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NUMERICAL SOLUTION OF VARIATIONAL

PROBLEMS VIA PARAMETRIC QUINTIC SPLINE

METHOD

MOHAMMAD ZAREBNIA AND ZAHRA SARVARI

Abstract. In this paper, the parametric quintic spline method is
used for finding the solution of variational problems associated in en-
gineering and physics. The present approximation reduce the prob-
lems to an explicit system of algebraic equations. Some numerical
examples are also given to illustrate the accuracy and applicability
of the presented method.
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1. Introduction

The need for an optimum function, rather than an optimal point, arises
in numerous problems from a wide range of fields in engineering and
physics, which include optimal control, transport phenomena, optics, elas-
ticity, vibrations, statics and dynamics of solid bodies and navigation [1].
The calculus of variations and its extensions are devoted to finding the
optimum function that gives the best value of the economic model and
satisfies the constraints of a system. . In computer vision the calculus of
variations has been applied to such problems as estimating optical flow
[2] and shape from shading [3]. Several numerical methods for approxi-
mating the solution of problems in the calculus of variations are known.
Galerkin method is used for solving variational problems in [4]. The Ritz
method [5], usually based on the subspaces of kinematically admissible
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complete functions, is the most commonly used approach in direct meth-
ods of solving variational problems. Chen and Hsiao [6] introduced the
Walsh series method to variational problems. Due to the nature of the
Walsh functions, the solution obtained was piecewise constant. Some
orthogonal polynomials are applied on variational problems to find the
continuous solutions for these problems [7]-[9]. A simple algorithm for
solving variational problems via Bernstein orthonormal polynomials of
degree six is proposed by Dixit et al. [10]. Razzaghi et al. [11] applied a
direct method for solving variational problems using Legendre wavelets.
Chebyshev finite difference method has been employed for solving some
problems in calculus of variations in [12].

Spline functions are special functions in the space of which approximate
solutions of ordinary differential equations. In other words spline function
is a piecewise polynomial satisfying certain conditions of continuity of the
function and its derivatives. The applications of spline as approximating,
interpolating and curve fitting functions have been very successful[13]-
[16]. In [17], a non-polynomial spline technique has been developed for the
numerical solutions of a system of fourth order boundary value problems
associated with obstacle, unilateral and contact problems. Polynomial
and non-polynomial spline functions based methods have been presented
to find approximate solutions to second order boundary value problems
[18]. Khan [19] used parametric cubic spline function to develop a numer-
ical method, which is fourth order for a specific choice of the parameter.
Parametric spline approach to the solution of a system of second-order
boundary-value problems has been proposed by Khan et al. [20]. Rashi-
dinia et al. [21]-[22] used non-polynomial quintic spline method for the
solution of a system of obstacle problems. Also Sinc-Galerkin method has
been used for the solution of problems in calculus of variations in [23].
The main purpose of the present paper is to use parametric quintic spline
method for numerical solution of boundary value problems which arise
from problems of calculus of variations. The method consists of reducing
the problem to a set of algebraic equations.

The outline of the paper is as follows. First, in Section 2 we introduce
the problems in calculus of variations and explain their relations with
boundary value problems. Section 3 outlines parametric quintic spline
and basic equations that are necessary for the formulation of the discrete
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system. Also in this section, we report our numerical results and demon-
strate the efficiency and accuracy of the proposed numerical scheme by
considering two numerical examples.

2. Statement of the problem

The genaral form of a variational problem is finding extremum of the
functional
(2.1)

J [u1(t), u2(t), . . . , un(t)] =

∫ b

a

G
(
t, u1(t), u2(t), . . . , un(t), u′1(t), u′2(t), . . . , u′n(t)

)
dt.

