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ON GENERAL n-ARY HYPERSTRUCTURE

SEMILATTICES

AKBAR DEHGHAN NEZHAD AND NAJMEH KHAJUEE

Abstract. In this paper, the n-ary hyperstructure will be ap-
plied to some aspects of lattice theory. We introduce the concepts
of general n-ary hyperstructure semilattice ( or gnh-semilattice)
andGnh-subsemilattice, ideal of gnh-semilattice, gno-order, Gno-
order, multiplier of type α on gnh-semilattice, F -quasi invariant
subset of gnh-semilattice and so on. We also study some of their
related properties.
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1. Introduction and preliminaries

Hyperstructure theory was born in 1934 when Marty [17] defined hy-
pergroups as a generalization of groups. Eighty years have elapsed since
Martys pioneer paper. During this period, numerous papers on alge-
braic hyperstructures have been published, the field has experimented
an enormous growth. A recent book [6] contains a wealth of applications.
There are applications to the following subjects: geometry, hypergraphs,
binary relations, lattices, fuzzy sets and rough sets, automata, cryp-
tography, combinatorics, codes, artificial intelligence, and probabilistic.
Hv-structures were for the first time introduced by Vougiouklis in Fourth
AHA congress (1990) [22]. The concept of Hv-structures constitute a
generalization of the well-known algebraic hyperstructures (hypergroup,
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hyperring, hypermodule and so on). Actually some axioms concerning
the above hyperstructures such as the associative law, the distributive
law and so on are replaced by their corresponding weak axioms. In [7],
Davvaz surveyed the theory of Hv-structures. Hyperlattices were for the
first time introduced by Konstantinidou and Mittas [15]. The concept
of hyperlattice is a generalization of the concept of lattice [2]. Other
contributor to the development of hyperlattice theory were Konstan-
tinidou [11, 12, 14, 16, 15, 13], Ashrafi [1], Rahnamai-Barghi [19, 20],
Xiao and Zhao [23]. In [8] Dehghan Nezhad and Davaze introuced the
concept of Hv-semilattice and study some of their related properties.
In 2011, K.H. Kim [10] introduced and studied the properties of mul-
tipliers in BE-algebras and in [21] M. Sambasiva Rao introduced the
notation multiplier of hypersemilattice and also studied some properties
of multipliers.

The paper is organized as follows. In section 1, we present defini-
tions weak associative and intersection commutative for general n-ary
hyperstructure. In section 2, firstly, we define quasi gnh-semilattice.
It is shown that if (L, ∗n) be a gnh-semilattice then (P ∗(L),

⊗
n) is a

Gnh-semilattice. Also we introduce gnh on cartesian product of gnh-
semilattice. We prove the direct product of n gnh-semilattice is a gnh-
semilattice on their cartesian products. In sections 3 and 4, we define
gnh-subsemilattice and ideal of gnh-semilattice. The image and inverse
images of subsemilattice (ideal) under a strong homomorphism are stud-
ied. In section 5, we define a general n-order (gno) on (L, ∗n) and a Gno
(General n-order) on (P ∗(L),

⊗
n). We investigate connections between

gno and Gno. Finally in section 6, we introduce and study the proper-
ties of multipliers of type α in gnh-semilattice (Gnh-semilattice ). We
will study image and inverse images of ideals under a multiplier of type
α of gnh-semilattice.
Let ω be the smallest infinite countable ordinal. We consider the small-
est infinite ordinal ω as the set of all smaller ordinals, i.e. as the domain
of all finite ordinals (non-negative integers).

Definition 1.1. [5, 6]. Let {Xk; k ∈ ω} be a system of non-empty sets.
The general ω − hyperstructure, we mean the pair ({Xk; k ∈ ω}, ∗ω),
where ∗ω :

∏
k∈ωXk −→ P ∗(

∪
k∈ωXk) is a mapping assigning to any se-

quence {xk}k∈ω ∈
∏

k∈ωXk a non-empty subset ∗ω({xk}k∈ω) ⊂
∪

k∈ωXk.
Similarly as above, with hyperoperation is associted a mapping of power
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sets ⊗
ω

:
∏
k∈ω

P ∗(Xk) −→ P ∗(
∪
k∈ω

Xk)

defined by ⊗
ω

({Ak}k∈ω) =

∪
{∗ω({xk}k∈ω); ({xk}k∈ω) ∈

∏
k∈ω

Ak, Ak ∈ P ∗(Xk), k ∈ ω}.

