) is the product of A and B in **Act-S**.

The pullback of a given diagram

$$\begin{array}{ccc} & A \\ & \downarrow f \\ \xrightarrow{g} & B \end{array}$$

in **Act-S** is the subact $P = \{(c, a) : c \in C, a \in A, g(c) = f(a)\}$ of $C \times A$, and pullback maps $p_C : P \to C, p_A : P \to A$ are restrictions of the projection maps. Notice that for the case where g is an inclusion, P can be taken as $f^{-1}(C)$.

C

All colimits in **Act-S** exist and are calculated as in **Set** with the natural action of S on them. In particular, \emptyset with the empty action of S on it, is the initial object of **Act-S**. Also, the *coproduct* of S-acts A, B is their disjoint union $A \sqcup B = (A \times \{1\}) \cup (B \times \{2\})$ with the obvious action, and coproduct injections are defined naturally.

H. Barzegar

The pushout of a given diagram

$$\begin{array}{cccc} A & \stackrel{g}{\to} & C \\ f & \downarrow & \\ & B \end{array}$$

in **Act-S** is the factor act $Q = (B \sqcup C)/\theta$ where θ is the congruence relation on $B \sqcup C$ generated by all pairs $(u_B f(a), u_C g(a)), a \in A$, where $u_B : B \to B \sqcup C, u_C : C \to B \sqcup C$ are the coproduct injections. Also, the pushout maps are given as $q_1 = \pi u_C : C \to (B \sqcup C)/\theta$, $q_2 = \pi u_B : B \to (B \sqcup C)/\theta$, where $\pi : B \sqcup C \to (B \sqcup C)/\theta$ is the canonical epimorphism. Multiple pushouts in **Act-S** are constructed analogously.

Recall that for a family $\{A_i : i \in I\}$ of S-acts, each with a unique fixed element 0, the *direct sum* $\bigoplus_{i \in I} A_i$ is defined to be the subact of the product $\prod_{i \in I} A_i$ consisting of all $(a_i)_{i \in I}$ such that $a_i = 0$ for all $i \in I$ except a finite number of indices.

Let **I** be a small category and $\mathcal{A} : \mathbf{I} \to \mathbf{Act-S}$ be a diagram in $\mathbf{Act-S}$ determining the acts A_{α} , for $\alpha \in I = Obj\mathbf{I}$, and S-maps $g_{\alpha\beta} : A_{\alpha} \to A_{\beta}$, for $\alpha \to \beta$ in Mor**I**. Recall that the limit of this diagram is $\varprojlim_{\alpha} A_{\alpha} := \bigcap_{\alpha \in I} E_{\alpha}$, where $E_{\alpha} = \{a = (a_{\alpha})_{\alpha \in I} \in \prod_{\alpha} A_{\alpha} : g_{\alpha\beta}p_{\alpha}(a) = p_{\beta}(a)\}$ and p_{α}, p_{β} are the α, β th projection maps of the product. The limit S-maps are $q_{\alpha} : \varprojlim_{\alpha} A_{\alpha} \to A_{\alpha}$. Also the limit has the universal property which is, if $\{f_{\alpha} : A \to A_{\alpha}\}$ is a family of morphisms such that $g_{\alpha\beta}f_{\alpha}(a) = f_{\beta}(a)$, then there is a morphism $f : A \to \varprojlim_{\alpha} A_{\alpha}$ such that $q_{\alpha}f = f_{\alpha}$.

Remind that a directed system of S-acts and S-maps is a family $(B_{\alpha})_{\alpha \in I}$ of S-acts indexed by an updirected set I endowed by a family $(g_{\alpha\beta} : B_{\alpha} \to B_{\beta})_{\alpha \leq \beta \in I}$ of S-maps such that given $\alpha \leq \beta \leq \gamma \in I$ we have $g_{\beta\gamma}g_{\alpha\beta} = g_{\alpha\gamma}$, also $g_{\alpha\alpha} = id$. Note that the *direct limit* (directed colimit) of a directed system $((B_{\alpha})_{\alpha \in I}, (g_{\alpha\beta})_{\alpha \leq \beta \in I})$ in **Act-S** is given as $\underline{lim}_{\alpha}B_{\alpha} = \prod_{\alpha} B_{\alpha}/\rho$ where the congruence ρ is given by $b_{\alpha}\rho b_{\beta}$ if and only if there exists $\gamma \geq \alpha, \beta$ such that $u_{\gamma}g_{\alpha\gamma}(b_{\alpha}) = u_{\gamma}g_{\beta\gamma}(b_{\beta})$, in which each $u_{\alpha} : B_{\alpha} \to \prod_{\alpha} B_{\alpha}$ is an injection map of the coproduct. Notice that the family $g_{\alpha} = \pi u_{\alpha} : B_{\alpha} \to \underline{lim}_{\alpha}B_{\alpha}$ of S-maps satisfies $g_{\beta}g_{\alpha\beta} = g_{\alpha}$ for