To find the extreme value of J , the boundary conditions of the admis-
sible curves are known in the following form:

ui(a) = γi, i = 1, 2, . . . , n,(2.2)

ui(b) = δi, i = 1, 2, . . . , n.(2.3)

The necessary condition for ui(t), i = 1, 2, . . . , n to extremize
J [u1(t), u2(t), . . . , un(t)] is to satisfy the Euler-Lagrange equations that is
obtained by applying the well known procedure in the calculus of variation
[5],

(2.4)
∂G

∂ui
− d

dt

(∂G
∂u′i

)
= 0, i = 1, 2, . . . , n,

subject to the boundary conditions given by Eqs. (2.2)-(2.3).

In this paper, we consider the spacial forms of the variational problem
(2.1) as

(2.5) J [u(t)] =

∫ b

a
G
(
t, u(t), u′(t)

)
dt,

with boundary conditions

(2.6) u(a) = γ, u(b) = δ,

and
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(2.7) J [u1(t), u2(t)] =

∫ b

a
G
(
t, u1(t), u2(t), u′1(t), u′2(t)

)
dt,

subject to boundary conditions

u1(a) = γ1, u1(b) = δ1,(2.8)

u2(a) = γ2, u1(b) = δ2.(2.9)

Thus, for solving the variational problems (2.5), by using Euler La-
grange Eq. (2.4) we consider the second-order differential equation

(2.10)
∂G

∂u
− d

dt

(∂G
∂u′

)
= 0,

with the boundary condition (2.6). And also, for solving the varia-
tional problems (2.7), we find the solution of the system of second-order
differential equations

(2.11)
∂G

∂ui
− d

dt

(∂G
∂u′i

)
= 0, i = 1, 2,

with the boundary conditions (2.8)-(2.9). Therefore, by applying para-
metric quintic spline method for the Euler-Lagrange equations (2.10) and
(2.11) we can obtain an approximate solution to the variational problems
(2.5) and (2.7).

3. Parametric quintic spline method

Consider the partition ∆ of [a, b] ⊂ R. Let Sk(∆) denote the set of
piecewise polynomials of degree k on subinterval Ii = [ti−1, ti] of partition
∆. In this work, we consider parametric quintic spline method for finding
approximate solution of variational problems.

Consider the grid points ti on the interval [a, b] as follows:

a = t0 < t1 < t2 < . . . , tn−1 < tn = b,(3.1)

ti = t0 + ih, i = 0, 1, 2, . . . , n,(3.2)

h =
b− a
n

,(3.3)

where n is a positive integer. Let S∆(t, τ)(t) be quintic spline function
of class C4[a, b] that interpolates u(t) at the grid points {ti}ni=0. Also,
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S∆(t, τ) depends on a parameter τ > 0 that is called a parametric spline
function also, S∆(t, τ) reduces to a ordinary quintic spline as τ → 0. By
considering parametric quintic spline S∆(t, τ) = S∆(t), the spline function
S∆(t) satisfies in the following equation:

(3.4) S
(4)
∆ (t)+τ

2
S

(2)
∆ (t) =

(
S

(4)
∆ (ti)+τ

2
S

(2)
∆ (ti)

)[ t− ti−1

h

]
+
(
S

(4)
∆ (ti−1)+τ

2
S

(2)
∆ (ti−1)

)[ ti − t
h

]
,

where t ∈ [ti−1, ti], S∆(ti) = u(ti), and h = ti − ti−1. The Eq.(3.4) is a
inhomogeneous ordinary differential equation. We solve the Eq.(3.4) and
obtain the constants of integration by using interpolation conditions at
the endpoints of the interval [ti−1, ti], then we get:

S∆(t) =
( t− ti−1

h

)
ui +

( ti − t
h

)
ui−1 + (

h2

3!
)
[
Mi

(( t− ti−1

h

)3 − ( t− ti−1

h

))
+Mi−1

(( ti − t
h

)3 − ( ti − t
h

))]
+ (

h

w
)4
[w2

3!

(( t− ti−1

h

)3 − ( t− ti−1

h

))
−
(( t− ti−1

h

)
− 1

sinw

(
sinw(

t− ti−1

h
)
))]

Fi + (
h

w
)4
[w2

3!

