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ON CLEAN HYPERRINGS

TAYBEH AMOUZEGAR AND YAHYA TALEBI

Abstract. We introduce and study clean hyperrings. A hyperring
R is called a clean hyperring if for every element x of R, x ∈ u+ e
where u is a unit and e is an idempotent. We also introduce GC-
hyperring which is a proper generalization of clean hyperrings and
obtain some related results of such hyperrings.
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1. Introduction

The hyperstructure theory was introduced by Marty in 1934, at the
8th Congress of Scandinavian Mathematicians [9]. Hyperstructures have
many applications to several sectors of both pure and applied mathe-
matics [4]. A hypergroup in the sense of Marty is a nonempty subset
of H, endowed by a hyperoperation ∗ : H × H → P ∗(H), the set of
all nonempty subsets of H, which satisfies the associative law and the
reproduction axiom. Mittas [10] introduced canonical hypergroups as a
special class of the hypergroups. The more general structure that sat-
isfies the ring-like axioms is the hyperring (R,+, .), where + and . are
two hyperoperations such that (R,+) is a hypergroup, (R, .) a semihy-
pergroup and . is an associative hyperoperation, which is distributive
with respect to +. There are different classes of hyperrings. If only
the addition + is a hyperoperation and the maltiplication . is a usual
operation, then we say that R is an additive hyperring. A special case
of this type is the hyperring introduced by Krasner (for more detail see
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[7]). If only . is a hyperoperation, we shall say that R is a multiplicative
hyperring. Rota in [15] introduced the multiplicative hyperring; sub-
sequently, many authors worked on this field (Olson and Ward in [13];
Procesi and Rota in [14]; Rota in [16]; Dasgupta in [6]). Irina Cristea
and Sanja Jancic-Rasovic in [2] introduced the composition hyperrings,
as a quadruple (R,+, ., ◦) such that (R,+, .) is a commutative hyperring
in the general sense of Spartalis, and the composition hyperoperation ◦
is an associative hyperoperation, distributive to the right side with re-
spect to the addition and multiplication. A comprehensive review of the
theory of hyperstructures appears in Corsini [3], Corsini and Leoreanu
[4] and Vougiuklis [18]. In this paper, by a hyperring we mean a Kras-
ner hyperring [8], that is, a triple (R,+,.) such that (R,+) is a canonical
hypergroup, (R, .) is a semigroup with a zero 0 where 0 is the scalar
identity of (R,+) and . distributive over +. An element x of a ring R is
clean (see [12]) if it can be written as a sum of a unit and an idempotent
element in R. R is called clean if every element of R is clean. Based on
the notion of clean rings introduced by Nicholson [12], we define here
the concept of clean hyperrings. In section 2 of this paper, we remember
some definitions and basic notions of hyperring. In section 3, we define
clean hyperring, then some results concerning this concept are proved.
In section 4, we define uniquely clean hyperrings and investigate some
properties of them.

2. Basic Definitions and Results

In this section we briefly recall some definitions and results of hyper-
ring, which we need to develop our paper.

Definition. A non-empty set H with a hyperoperation + is called a
canonical hypergroup if the following axioms are satisfied:

(i) for every x, y, z ∈ R, x+ (y + z) = (x+ y) + z;
(ii) For every x, y ∈ R, x+ y = y + x;
(iii) There exists 0 ∈ R such that 0 + x = {x} for all x ∈ R;
(iv) For every x ∈ R there exists a unique x′ ∈ R such that 0 ∈ x+x′

(we shall write −x for x′ and we call it the opposite of x);
(v) z ∈ x+y implies y ∈ −x+z and x ∈ z−y (for a study of canonical

hypergroups see Mittas [10]).
Definition. [8] Let (R,+) be a hyperstructure and . be an internal

composition on R. Then (R,+, .) is called a hyperring if:
(i) (R,+) is a canonical hypergroup;
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(ii) (R, .) is a multiplicative semigroup having zero as a bilaterally
absorbing element, i.e., x.0 = 0.x = 0;

(iii)The multiplication is distributive with respect to the hyperoper-
ation +.