16

 $\alpha \leq \beta$, where $\pi : \coprod_{\alpha} B_{\alpha} \to \underline{\lim}_{\alpha} B_{\alpha}$ is the natural S-map. Also directed colimit has a dual universal property of limit.

2. C^{sd} -Closure operator

In this section, we introduce and briefly study a closure operator, so called C^{sd} -Closure operator. Let us denote the finite subset T of S by $T \subset S$. First recall the following definition of C^{sd} -closure operator.

Definition 2.1. A family $C^{sd} = (C_B^{sd})_{B \in \mathbf{Act} - \mathbf{S}}$, with $C_B^{sd} : sub(B) \to Sub(B)$, is defined as

$$C^{sd}_B(A) = \{ b \in B : bS \subseteq A \text{ and } \forall T \subseteq S, \, \exists a_T \in A, \, a_T t = bt(t \in T) \}.$$

It is easy to show that C^{sd} is a closure operator on **Act-S** in the sense of [5]. This means that $C_B^{sd}(A)$ is a subact of B and,

(i) $A \subseteq C_B^{sd}(A)$,

(ii) $A_1 \subseteq A_2 \subseteq B$ implies $C_B^{sd}(A_1) \subseteq C_B^{sd}(A_2)$,

(iii) for every homomorphism $f : B \to D$ and each subact A of B, $f(C_B^{sd}(A)) \subseteq C_D^{sd}(f(A)).$

We just prove (iii). Let $f : B \to C$ be a homomorphism and $b \in C_B^{sd}(A)$. For every $s \in S$, $f(b)s = f(bs) \in f(A)$, then $f(b)S \subseteq f(A)$. If T is a finite subset of S, there is an element $a_T \in A$ such that $a_T t = bt(t \in T)$. Hence $f(a_T)t = f(b)t$, which means that $f(b) \in C_B^{sd}(f(A))$.

Notice that in the case where S is a monoid, $C_B^{sd}(A) = A$ for every $A \subseteq B$. So, it is more interesting to consider the closure operator C^{sd} only for semigroups, or for semigroup part S of monoids of the form $T = S^1$.

Dikranjan and Tholen in [5] state some properties of a closure operator in general. Here we are going to investigate those for the closure operator C^{sd} satisfy or not.

Definition 2.2. The closure operator C^{sd} is said to be:

- (1) idempotent, if for $A \subseteq B$, $C_B^{sd}(A) = C_B^{sd}(C_B^{sd}(A))$.
- (2) hereditary, if for $A_1 \subseteq A_2 \subseteq B$, $C_{A_2}^{sd}(A_1) = C_B^{sd}(A_1) \cap A_2$.

- (3) weakly hereditary, if for every $A \subseteq B$, $C^{sd}_{C^{sd}_B(A)}(A) = C^{sd}_B(A)$.
- (4) grounded, if $C_B^{sd}(\emptyset) = \emptyset$.
- (5) additive, if for subacts A, C of $B, C_B^{sd}(A \bigcup C) = C_B^{sd}(A) \bigcup C_B^{sd}(C)$.

(6) productive, if for every family of subacts A_i of B_i , taking $A = \prod_i A_i$ and $B = \prod_i B_i$, $C_B^{sd}(A) = \prod_i C_{B_i}^{sd}(A_i)$.