(( ti − t
h

)3−( ti − t
h

))
−
(( ti − t

h

)
− 1

sinw

(
sinw(

ti − t
h

)
))]

Fi−1,(3.5)

where

S∆(ti) = u(ti) = ui, S′′∆(ti) = Mi,

S
(4)
∆ (ti) = Fi, w = τh, τ > 0.(3.6)

We use the continuity of first and third derivatives of spline function
(3.5) at ti, and obtain the following result:

Mi+1 + 4Mi +Mi−1 =
6

h2
(
ui+1 − 2ui + ui−1

)
− 6h2

(
α1Fi+1 + 2β1Fi + α1Fi−1

)
,

(3.7)

Mi+1 − 2Mi +Mi−1 = h2
(
αFi+1 + 2βFi + αFi−1

)
,

(3.8)

where

α =
1

w2

(
w cscw − 1

)
, β =

1

w2

(
1− w cotw

)
,(3.9)

α1 =
1

w2

(1

6
− α

)
, β1 =

1

w2

(1

3
− β

)
.(3.10)

Considering Eqs. (3.7)-(3.8) and also some simple calculations, we can
obtain the value of Fi as follows:
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Fi =
1

12h2(α1β − αβ1)

[
(α+ 6α1)

(
Mi+1 +Mi−1

)
+ (4α− 12α1)Mi

− 6α

h2

(
ui+1 − 2ui + ui−1

)]
.(3.11)

Having used Eq. (3.11) and replaced Fi−1, Fi and Fi+1 in Eq. (3.8), the
following result is obtained:

ph2
(
Mi+2 +Mi−2

)
+ h2sMi + h2q

(
Mi+1 +Mi−1

)
= α

(
ui+2 + ui−2

)
+2(β − α)

(
ui+1 + ui−1

)
+
(
2α− 4β

)
ui, i = 2, 3, . . . , n− 2,(3.12)

where

(3.13)

s = 2
[1

6

(
α+4β

)
+
(
α1−2β1

)]
, q = 2

[1

6

(
2α+β

)
−
(
α1−β1

)]
, p =

α

6
+α1.

Remark. To study the convergence analysis,you can see [21]-[22].
In order to illustrate the performance of the parametric quintic spline
method, we present two examples.The observed maximum absolute errors
are given in tables 1 and 2, also we have compared our computed results
with the results obtained by others in [23].

Example 3.1. We first consider the following variational problem with the
exact solution u(t) = e3t in [12] and [23]:

(3.14) min J =

∫ 1

0

(
u(t) + u′(t)− 4e3t

)2
dt,

subject to boundary conditions

(3.15) u(0) = 1, u(1) = e3.

Considering the Eq. (3.8), the Euler-Lagrange equation of this problem
can be written in the following form:

(3.16) u′′(t)− u(t)− 8e3t = 0.

The solution of the second-order differential equation (3.16) with bound-
ary conditions (3.15) is approximated by the presented parametric spline
method. For our purpose, we consider the boundary value problem (3.16)
in general form as follows:

(3.17) u′′(t) = g(t)u(t) + f(t),
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where g(t) = 1 and f(t) = 8e3t. The exact solution of this problem
is u(t) = e3t. For a numerical solution of the boundary-value problem
(3.17), the interval [0, 1] is divided into a set of grid points with step size
h. Setting t = ti = t0 + ih, in Eq. (3.17), we obtain

(3.18) u′′(ti) = g(ti)u(ti) + f(ti),

by using the assumption S′′∆(ti) = Mi in (3.18) we have

(3.19) Mi = g(ti)u(ti) + f(ti).

Substituting Mi as Eq. (3.19) into Eq.(3.12), we get

(
ph2gi−2 − α

)
ui−2 +

(
qh2gi−1 − 2(β − α)

)
ui−1 +

(
h2sgi − (2α− 4β)

)
ui

+
(
qh2gi+1 − 2(β − α)

)
ui+1 +

(
ph2gi+2 − α

)
ui+2 =

− ph2
(
fi+2 + fi−2 − h2sfi − h2q

(
fi+1 + fi−1

))
, i = 2, 3, . . . , n− 2.