A hyperring R is called:
(i) With identity if there exists an element, say 1 ∈ R, such that

1x = x1 = x;
(ii) Commutative iff a.b = b.a, ∀a, b ∈ R;
(iii) A hyperintegral domain if R is a commutative hyperring with

identity and ab = 0 implies that a = 0 or b = 0.
For simplicity of notations we write sometimes xy instead of x.y.
If A,B ⊆ R then A + B = ∪{a + b | a ∈ A, b ∈ B}. Moreover, for

every x ∈ R, A + x is used for A + {x} and x + B for {x} + B. The
following elementary facts follow easily from the axiom: −(−x) = x and
−(x+y) = −x−y. where −A = {−a|a ∈ A}. Also, for each a, b, c, d ∈ R
we have (a+ b).(c+d) ⊆ a.c+ b.c+a.d+ b.d whenever R is commutative
(a+ b).(c+ d) = a.c+ b.c+ a.d+ b.d.

A nonempty subset A of R is said to be a subhyperring of R if (A,+, .)
is itself a hyperring. If R\{0} is a multiplicative group then (R,+, .) is
a hyperfield.

Remark. In the sequel (R.+, .) is a commutative hyperring with
identity in the sense of Krasner.

Recall that a nonempty subset I of a hyperring R is called a hyperideal
if

i) a, b ∈ I implies a− b ⊆ I;
ii) a ∈ I, r ∈ R imply r.a ∈ I.
A hyperideal P of R is called prime hyperideal if for each a, b ∈ P ,

a.b ∈ P implies a ∈ P or b ∈ P .
Recall that a proper hyperideal M of R is a maximal hyperideal of

R if the only hyperideals of R that contain M are M itself and R. A
commutative hyperring R with identity is called local if it has a unique
maximal hyperideal.

Theorem. [19] If R is a commutative hyperring with identity, then
the following conditions are equivalent:

(i) R is local
(ii) All non units (=noninvertibles) of R are contained in a hyperideal,

say M ̸= R.
(iii) The non units of R form a hyperideal.
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Definition. Let R1 and R2 be hyperrings. A map f : R1 → R2 is
called a homomorphism if the following conditions are satisfied:

(i) f(a+ b) ⊆ f(a) + f(b) for all a, b ∈ R1;
(ii) f(a.b) = f(a).f(b) for all a, b ∈ R1.
If in (i) equality holds, then f is called a good homomorphism.
A map f is called an epimorphism if f is a surjective homomorphism

and also if for every a2, b2 ∈ R2 the following holds:
3) (∀y ∈ a2 + b2)(∃a1, b1 ∈ R1)(∃x ∈ a1 + b1), f(a1) = a2, f(b1) =

b2, f(x) = y.
Finally, a map f is said to be an isomorphism if it is a bijective good

homomorphism.
Definition. The hyperideal I of R is normal in R if and only if

x+ I − x ⊆ I for all x ∈ R.
Definition. If I is a normal hyperideal of a hyperring R, then we

define the relation x ≡ y (mod I) if and only if x−y∩I ̸= ∅. It is easy to
see that this relation is an equivalence relation on R. Let I∗[x] denote
the equivalence class of the element x ∈ R. Suppose y ∈ x + I then
there exists a ∈ I such that y ∈ x + a, which implies that a ∈ −x + y
and so y − x ∩ I ̸= ∅ or x+ I ⊆ I∗[x]. Thus x+ I ⊆ I∗[x]. Similarly we
have I∗[x] ⊆ x+ I. Therefore I∗[x] = x+ I. All the cosets a+ I, a ∈ R
form the factor hyperring R/I with respect to the hyperoperation ⊕
defined by (a+ I)⊕ (b+ I) = {c+ I | c ∈ a+ b} and the multiplication
(a + I) ⊙ (b + I) = a.b + I, and the coset I as the zero element. Note
that a hyperring R/I is a hyperdomain, i.e., x.y = 0 implies x = 0 or
y = 0 in R/I iff I is a prime hyperideal.

Theorem. [19] Let R be a commutative hyperring and M ̸= R be
hyperideal of R. Then M is maximal if and only if R/M is a hyperfield.

Proposition. [5] Let R be a hyperring and let I be a proper hy-
perideal of R. Then there exists a maximal hyperideal of R containing
I.

For a hyperring R we define the Jacobson radical J(R) of R as the
intersection of all maximal hyperideals of R.

Proposition. [5] Let R be a hyperring and U(R) the set of all
invertible elements in R. Then an element a ∈ R belongs to J(R) if and
only if 1− ba ⊆ U(R) for all b ∈ R.

Throughout this paper U(R) will denote the set of all invertible ele-
ments in R and Id(R) denotes set of all idempotent elements of R.