- (7) fully additive, if for $A_i \subseteq B$, $C_B^{sd}(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} C_B^{sd}(A_i)$.
- (8) discrete, if $C_B^{sd}(A) = A$ for every S-act B and $A \subseteq B$.
- (9) trivial, if $C_B^{sd}(A) = B$ for every B and $A \subseteq B$.
- (10) minimal, if for $C \subseteq A \subseteq B$ one has $C_B^{sd}(A) = A \cup C_B^{sd}(C)$.

Theorem 2.3. The closure operator C^{sd} is hereditary, weakly hereditary, grounded and productive.

Proof. It is easy to check that the closure operator C^{sd} is hereditary, weakly hereditary and grounded. We just prove productivity. Let $b \in C_B^{sd}(A)$, $b = \{b_i\}$. For every $s \in S$, $bs \in A$, then for each $i \in I$, $b_i s \in A_i$. Let T be a finite subset of S. So there exists $\{a_i\} \in \prod A_i$ such that $\{a_i\}t = \{b_i\}t(t \in T)$. Thus for every $i \in I$, $a_i t = b_i t$ and hence for each $i \in I$, $b_i \in C_{B_i}^{sd}(A_i)$. It deduces that $b \in \prod C_{B_i}^{sd}(A_i)$. The converse is done in a similar way.

Theorem 2.4. The closure operator C^{sd} is idempotent.

Proof. By definition of the closure operator for each $A \subseteq B$ we see that $C_B^{sd}(A) \subseteq C_B^{sd}(C_B^{sd}(A))$. Conversly, let $b \in C_B^{sd}(C_B^{sd}(A))$. For each $t \in S$, there exists $a_1 \in C_B^{sd}(A)$ such that $bt = a_1t$, and since $a_1 \in C_B^{sd}(A)$, there exists $a \in A$ such that $a_1t = at$, which implies $bt \in A$. Thus $bS \subseteq A$. Now let T be a finite subset of S. There is an element $a_T \in C_B^{sd}(A)$ such that $a_Tt = bt(t \in T)$. Since $a_T \in C_B^{sd}(A)$, there exists an element $a'_T \in A$ such that $a'_T t = a_T t$ and hence $a'_T t = bt$. Therefore $b \in C_B^{sd}(A)$.

Theorem 2.5. Let A and C be two subacts of B such that $A \cap C = \emptyset$. Then $C_B^{sd}(A \bigcup C) = C_B^{sd}(A) \bigcup C_B^{sd}(C)$.

18

Strongly s-dense Monomorphisms

Proof. By definition of the closure operator, $C_B^{sd}(A) \bigcup C_B^{sd}(C)$ $\subseteq C_B^{sd}(A \bigcup C)$. Consider $x \in C_B^{sd}(A \bigcup C)$. So $xS \subseteq A \bigcup C$. Let $xS \bigcap A \neq \emptyset$ and $xS \bigcap C \neq \emptyset$. Then there exist elements $t_1, t_2 \in S$ such that $xt_1 \in A \setminus C$ and $xt_2 \in C \setminus A$. Set $T_1 = \{t_1, t_2\}$. There is an element $y \in A \cup C$ such that $xt_1 = yt_1$ and $xt_2 = yt_2$. If $y \in A$, then $xt_2 \in A$ and if $y \in C$, then $xt_1 \in C$ which are contradictions. Suppose that $xS \cap C = \emptyset$, so $xS \subseteq A$. For every finite subset $T \subseteq S$, there exists $x_T \in A \cup C$ such that $xt = x_T t$. It is clear that $x_T \notin C$, thus $x_T \in A$ and hence $x \in C_B^{sd}(A)$.

Now we show that some of the properties of closure operator do not satisfy in general. But first recall another closure operator C^d defined by

$$C_B^d(A) = \{ b \in B \mid bS \subseteq A \}.$$

A subact A is, by definition, s-dense in B if $C_B^d(A) = B$.

Lemma 2.6. The closure operator C^{sd} is not necessary fully additive.

Proof. Let $S = (\mathbb{N}, min)$ be a semigroup, $B = \mathbb{N}^{\infty}$ and $A = \mathbb{N}$. Set $A_n = \{m \in \mathbb{N} \mid m \leq n\}$ for each $n \in \mathbb{N}$. It is easy to check that $C^{sd}_{\mathbb{N}^{\infty}}(A_n) = A_n$ and hence $\bigcup C^{sd}_{\mathbb{N}^{\infty}}(A_n) = \bigcup (A_n) = \mathbb{N}$, but $C^{sd}_{\mathbb{N}^{\infty}}(\cup A_n) = C^{sd}_{\mathbb{N}^{\infty}}(\mathbb{N}) = \mathbb{N}^{\infty}$.