Let us formulate the special case:

Definition 1.2. [4, 5, 6]. Let n ∈ ω be an arbitrary positive integer,
n ≥ 1. Let {Xk; k = 1, ..., n} be a system of non-empty sets. By a
general n − ary hyperstructure we mean the pair
({Xk; k = 1, ..., n}, ∗n), where

∗n :

n∏
k=1

Xk −→ P ∗(

n∪
k=1

Xk)

is a mapping assigning to any n-tuple (x1, ..., xn) ∈
∏n

k=1Xk a non-
empty subset ∗n(x1, ..., xn) ⊂

∪n
k=1Xk.

Similarly as above, with this hyperoperation there is associated a map-
ping of power sets∏n

k=1 P
∗(Xk) −→ P ∗(

∪n
k=1Xk) defined by⊗

n

(A1, ..., An) =

∪
{∗n(x1, ..., xn); (x1, ..., xk) ∈

n∏
k=1

Ak, Ak ∈ P ∗(Xk), k = 1, ..., n}.

This construction is based on an idea of Nezhad and Hashemi [9] for
n = 2. Hyperstructures with n-ary hyperoperations are investigated
among others in [3, 18].
We shall use the following abbreviated notation, the sequence xi, xi+1, ..., xj
will be denoted by xji , x

i
i = xi for j < i, xji is the empty set. In this convention

∗n(x1, ..., xi, yi+1, ..., yj , zj+1, ..., zn) will be written as ∗n(xi1, y
j
i+1, y

n
j+1).

We called ∗n gnh (general n-ary hyperstructure) and
⊗

n Gnh (General n-ary
hyperstructure). When X1 = ... = Xn = X, ∗n is called gnh on X and

⊗
n is

called Gnh on P ∗(X).
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Let
∩n

k=1Xk ̸= ∅ and Sn be permutation group of order n. We say gnh is
intersection commutative if for all σ ∈ Sn and xn1 ∈

∩n
k=1Xk

∗n(xn1 ) = ∗n(x
σ(n)
σ(1) ).

If ∗n is a gnh on X, we say that ∗n is commutative. Let x ∈ X and we
denote ∗n(x, ..., x) with ∗n(x). In the following definition X l

k means Xk, ..., Xl

for k, l ∈ N, k < l.

Definition 1.3. A gnh is associative whenever for any x1, ..., x2n−1 that
x1 ∈ X1, xi ∈ Xi

1 for i = 2, ..., n, xn+j ∈ Xn
j+1 for j = 1, ..., n − 1 and

x2n−1 ∈ Xn.
For any i, j ∈ {1, 2, ..., n}, we have

∗n
(
xi−1
1 , ∗n(xn+i−1

i ), x2n−1
n+i

)
= ∗n

(
xj−1
1 , ∗n(xn+j−1

j ), x2n−1
n+j

)
.

A gnh is week associative if
∩2n−1

i=1 ∗n(xi−1
1 , ∗n(xn+i−1

i ), x2n−1
n+i ) ̸= ∅.

Remark 1.4. We have similar definition for gnh on X.

2. Quasi gnh-semilattice

Definition 2.1. Let L1, ..., Ln be non-empty sets with a gnh ∗n. Let
∩n

k=1 Lk =
L such that the following conditions hold:
i) a ∈ ∗n(a) for all a ∈

∏n
k=1 Lk (idempotent),

ii) intersection commutative (or commutative),
iii) weak associative.
Then (L, ∗n) is called a quasi gnh-semilattice (or gnh-semilattice).

Example 2.2. Let Lm denote the space of m ×m real matrices. We define a
gnh, ∗n on Lm as follows:
∗n(An

1 ) = {A1, ..., An, (A1)2, ..., (An)2} for all An
1 ∈ Lm. For any A2n−1

1 ∈ Lm,
we have
i) A1 ∈ ∗n(A1) = {A1, (A1)2},
ii) it is clear that ∗n is commutative,
iii) it is easy to check that

An
1 ∈

2n−1∩
i=1

∗n
(
Ai−1

1 , ∗n(An+i−1
i ), A2n−1

n+i

)
̸= ∅.

Therefore (Lm, ∗n) is a gnh-semilattice.

Example 2.3. Let K be a non-empty set. We define a gnh, ∗n on K as follows:
∗n(kn1 ) = {kn1 } for all kn1 ∈ K. Then (K, ∗n) is gnh-semilattice.