Definition. (i) A subset U of a hyperring R is called a unit set, if
there exists B ⊆ R such that 1 ∈ U.B.
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(ii) A subset E of a hyperring R is called an idempotent set if E ⊆ E2.
It is clear that U(R) is a unit set and Id(R) is an idempotent set.

3. Clean Hyperrings

Let R be a commutative hyperring with identity in the sense of Kras-
ner.

Definition. A commutative hyperring R is a clean hyperring if for
every element x ∈ R there exist u ∈ U(R) and e ∈ Id(R), such that
x ∈ u+ e.

Example. Let R = {0, 1, 2} be a set with the hyperoperation + and
the binary operation . defined as follow: R = {0, 1, 2}

+ 0 1 2
0 {0} {1} {2}
1 {1} {1} R
2 {2} R {2}

◦ 0 1 2
0 0 0 0
1 0 1 2
2 0 1 2

Then (R,+, .) is a clean hyperring.
Definition. A commutative hyperring R is a generalized clean hy-

perring (or GC-hyperring) if for every element x ∈ R there exist a unit
set U and an idempotent set E such that x ∈ U + E.

It is clear that every clean hyperring is a GC-hyperring.
Proposition. (i) A homomorphic image of a clean hyperring is a

clean hyperring.
(ii) A direct product R =

∏
Rα of hyperrings {Rα} is a clean hyper-

ring, if and only if each Rα is a clean hyperring.
(iii) A local hyperring is a clean hyperring.

Proof. (i) Let R be a clean hyperring. For each x + A ∈ R/A, write
x ∈ u+e where u ∈ U(R) and e ∈ Id(R). Then x+A ∈ (u+A)⊕(e+A)
we have u+A ∈ U(R/A) and e+A ∈ Id(R/A).

(ii) (⇒) This follows from (i).
(⇐) Suppose that each Rα is a clean hyperring. Let x = (xα) ∈

∏
Rα.

For each α, write xα ∈ uα + eα where uα ∈ U(Rα) and eα ∈ Id(Rα).
Then x ∈ u + e where u = (uα) ∈ U(

∏
Rα) and e = (eα) ∈ Id(

∏
Rα).

So
∏

Rα is a clean hyperring.
(iii) Let R be a local hyperring with a maximal hyperideal M . Let

x ∈ U(R), x ∈ x+ 0. If x ∈ M , by Proposition 2, x− 1 ⊆ U(R) and so
x ∈ x+0 ⊆ x−1+1 = ∪{a+1 | a ∈ x−1}. Thus there exists y ∈ x−1
such that x ∈ y + 1, and hence y ∈ x− 1 ⊆ U(R). □
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Proposition. Let I be a normal hyperideal of R, and assume that
I ⊆ J(R). Then R is a clean hyperring if and only if R/I is clean and
idempotent lift modulo I.

Proof. If R is clean so is R/I, by Proposition 3. Conversely, suppose
that x denote x+I in the ring R/I. If r ∈ R, r ∈ e⊕u where e2 = e and
u is a unit in R/I. By hypothesis we may assume that e2 = e. Since r ∈
e⊕u = {c+I | c ∈ e+u}, then there exists c ∈ e+u such that r+I = c+I.
From c−e ⊆ e−e+u, we have r−e+I = c−e+I ⊆ e−e+u+I ⊆ u+I, as
I is normal. Thus r−e+I = ∪ {t+I | t ∈ r−e} ⊆ U(R/I), then t+I is a
unit in R/I, and so there exists t′ ∈ R such that (t+I)⊙(t′+I) = 1+I.
So tt′ + I = 1+ I, then 1− tt′ ∩ I ̸= ∅. Thus there exists x ∈ 1− tt′ ∩ I,
by Proposition 2, 1− x ⊆ U(R). Then tt′ ∈ 1− x ⊆ U(R), and so t is a
unit in R. Since t ∈ r−e, r ∈ t+e, therefore R is a clean hyperring. □

We next characterize the indecomposable clean hyperrings.
Theorem. Let R be a commutative hyperring. Consider the follow-

ing conditions.
(1) R is local.
(2) R is an indecomposable clean hyperring.
(3) Every element x ∈ R has the form x ∈ u + e where u ∈ U(R)

and e ∈ {0, 1}. Then (1) ⇒ (2) ⇒ (3), moreover, if every maximal
hyperideal of R is normal, then (3) ⇒ (1).