(3.20)

where u0 = 1, un = e3. Using Taylor’s series for Eq. (3.20), we can
obtain local truncation error as follows:

ti = h4
[1

6

(
7α+ β

)
−
(
4p+ q

)]
u

(4)
i + h6

[ 1

180

(
31α+ β

)
− 1

12

(
16p+ q

)]
u

(6)
i

+ h8
[ 1

10080

(
127α+ β

)
− 1

360

(
64p+ q

)]
u

(8)
i +O(h9).

(3.21)

In Eq. (3.21), if α = 1
12 and β = 5

12 , the presented method is a
six-order convergence method[21]. The linear system (3.20) consists of
(n− 3) equations with (n− 1) unknowns ui, i =, 1, . . . , n− 1. To obtain
unique solution, we need two equations. For this purpose, we can use the
following equations that arise from boundary conditions:

4ui−1 − 7ui + 2ui+1 + ui+2 = h2
[ 71

240
u′′i−1 +

43

12
u′′i +

7

8
u′′i+1 +

1

3
u′′i+2

− 5

48
u′′i+3 +

1

60
u′′i+4

]
, i = 1,(3.22)

4ui+1 − 7ui + 2ui−1 + ui−2 = h2
[ 71

240
u′′i+1 +

43

12
u′′i +

7

8
u′′i−1 +

1

3
u′′i−2

− 5

48
u′′i−3 +

1

60
u′′i−4

]
, i = n− 1,(3.23)
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The local truncation errors ti, i = 1, n − 1 corresponding α = 1
12 and

β = 5
12 are given by ti = 7677

544320h
8u

(8)
i .

Now, Eqs. (3.20), (3.22) and (3.23) yield (n−1) equations with (n−1)
unknowns ui, i = 1, 2, . . . , n − 1. Solving this linear system, we obtain
the approximations u1, u2, . . . , un−1 of the solution u(t) at the grid points
t1, t2, . . . , tn−1.

The errors are reported on the set of uniform grid points

S = {a = t0, . . . , t1, . . . , tn = b},

(3.24) ti = t0 + ih, i = 0, 1, 2, . . . , n, h =
b− a
n

.

The maximum error on the uniform grid points S is

(3.25) ‖Eu(h)‖∞ = max
0≤j≤n

|u(tj)− un(tj)| ,

where u(tj) is the exact solution of the given example, and uj is the
computed solution by the parametric quintic spline method. The max-
imum absolute errors in numerical solution of the Example 3.1 are tab-
ulated in table 1. From compared results with SGM [23] in Table 2 we
conclude that our results show the efficiency and applicability of the pre-
sented method.

Table 1. ‖Eu(h)‖∞for Example 3.1.

n Our method Method in [23]
10 1.17518×10−6 6.47961×10−3

20 4.58948×10−9 1.39879×10−4

30 6.73661×10−10 6.10976×10−6

40 1.40647×10−10 4.30248×10−7

50 3.96359×10−11 6.92302×10−8

Example 3.2. For the sake of comparison, we consider the following prob-
lem to find the extremals of the functional, discussed in [11] and [23]:

(3.26) J [u1(t), u2(t)] =

∫ π
2

0

(
u′21 (t) + u′22 (t) + 2u1(t)u2(t)

)
dt,
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with boundary conditions

u1(0) = 0, u1(
π

2
) = 1,(3.27)

u2(0) = 0, u2(
π

2
) = −1,(3.28)

which has the exact solution given by
(
u1(t), u2(t)

)
=
(

sin(t),− sin(t)
)
.

For this problem, the corresponding Euler-Lagrange equations are

(3.29)

{
u′′1(t)− u2(t) = 0,
u′′2(t)− u1(t) = 0,

with boundary conditions(3.27) and (3.28).