Example 2.4. Consider the classical differential ring of real functions g ∈
C∞(I), I = (a, b) ⊆ R (not excluding the case I = R) with the usual dif-
ferentiation. For any gn1 ∈ C∞(I) we define a gnh, ∗n on the ring C∞(I) by,
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for all x ∈ I, ∗n(gn1 ) = {g1, ..., gn, g′1, ..., g′n}. It is obvious that ∗n is idempotent
and commutative. For any g2n−1

1 ∈ C∞(I), we have

gn1 ∈
2n−1∩
i=1

∗n(gi−1
1 , ∗n(gn+i−1

i ), g2n−1
n+i ) ̸= ∅.

Therefore (C∞(I), ∗n) is a gnh-semilattice.

Proposition 2.5. Let (L, ∗n) be a gnh-semilattice then (P ∗(L),
⊗

n) is a
Gnh-semilattice

Proof. For all A ∈ P ∗(L) we have A ∈
⊗

nA =
∪

a∈A ∗n(a). So
⊗

n is idem-
potent.
For all A2n−1

1 ∈ P ∗(L) and ai ∈ Ai, i = 1, ..., 2n− 1,⊗
n

(An
1 ) =

∪
ai∈Ai

∗n(an1 ) =
∪

∗n
(
a
σ(n)
σ(1)

)
=

⊗
n

(
A

σ(n)
σ(1)

)
thus

⊗
n is commutative.

2n−1∩
i=1

⊗
n

(Ai−1
1 ,

⊗
n

(An+i−1
i ), A2n−1

n+i ) =

2n−1∩
i=1

∪
ai∈Ai

∗n(ai−1
1 , ∗n(an+i−1

i ), an+i) ̸= ∅.

Therefore
⊗

n is weak associative. □

Definition 2.6. Let ∗n and ∗′n be two gnh on L. We call ∗n the dual of ∗′n
if and only if for all ln1 ∈ L, ∗n(ln1 ) = ∗′n(ln, ..., l1). Similarly let

⊗
n and

⊗′
n

be two Gnh on P ∗(L) then
⊗

n is dual
⊗′

n if and only if for all An
1 ∈ P ∗(L),⊗

n(An
1 ) =

⊗′
n(An, ..., A1).

Proposition 2.7. I ) (L, ∗n) is a gnh-semilattice if and only if (L, ∗′n) is a
gnh-semilattice.
II ) (P ∗(L),

⊗
n) is a Gnh-semilattice if and only if (P ∗(L),

⊗′
n) is a Gnh-

semilattice.

Proof. By Definitions 2.1, 2.6 and Proposition 2.5, the proof is clear. □

Let (L, ∗n), (L′, ∗′n) be two gnh-semilattices and for all ln1 ∈ L a map
f : L −→ L′ is called a weak homomorphism if f(∗n(ln1 )) ∩ ∗′n(f(l)n1 ) ̸= ∅
wherever f(l)i = f(li), i = 1, .., n. To shorten notation, we write, ∗′n(f(l)n1 ) =
∗′n(f(l)1, ..., f(ln)) = ∗′n(f(l1), .., f(ln)).
The map f is called a inclusion homomorphism if f(∗n(ln1 )) ⊆ ∗′n(f(l)n1 ).
Finally, the function f is called a strong homomorphism (preserving gnh)
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if f(∗n(ln1 )) = ∗′n(f(l)n1 ). If f is a onto, one to one and strong homomor-
phism, then it is called isomorphism. If moreover f defined on the same gnh-
semilattice then it is called automorphism. It is verification that the set of all
automorphism in L, written Aut(L), is a group. If f is injective as a map of
sets, then f is said to be a monomorphism. If f is surjective, then f is called
an epimorphism.
If f : L −→ L′ and g : L′ −→ L′′ are homomorphisms of gnh-semilattices, it
easy to see that g ◦ f : L −→ L′′, is also a homorphism. Likewise the compo-
sition of monomorphism is also a monomorphism, similarly to epimorphisms
and isomorphisms.

Proposition 2.8. I ) Let (L, ∗n) be a gnh-semilattice and L′ be a non-empty
set with a gnh ∗′n. If a function f : L −→ L′ is surjective and strong homo-
morphism, then (L′, ∗′n) is a gnh-semilattice.
II ) Let ψ1 and ψ2 be two strong homomorphism of gnh-semilattice L upon gnh-
semilattice (L′, ∗′n) and (L′′, ∗′′n) respectively, such that ψ−1

1 ◦ ψ1 ⊆ ψ−1
2 ◦ ψ2.

Then, a unique strong homomorphism φ of L′ upon L′′ such that φ ◦ ψ1 = ψ2,
exists.