Lemma 2.7. (i) Let $\{A_i \mid i \in I\}$ be a family of subacts of A. If $C_A^{sd}(\bigcap A_i) = C_A^d(\bigcap A_i)$, then $C_A^{sd}(\bigcap A_i) = \bigcap C_A^{sd}(A_i)$.

(ii) If for every $i \in I$, $C_A^{sd}(A_i) = C_A^d(A_i)$ and $C_A^{sd}(\bigcap A_i) = \bigcap C_A^{sd}(A_i)$, then $C_A^{sd}(\bigcap A_i) = C_A^d(\bigcap A_i)$.

Proof. (i) By the hypothesis we see that $\bigcap C_A^{sd}(A_i) \subseteq \bigcap C_A^d(A_i) = C_A^{sd}(\bigcap A_i) = C_A^{sd}(\bigcap A_i)$. Thus $C_A^{sd}(\bigcap A_i) = \bigcap C_A^{sd}(A_i)$. (ii) $C_A^d(\bigcap A_i) = \bigcap C_A^d(A_i) = \bigcap C_A^{sd}(A_i) = C_A^{sd}(\bigcap A_i)$.

Lemma 2.8. For every semigroup S, the closure operator C^{sd} is not discrete nor trivial and minimal.

Proof. Let $0 \in A$ be a fixed element of a nonempty S-act A. Adjoin two elements θ, ω to A with actions $\omega s = \omega$ and $\theta s = 0$. Consider

 $B = A \cup \{\theta, \omega\}$. It is clear that $C_B^{sd}(A) = A \cup \{\theta\}$. This shows that C^{sd} is neither discrete nor trivial. Also, it is not minimal. Because, adjoining two elements θ, ω to a nonempty S-act C with actions $\omega s = \theta$ and $\theta s = \theta$, and taking $A = C \cup \{\theta\}$, $B = C \cup \{\theta, \omega\}$, we get $C \subset A \subset B$, and $C_B^{sd}(A) = B$ while $C_B^{sd}(C) = C$.

Theorem 2.9. (i) The closure C^{sd} is discrete if and only if S has a left identity element.

(ii) The closure C^{sd} is trivial if and only if S is the empty set.

Proof. (i) Let C^{sd} be a discrete closure operator and S do not have a left identity. Consider $t_0 \in S$ and adjoin an element x to S defined by $xs = t_0s$ for each $s \in S$. It is clear that $C^{sd}_{Sx}(S) = S^x$ and by the hypothesis we have $C^{sd}_{Sx}(S) = S$. So $S^x = S$ which is a contradiction.

(ii) Let the closure C^{sd} be trivial and $S \neq \emptyset$. If B is an S-act such that all of its elements are fixed and A is a subact of B, then $C_B^{sd}(A) = A \neq B$ which is a contradiction. Thus S is the empty set.

Conversly, let $S = \emptyset$. Then it is clear that $C_B^{sd}(A) = B$.

3. Categorical properties of st-s-dense monomorphisms

In this section we investigate the categorical and algebraic properties of the class \mathcal{M}_{sd} of st-s-dense monomorphisms in the following three subsections.

3.1. Composition Property.

In this subsection we investigate some properties of the class \mathcal{M}_{sd} of strongly-s-dense monomorphisms which are mostly related to the composition of st-s-dense monomorphisms. These properties and the ones given in the next two subsections are what normally used to study injectivity with respect to a class of monomorphisms (see [1]). The class \mathcal{M}_{sd} is clearly isomorphism closed; that is, contains all isomorphisms and is closed under composition with isomorphisms. **Definition 3.1.** An S-act A is strongly-s-dense (or simply st-s-dense) subact of B, if for every $b \in B, bS \subseteq A$ and for every finite subset T of S there is an element $a_T \in A$ such that $a_T t = bt(t \in T)$. In other word $C_B^{sd}(A) = B$. A monomorphism $A \xrightarrow{f} B$ is an st-s-dense monomorphism, if f(A) is an st-s-dense subact of B.