Proof. (1) ⇒ (2) If R is local, then R is indecomposable, since if R =
I1 ⊕ I2 such that I1, I2 are hyperideals of R, then there exists xi ∈
Ii (i = 1, 2) such that 1 ∈ x1 + x2. x1 or x2 is invertible otherwise Rx1
and Rx2 contained in the unique maximal hyperideal say M , and so
1 ∈ x1 + x2 ⊆ M , which is a contradiction. Hence R is indecomposable.

(2) ⇒ (3) It is clear.
(3) ⇒ (1) It suffices to show that every nonunit x ∈ R is in J(R).

For r ∈ R, rx is a nonunit. Hence rx ∈ u + 1 for some u ∈ U(R). We
show that 1 − rx ⊆ U(R). Let y ∈ 1 − rx, if y ̸∈ U(R), then there
exist a maximal hyperideal M such that y ∈ M . Thus u ∈ −1 + rx ⊆
−1+1−y ⊆ −1+1+M ⊆ M ; that is, u ∈ M , which is a contradiction.
Therefore by Proposition 2, x ∈ J(R). □

A commutative ring R is called a pm-ring if each prime ideal of R is
contained in a unique maximal ideal of R.
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Definition. A commutative hyperring R is called a pm-hyperring if
each prime hyperideal of R is contained in a unique maximal hyperideal
of R, or equivalently, R/P is local for each prime hyperideal P of R.

Corollary. A clean hyperring R is a pm-hyperring.

Proof. Let P be a prime hyperideal of R. By Proposition 3, R/P is an
indecomposable clean ring. Hence by Theorem 3, R/P is local. There-
fore R is a pm-hyperring. □

A ring R is called von Neumann regular if ∀x ∈ R there exists y ∈ R
such that x = xyx. Similarly, for hyperrings we have the following
definition:

Definition. A hyperring R is called von Neumann regular if ∀x ∈ R
there exists y ∈ R such that x = xyx.

Lemma. A commutative R is von Neumann regular if and only
if each element of R can be written as the product of a unit and an
idempotent.

Proof. If x = e.u where e is an idempotent and u is a unit, then x =
xu−1x. Conversely, if x = xyx, then e = xy is an idempotent, U :=
xe+(1−e) is a unit set, and x ∈ e.U . Thus x = e.u for some u ∈ U . □

Theorem. A commutative von Neumann regular hyperring R is a
generalized clean hyperring.

Proof. By Lemma 3, we can suppose that every element x ∈ R can
be written as x = u.e where u ∈ U(R) and e ∈ Id(R). If we take
V := ue−(1−e) and E := 1−e, then x ∈ V +E where E is an idempotent
set and V is a unit set. (For 1 ∈ (ue− (1− e)).(u−1e− (1− e))). □

Proposition. Let R be a commutative hyperring. Consider the
following conditions:

(1) R is a clean hyperring.
(2) For every element x ∈ R, x ∈ u−i where u ∈ U(R) and i ∈ Id(R).
(3) For every element x ∈ R, x ∈ u + i where u ∈ U(R) ∪ {0} and

i ∈ Id(R).
(4) For every element x ∈ R, x ∈ u − i where u ∈ U(R) ∪ {0} and

i ∈ Id(R).
(5) R is a GC-hyperring.
Then (1) ⇔ (2), (3) ⇔ (4), (1) ⇒ (3) ⇒ (5).

Proof. (1) ⇒ (2) Let x ∈ R. Then −x ∈ u + i, where u ∈ U(R) and
i ∈ Id(R). Thus x ∈ (−u) − i, where −u ∈ U(R) and i ∈ Id(R).
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(2) ⇒ (1) Similar to (1) ⇒ (2), but we have −x ∈ u − i. (3) ⇔ (4)
Similar to (1) ⇔ (2). (1) ⇒ (3) Clear. (3) ⇒ (5) It suffices to show
that if e ∈ Id(R), then e ∈ U + E, where U is a unit set and E is
an idempotent set. It is clear that e ∈ (e + e − 1) + (1 − e) where
1 ∈ (e+ e− 1).(e+ e− 1) and (1− e) ⊆ (1− e) + 0 ⊆ (1− e)2. □

Proposition. Let R be a commutative hyperring with exactly two
maximal hyperideals. If for a maximal hyperideal M of R and x ∈ R,
whenever x+ x ⊆ M , we have x ∈ M , then for x ∈ R, either x ∈ u+ e
or x ∈ u− e, where u ∈ U(R) and e ∈ Id(R).