In a similar manner and applying (3.4) and (3.5), we assume that
functions u1(t) and u2(t) defined over the interval [0, π2 ] are approximated
by

u1(t) ' S1∆(t) =
( t− ti−1

h

)
u1,i +

( ti − t
h

)
u1,i−1 + (

h2

3!
)
[
M1,i

(( t− ti−1

h

)3 − ( t− ti−1

h

))
+M1,i−1

(( ti − t
h

)3 − ( ti − t
h

))]
+ (

h

w
)
4
[w2

3!

(( t− ti−1

h

)3 − ( t− ti−1

h

))
−
(( t− ti−1

h

)
−

1

sinw

(
sinw(

t− ti−1

h
)
))]

F1,i + (
h

w
)
4
[w2

3!

(( ti − t
h

)3−
( ti − t

h

))
−
(( ti − t

h

)
−

1

sinw

(
sinw(

ti − t
h

)
))]

F1,i−1,(3.30)

and

u2(t) ' S2∆(t) =
( t− ti−1

h

)
u2,i +

( ti − t
h

)
u2,i−1 + (

h2

3!
)
[
M2,i

(( t− ti−1

h

)3 − ( t− ti−1

h

))
+M2,i−1

(( ti − t
h

)3 − ( ti − t
h

))]
+ (

h

w
)
4
[w2

3!

(( t− ti−1

h

)3 − ( t− ti−1

h

))
−
(( t− ti−1

h

)
−

1

sinw

(
sinw(

t− ti−1

h
)
))]

F2,i + (
h

w
)
4
[w2

3!

(( ti − t
h

)3−
( ti − t

h

))
−
(( ti − t

h

)
−

1

sinw

(
sinw(

ti − t
h

)
))]

F2,i−1,(3.31)

where

Sj∆(ti) = uj(ti) = uj,i, j = 1, 2, S′′j∆(ti) = Mj,i, j = 1, 2,

S
(4)
j∆(ti) = Fj,i, j = 1, 2, w = h

√
τ .(3.32)
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Having used the continuity of first and third derivatives of the spline
functions S1∆(t) and S2∆(t), and substituted t = ti for i = 1, 2, . . . , n−1,
where ti are uniform grid points, we obtain:

F1,i =
1

12h2(α1β − αβ1)

[
(α+ 6α1)

(
M1,i+1 +M1,i−1

)
+ (4α− 12α1)M1,i

− 6α

h2

(
u1,i+1 − 2u1,i + u1,i−1

)]
,

(3.33)

F2,i =
1

12h2(α1β − αβ1)

[
(α+ 6α1)

(
M2,i+1 +M2,i−1

)
+ (4α− 12α1)M2,i

− 6α

h2

(
u2,i+1 − 2u2,i + u2,i−1

)]
,

(3.34)

and consequently, we can obtain the following results:

ph2
(
M1,i+2 +M1,i−2

)
+ h2sM1,i + h2q

(
M1,i+1 +M1,i−1

)
= α

(
u1,i+2 + u1,i−2

)
+2(β − α)

(
u1,i+1 + u1,i−1

)
+
(
2α− 4β

)
u1,i, i = 2, 3, . . . , n− 2,(3.35)

ph2
(
M2,i+2 +M2,i−2

)
+ h2sM2,i + h2q

(
M2,i+1 +M2,i−1

)
= α

(
u2,i+2 + u2,i−2

)
+2(β − α)

(
u2,i+1 + u2,i−1

)
+
(
2α− 4β

)
u2,i, i = 2, 3, . . . , n− 2,(3.36)

where α, β, α1 and β1 are defined in (3.7)-(3.9). Now, consider the
system (3.29) and substitute t = ti, then we get:

u′′1,i = u2,i, u′′2,i = u1,i(3.37)

Considering Eq. (3.37) and assumption (3.32), we have:

M1,i = u2,i, M2,i = u1,i.(3.38)