Lemma 3.2. Let $A \xrightarrow{f} B \xrightarrow{g} C$ be two monomorphisms. The monomorphism gf is an st-s-dense monomorphism if and only if f and g are st-s-dense monomorphisms too.

Proof. Suppose that gf is an st-*s*-dense monomorphism. It is clear that f and g are *s*-dense monomorphisms. Now let $b \in B$, $c \in C$ and T be a finite subset of S. Since gf is st-*s*-dense, then there exist a_{T_1} and a_{T_2} in A such that $a_{T_1}t = bt$ and $a_{T_2}t = ct$ for each $t \in T$. Thus f and g are st-*s*-dense monomorphisms.

Conversely, assume each f and g is st-*s*-dense monomorphism. Let T be a finite subset of S and $c \in C$. By the hypothesis there exist $b \in B$ and $a \in A$ such that for every $t \in T$, ct = bt and bt = at. If T is a one element subset of S, the above equations show that A is *s*-dense in C. Therefore A is st-*s*-dense in C.

Definition 3.3. The semigroup S locally has left identity element if every finitely generated right ideal of S has a left identity element in S.

In the following lemma we have the characterization of a semigroup S over which all s-dense extensions are st-s-dense. First recall that every st-s-dense monomorphism is an s-dense monomorphism.

Lemma 3.4. For a semigroup S, the following are equivalent:

- (i) Every s-dense extension is st-s-dense extension.
- (ii) The semigroup S is st-s-dense in S^1 .
- (iii) The semigroup S locally has left identity element.

Proof. (i) \Rightarrow (ii) is obvious.

(ii) \Rightarrow (iii) Let $I = \bigcup_{i=1}^{n} t_i S^1$ be a finitely generated right ideal of S. Since S is st-s-dense in S^1 , then there exists $s_0 \in S$ such that $s_0 t_i = 1t_i = t_i (1 \le i \le n)$. So S locally has left identity.

(iii) \Rightarrow (i) Let *B* be an *s*-dense extension of *A*, *T* be a finite subset of *S* and $b \in B$. Then $A \cup bS^1 = A \cup \{b\}$ and since *S* locally has left identity element, there exists $t_0 \in S$ such that $t_0t = t(t \in T)$. Thus $(bt_0)t = bt$ and so *A* is st-*s*-dense in *B*.

3.2. Limits of st-s-dense monomorphisms.

In this subsection we will investigate the behaviour of st-s-dense monomorphisms with respect to limits. First recall that, we say the class \mathcal{M}_{sd} is closed under products (coproduct, direct sum), if for every family of st-s-dense monomorphisms $\{f_i : A_i \to B_i\}, \prod f_i : \prod A_i \to$ $\prod B_i(\prod f_i, \oplus f_i)$ is st-s-dense monomorphism. The proof of the following is straightforward.

Proposition 3.5. (i) The class \mathcal{M}_{sd} is closed under products.

(ii) Let $\{f_{\alpha} : A \to B_{\alpha} | \alpha \in I\}$ be a family of st-s-dense monomorphisms. Then their product homomorphism $h : A \to \prod_{\alpha \in I} B_{\alpha}$ is also an st-s-dense monomorphism.

Proposition 3.6. The class \mathcal{M}_{sd} is closed under direct sums.

Theorem 3.7. In the category Act-S, the following are equivalent:

- (i) pullbacks transfer st-s-dense monomorphisms.
- (ii) The semigroup S locally has left identity element.

Proof. (i) \Rightarrow (ii) By Lemma 3.4, it is enough to show that S is st-s-dense in S^1 . Let E be an injective S-act and 0 be a fixed element of E which exists by [4]. Adjoin an element θ to E by action $\theta s = 0$ for all $s \in S$. Then, E is clearly st-s-dense in $E^{\theta} = E \cup \{\theta\}$. Taking a homomorphism $f : S^1 \longrightarrow E^{\theta}$ given by $f(s) = \theta s$ ($s \in S^1$), one gets the pullback Strongly s-dense Monomorphisms

diagram:

$$\begin{array}{cccc} S & \stackrel{\prime}{\longrightarrow} & S^1 \\ f \downarrow & & \downarrow f \\ E & \stackrel{\tau'}{\longrightarrow} & E^{\theta} \end{array}$$

where τ , τ' are inclusion maps. By the hypothesis, Since τ' is st-s-dense; so is τ .