Proof. Let M1 and M2 be two maximal hyperideals of R. Let x ∈ R.
If x ∈ U(R), then x ∈ x + 0 where x ∈ U(R) and 0 ∈ Id(R); while if
x ∈ M1∩M2 = J(R), both x+1 and x−1 are subsets of U(R); and so x ∈
u1+1 = u2− 1 where u1, u2 ∈ U(R) and 1 ∈ Id(R). Next, suppose that
x ∈ M1−M2. So x+1, x−1 ⊈ M1, for otherwise 1 ∈ M a contradiction.
Suppose that x+ 1, x− 1 ⊆ M2. Then x+ x ⊆ (x+ 1) + (x− 1) ⊆ M2.
So x ∈ M2 a contradiction. Hence either x+1 ⊈ M2 or x− 1 ⊈ M2 and
so x+ 1 ⊆ U(R) or x− 1 ⊆ U(R), i.e., x ∈ u− 1 or x ∈ u+ 1 for some
u ∈ U(R). The case x ∈ M2 − M1 is similar. Hence for x ∈ R, either
x ∈ u+ e or x ∈ u− e, where u ∈ U(R) and e ∈ Id(R). □

4. Uniquely Clean Hyperring

Definition. A commutative hyperring R is a uniquely clean hyperring
if for every element x ∈ R there exist uniquely u ∈ U(R) and e ∈ Id(R),
such that x ∈ u+e, that is if x ∈ u1+e1 = u2+e2, then u1 = u2, e1 = e2.

Lemma. Let R be a commutative hyperring. Let e, f ∈ R be idem-
potents with e− f ⊆ J(R). Then e = f .

Proof. f(1−e) ⊆ 0+f(1−e) ⊆ (e−f).(e−1) ⊆ J(R). But f(1−e).f(1−
e) = f(1− e) + 0, so 0 ∈ (f(1− e).(f(1− e)− 1+ 0)). Then there exists
u ∈ f(1− e)− 1+0 such that 0 ∈ f(1− e).u. Since f(1− e)+0 ⊆ J(R),
by Proposition 2, f(1 − e) − 1 + 0 ⊆ U(R). Thus u is unit. Then
0 ∈ f(1 − e) = f − fe. Hence f = fe. Likewise, f − e ∈ J(R) gives
e = ef . Hence 0 ∈ ef − ef = e− f . So e = f . □

Theorem. Let R be a commutative hyperring such that R/M is a
hyperfield with two elements, for each maximal normal hyperideal M
of R. If x ∈ R has a representation in the form x ∈ u + e where
u ∈ U(R), e ∈ Id(R), then this representation is unique. Hence a clean
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hyperring R such that R/M is a hyperfield with two element, for each
maximal normal hyperideal M of R is a uniquely clean hyperring.

Proof. Suppose that x ∈ u1 + e1 = u2 + e2 where u1, u2 ∈ U(R) and
e1, e2 ∈ Id(R). Let M be a maximal and normal hyperideal of R. Now
u1 + M,u2 + M are units in hyperfield R/M ; so u1 + M = u2 + M .
Thus u1 ∈ u2 +M (Definition 2). Hence e1 − e2 ⊆ x − u1 − x + u2 ⊆
x − u2 + M − x + u2 ⊆ M . Thus e1 − e2 ⊆ J(R). By Lemma 4,
e1 = e2. Hence u1 = u2. The last statement of the theorem immediately
follows. □

Corollary. A local hyperring R is a uniquely clean hyperring if and
only if R/M is a hyperfield with exactly two elements.

Proof. (⇐) By Theorem 4, R is a uniquely clean hyperring. (⇒) Let
u ∈ U(R). Then u+1 ⊈ U(R). Otherwise, for all x ∈ u+1, x ∈ u+1 ⊆
U(R). Then x ∈ x + 0, where x is unit and 0 is idempotent. Thus
there exist two representations for x, x ∈ u + 1 and x ∈ x + 0. Hence
u+1 ⊆ M ; so u+1+M = ∪{c+M |c ∈ u+1} = ∪{M}, then 0 ∈ u+ 1
in R = R/M . Since each nonzero element of R is the image of a unit of
R; it follows that R is a hyperfield with 0 ∈ x + 1 for each 0 ̸= x ∈ R.
Hence R has exactly two elements. □

Proposition. A direct product R =
∏

Rα of commutative hyper-
rings {Rα} is a uniquely clean hyperring, if and only if each Rα is a
uniquely clean hyperring.

Proof. Similarly to the proof of Proposition 3. □
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