Now, by using relations (3.35)− (3.38), we can write
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(3.39)
ph2
(
u2,i+2 + u2,i−2

)
+ h2su2,i + h2q

(
u2,i+1 + u2,i−1

)
= α

(
u1,i+2 + u1,i−2

)
+2(β − α)

(
u1,i+1 + u1,i−1

)
+
(
2α− 4β

)
u1,i, i = 2, 3, . . . , n− 2,

ph2
(
u1,i+2 + u1,i−2

)
+ h2su1,i + h2q

(
u1,i+1 + u1,i−1

)
= α

(
u2,i+2 + u2,i−2

)
+2(β − α)

(
u2,i+1 + u2,i−1

)
+
(
2α− 4β

)
u2,i, i = 2, 3, . . . , n− 2.

The system (3.39) contains 2(n − 3) equations with 2(n − 1) unknown
coefficients uj,i, j = 1, 2, i = 1, 2 . . . , n − 1. To obtain unique solution,
we consider four equations from boundary conditions as:

(3.40)



4u1,i−1 − 7u1,i + 2u1,i+1 + u1,i+2 = h2
[

71
240u2,i−1 + 43

12u2,i +
7
8u2,i+1 + 1

3u2,i+2

− 5
48u2,i+3 + 1

60u2,i+4

]
, i = 1,

4u1,i+1 − 7u1,i + 2u1,i−1 + u1,i−2 = h2
[

71
240u2,i+1 + 43

12u2,i +
7
8u2,i−1 + 1

3u2,i−2

− 5
48u2,i−3 + 1

60u2,i−4

]
, i = n− 1,

and

(3.41)



4u2,i−1 − 7u2,i + 2u2,i+1 + u2,i+2 = h2
[

71
240u1,i−1 + 43

12u1,i +
7
8u1,i+1 + 1

3u1,i+2

− 5
48u1,i+3 + 1

60u1,i+4

]
, i = 1,

4u2,i+1 − 7u2,i + 2u2,i−1 + u2,i−2 = h2
[

71
240u1,i+1 + 43

12u1,i +
7
8u1,i−1 + 1

3u1,i−2

− 5
48u1,i−3 + 1

60u1,i−4

]
, i = n− 1.

The Eqs. (3.39)-(3.41) produce a linear system that contains 2× (n−
1) equations with 2 × (n − 1) unknown coefficients uj,i, j = 1, 2, i =
1, 2, . . . , n−1. Solving this linear system, we can obtain the approximate
solution of the system of second-order boundary value problems (3.29).

Suppose ‖Eu1(h)‖∞ and ‖Eu2(h)‖∞ be the maximum absolute errors.
We solved Example 3.2 for different values of n. The maximum of absolute
errors on the uniform grid points (3.24) are tabulated in Table 2. We
compare the results with the SGM [23] applied to same equation. Table
2 exhibits the compared results.

Table 2. Our method for Example 3.2.

n ‖Eu1
(h)‖∞ ‖Eu2

(h)‖∞ ‖Eu1
(h)‖∞ − SGM [23] ‖Eu2

(h)‖∞ − SGM [23]

10 6.70171×10−10 6.70171×10−10 2.72950×10−4 2.72950×10−4

20 7.07034×10−12 7.07034×10−12 8.69675×10−6 8.69675×10−6

30 8.10463×10−13 8.10463×10−13 5.65263×10−7 5.65263×10−7

40 1.55653×10−13 1.55653×10−13 5.47391×10−8 5.47391×10−8

50 4.21885×10−14 4.21885×10−14 6.93422×10−9 6.93422×10−9
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4. Conclusion

In this paper parametric quintic spline method employed for finding
the extremum of a functional over the specified domain. The main pur-
pose is to find the solution of boundary value problems which arise from
the variational problems. The parametric quintic spline method reduce
the computation of boundary value problems to some algebraic equations.
The proposed scheme is simple and computationally attractive. Applica-
tions are demonstrated through illustrative examples.
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