(ii) \Rightarrow (i) Consider the pullback diagram: $\begin{array}{ccc} P & \stackrel{q}{\longrightarrow} & B \\ p \downarrow & & \downarrow g & \text{where } P = \\ A & \stackrel{f}{\longrightarrow} & C \end{array}$

 $\{(a,b)|f(a) = g(b)\}$ and f is an st-s-dense monomorphism. We show that q is a monomorphism. Let $q(a_1,b_1) = q(a_2,b_2)$. So $b_1 = b_2$ and $fp(a_1,b_1) = fp(a_2,b_2)$ which implies $a_1 = a_2$ by using that f is a monomorphism. Thus q is a monomorphism. Now one should show that q is an s-dense monomorphism. Let $b \in B$ and $s \in S$. Since f is s-dense, $g(bs) = g(b)s \in f(A)$. So there exist elements $a_s \in A(s \in S)$, such that $g(bs) = f(a_s)$. Hence $(a_s, bs) \in P$ and $bs = q(a_s, bs)$ which implies that q is s-dense. Now by using Lemma 3.4 the proof is complete. \Box

3.3. Colimits of st-s-dense monomorphisms.

This subsection is devoted to the study of the behaviour of st-s-dense monomorphisms with respect to colimits.

Proposition 3.8. \mathcal{M}_{sd} is closed under coproducts.

Proof. Consider the diagram

$$\begin{array}{ccccc} A_i & \xrightarrow{f_i} & B_i \\ u_i & \downarrow & \downarrow & u'_i \\ & \coprod_{i \in I} A_i & \xrightarrow{f} & \coprod_{i \in I} B_i \end{array}$$

in which $\{f_i : A_i \to B_i : i \in I\}$ is a family of st-s-dense monomorphisms. We want to show that $f : \coprod_{i \in I} A_i \to \coprod_{i \in I} B_i$ is an st-s-dense monomorphism. It is not difficult to show that f is an s-dense monomorphism. Now let $b \in \coprod_{i \in I} B_i$, and T be a finite subset of S. Then there exists $i \in I$ and $b_i \in B_i$ such that $b = u'_i(b_i)$. Since f_i is st-s-dense, there exists $a_i \in A_i$ such that $f_i(a_i)t = b_it$ for $t \in T$. Thus $fu_i(a_i)t = u'_if_i(a_i)t = bt$ which means that f is an st-s-dense monomorphism. \Box

Theorem 3.9. Pushouts transfer st-s-dense monomorphisms. That is, for the following pushout diagram

$$\begin{array}{ccc} A & \stackrel{f}{\to} & B \\ g \downarrow & & \downarrow h' \\ C & \stackrel{h}{\to} & Q \end{array}$$

in Act-S, If f is st-s-dense, then h is st-s-dense too.

Proof. Recall that $Q = (B \sqcup C)/\theta$ where $\theta = \rho(H)$ and H consists of all pairs $(u_B f(a), u_C g(a)), a \in A$, where $u_B : B \to B \sqcup C, u_C : C \to B \sqcup C$ are coproduct injections. And $h = \pi u_C : C \to (B \sqcup C)/\theta, h' = \pi u_B : B \to (B \sqcup C)/\theta$, where $\pi : B \sqcup C \to (B \sqcup C)/\theta$ is the canonical epimorphism. By [6], pushout transfers s-dense monomorphism. So h is an s-dense monomorphism.

Let T be a finite subset of S and $q \in Q$ be a solution for Σ = $\{xt_1 = h(c_1), xt_2 = h(c_2), ..., xt_m = h(c_m)\}$. Two cases may be occur: (i) there exists $c \in C$ such that $q = [u_C(c)]_{\rho(H)}$. Then for all $1 \leq i \leq m$, $h(c)t_i = h(c_i)$. (ii) There exists $b \in B$ such that $q = [u_B(b)]_{\rho(H)}$. For every $1 \leq i \leq m$, $[u_B(bt_i)]_{\rho(H)} = h(c_i) = [u_C(c_i)]_{\rho(H)}$, and so there exist $a_{i1}, a_{i2}, ..., a_{in} \in A, s_{i1}, s_{i2}, ..., s_{in} \in S^1$ such that $u_B(b)t_1 =$ $u_B f(a_{i1}) s_{i1}, \ u_C g(a_{i1}) s_{i1} = u_C g(a_{i2}) s_{i2}, u_B f(a_{i2}) s_{i2} = u_B f(a_{i3}) s_{i3}, \ \dots,$ $u_B f(a_{i(n-1)}) s_{i(n-1)} = u_B f(a_{in}) s_{in}, \ u_C g(a_{in}) s_{in} = u_C(c_i).$ Since f is a monomorphism, $a_{i2}s_{i2} = a_{i3}s_{i3}, a_{i4}s_{i4} = a_{i5}s_{i5}, \cdots, a_{i(n-1)}s_{i(n-1)} =$ $a_{in}s_{in}$, and hence $u_Cg(a_{i1}s_{i1}) = u_Cg(a_{i2}s_{i2}) = u_Cg(a_{i3}s_{i3}) = \cdots =$ $u_C g(a_{in} s_{in}) = u_C(c_i)$. Thus $g(a_{i1} s_{i1}) = c_i$. Now, for all $1 \le i \le m$, $bt_i = f(a_{i1}s_{i1}) \in f(A)$, and hence $\Sigma_1 = \{xt_1 = f(a_{11}s_{11}), \cdots, xt_m = f(a_{i1}s_{i1}), \cdots, xt_m = f(a_{i1}s_{i1}),$ $f(a_{m1}s_{m1})$ has a solution $b \in B$. So Σ_1 has a solution f(a) for some $a \in A$. Then for every $1 \leq i \leq m$, $hg(a)t_i = h'f(a)t_i = h'f(a_{i1}s_{i1}) =$ $hg(a_{i1}s_{i1}) = h(c_i)$ which yields hg(a) is a solution for Σ . Strongly s-dense Monomorphisms

Theorem 3.10. The category Act-S has \mathcal{M}_{sd} -directed colimits.

Proof. Let $g_{\alpha\beta} : B_{\alpha} \to B_{\beta}$ $(\alpha \leq \beta)$ be a directed system of homomorphisms and $h : A \to \underline{lim}_{\alpha}B_{\alpha}$ be a directed colimit in **Act-S** of st-s-dense monomorphisms $h_{\alpha} : A \to B_{\alpha}, \alpha \in I$, with the colimit maps $g_{\alpha} : B_{\alpha} \to \underline{lim}_{\alpha}B_{\alpha}$. Since $h = \underline{lim}_{\alpha}h_{\alpha} = g_{\alpha}h_{\alpha}$ for each $\alpha \in I$, then h is an s-dense monomorphism because of each h_{α} . Now we show that h is st-s-dense. Let $b \in \underline{lim}_{\alpha}B_{\alpha}$ and T be a finite subset of S. Since $b \in \underline{lim}_{\alpha}B_{\alpha}$, there exists $x_{\alpha} \in B_{\alpha}$ such that $b = [x_{\alpha}]_{\rho}$ and since h_{α} is sts-dense, there exists an element $a_T \in A$ with $h_{\alpha}(a_T)t = x_{\alpha}t$ for all $t \in T$. Then $bt = [x_{\alpha}]_{\rho}t = g_{\alpha}(x_{\alpha})t = g_{\alpha}(x_{\alpha}t) = g_{\alpha}h_{\alpha}(a_T)t = h(a_T)t$.

We say that multiple pushouts transfer st-s-dense monomorphisms if in multiple pushout $(P, A_{\alpha} \xrightarrow{h_{\alpha}} P)$ of a family of st-s-dense monomorphisms $\{f_{\alpha} : A \to A_{\alpha} | \alpha \in I\}$, every $h_{\alpha}, \alpha \in I$, is an st-s-dense monomorphism. In multiple pushout diagram for every $\alpha, \beta \in I$, $h_{\alpha}f_{\alpha} = h_{\beta}f_{\beta}$, which calls diagonal map.

Theorem 3.11. Multiple pushouts transfer st-s-dense monomorphisms.

Proof. Let $(P, A_{\alpha} \xrightarrow{h_{\alpha}} P)$ be a multiple pushout of the family $\{f_{\alpha} : A \to A_{\alpha} | \alpha \in I\}$ of st-s-dense monomorphisms. We know that $P = \prod A_{\alpha}/\rho(H)$ where $H = \{(f_{\alpha}(a), f_{\beta}(a)) \mid a \in A, \alpha, \beta \in I\}$ (we have taken the image of each element of A_{α} under coproduct morphisms equal to itself). Let $h_{\alpha}(a) = h_{\alpha}(a')$, $a, a' \in A_{\alpha}$. So there exist $p_1, p_2, ..., p_n, q_1, q_2, ..., q_n \in A, s_1, s_2, ..., s_n \in S^1$ where for $i = 1, ..., n, (p_i, q_i) \in H \cup H^{-1}$ and such that $a = p_1 s_1, q_1 s_1 = p_2 s_2, q_2 s_2 = p_3 s_3, ..., q_n s_n = a'$. Then, $a = f_{\alpha}(a_1)s_1$ and there exists $\beta \in I$ such that $f_{\beta}(a_1)s_1 = f_{\beta}(a_2)s_2$. Since f_{β} is a monomorphism, $a_1s_1 = a_2s_2$. Continuing this process, we get that $a_1s_1 = a_2s_2 = ... = a_ns_n$, and therefore a = a'. Now let $q \in P$ and $s \in S$. There exist $\beta \in I$ and $p \in A_{\beta}$ such that $q = h_{\beta}(p)$. Since f_{β} is s-dense. Let $x \in P$, $x = [p]_{\rho(H)}$ and T be a finite subset of S. If $p \in A_{\alpha}$, the result is true. If $p \in A_{\beta}, \beta \neq \alpha$, then for every

 $t \in T$, $[pt]_{\rho(H)} = [f_{\beta}(a_T)t]_{\rho(H)} = h_{\beta}f_{\beta}(a_Tt) = h_{\alpha}f_{\alpha}(a_Tt)$ and thus h_{α} is an st-s-dense monomorphism.

Corollary 3.12. In every multiple pushout diagram of st-s-dense monomorphisms the diagonal map is an st-s-dense monomorphism.

Proof. Apply Lemma 3.2 and Theorem 3.11. \Box

Acknowledgments

The author express his sincere thanks to the referee for very careful reading the manuscript and valuable remarks improving the presentation.

References

- B. Banaschewski, Injectivity and essential extensions in equational classes of algebras, Queen's Papers In Pure And Appl. Math., 25 (1970), 131–147.
- [2] H. Barzegar and M. M. Ebrahimi, Sequential pure monomorphism of acts over semigroups, European Journal Of Pure And Applied Mathematics, 1(4), (2009), 91–99.
- [3] H. Barzegar, M. M. Ebrahimi and M. Mahmoudi, *Essentiality and Injectivity*, Applied Categorical Structure, (2008) DOI 10.1007/s10485-008-9165-0.
- [4] P. Berthiaume, The injective envelope of S-Sets, Canad. Math. Bull., 10(2) (1967), 261–273.
- [5] D. Dikranjan and W. Tholen, Categorical Structure of Closure Operators with Applications to Topology, Algebra, and Discrete Mathematics, Mathematics And Its Applications, Kluwer Academic Publ., 1995.
- [6] M. M. Ebrahimi, M. Mahmoudi and Gh. Moghaddasi, On the Baer criterion for acts over semigroups, Comm. Algebra, 35(12) (2007), 3912–3918.
- [7] J. M. Howie, Fundamentals of Semigroup Theory, Oxford Science Publications, Oxford, 1995.
- [8] M. Kilp, U. Knauer and A. Mikhalev, *Monoids, Acts and Categories*, Walter de Gruyter, Berlin, New York, 2000.
- M. Mahmoudi and L. Shahbaz, Characterizing semigroups by sequentially dense injective acts, Semigroup Forum 75(1) (2007), 116–128.

H. Barzegar

Young Researchers club, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran. Email: h56bar@shahryariau.ac.ir