Proof. I ) For all a2n−1
1 ∈ L′ we have

i) a1 = f(a) ∈ f(∗n(a)) = ∗′n(f(a)) = ∗′n(a1), i.e. a1 ∈ ∗′n(a1).

ii) ∗′n(an1 ) = ∗′n((f(b)n1 )) = f(∗n(bn1 )) = f
(
∗n (b

σ(n)
σ(1) )

)
= ∗′n

(
f(b)

σ(n)
σ(1)

)
=

∗′n
(
a
σ(n)
σ(1)

)
.

iii)
2n−1∩
i=1

∗′n(ai−1
1 , ∗′n(an+i−1

i ), a2n−1
n+i ) =

2n−1∩
i=1

∗′n
(
f(b)i−1

1 , ∗′n(f(b)n+i−1
i ), f(b)2n−1

n+i

)
=

2n−1∩
i=1

f((∗n(bi−1
1 , ∗n(bn+i−1

i ), b2n−1
n+i )) ̸= ∅.

Since we have ∗n(bi−1
1 , ∗n(bn+i−1

i ), b2n−1
n+i ) ̸= ∅ for all b2n−1

1 ∈ L.
II ) We show that φ is a strong homomorphism of L′ upon L′′. For all an1 ∈ L′ we
have φ(∗′(an1 )) = φ(∗′n(ψ1(l)n1 )) = φ(ψ1(∗n(ln1 ))) = ψ2(∗n(ln1 )) = ∗′′n(ψ2(l)n1 ) =
∗′′n(φ(ψ1(l)n1 )) = ∗′′n(φ(a)n1 ). □

Definition 2.9. Let (Lk, ∗nk
), k = 1, ..., n be n gnh-semilattices and (lik)nk=1 ∈

Li, i = 1, ..., n. The map Πn :
∏n

k=1 Lk −→ P ∗(
∏n

k=1 Lk) is a gnh on cartesian
product

∏n
k=1 Lk as follows:

Πn

(
(lk1)nk=1, ..., (lkn)nk=1

)
= {(cn1 )|ci ∈ ∗ni(lik)nk=1, i = 1, ..., n}.
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Definition 2.10. Let (L, ∗n) be a gnh-semilattice ρ an equivalence relation
on L and ρ(l) the ρ-equivalence class of the element l ∈ L. In L/ρ consider the
gnh ∗′n defined on the usual manner:

∗′n(ρ(l)n1 ) = {ρ(ξ)|ξ ∈ ∗n(ln1 )}
for all ln1 ∈ L.

Proposition 2.11. I ) (L/ρ, ∗′n) is a gnh-semilattice on L/ρ.
II ) The direct product of n gnh-semilattices is a gnh-semilattice on

∏n
k=1 Lk.

Proof. I ) For all l ∈ L we have ρ(l) = {t ∈ L|(l, t) ∈ ρ}. It is easy to verify that
the ∗′n is idempotent and commutative. We show that this is weak associative.
For all l2n−1

1 ∈ L, we have

∗n
(
li−1
1 , ∗n(ln+i−1

i ), l2n−1
n+i

)
∈ ∗′n

(
ρ(l)i−1

1 , ∗′n(ρ(l)n+i−1
i ), ρ(l)2n−1

n+i

)
.

Since
∩2n−1

i=1 ∗n
(
li−1
1 , ∗n(ln+i−1

i ), l2n−1
n+i

)
̸= ∅.

So
∩2n−1

i=1 ∗′n
(
ρ(l)i−1

1 , ∗′n(ρ(l)n+i−1
i ), ρ(l)2n−1

n+i

)
̸= ∅, therefore ∗′n is weak asso-

ciative.
II ) i) For each (dn1 ) ∈

∏n
k=1 Lk, we have that dk ∈ ∗nk

(dk), k = 1, ..., n, thus

(dn1 ) ∈ {(cn1 )|ck ∈ ∗nk
(dk)} = Πn

(
(dn1 ), ..., (dn1 )

)
.

ii) For all (lk1)nk=1, ..., (lkn)nk=1 ∈
∏n

k=1 Lk and for i = 1, ..., n we have

∗ni(lik)nk=1 = ∗ni(lik)
σ(n)
k=σ(1)

consequently Πn is commutative.
iii) For all (lk1)nk=1, ..., (lk(2n−1))

n
k=1 ∈

∏n
k=1 Lk let (lki)

n
k=1 = fi, i = 1, ..., 2n−

1 for j = 1, ..., n since ∗nj are associative therefore

2n−1∩
i=1

∗nj

(
l
j(i−1)
j1 , ∗nj (l

j(n+i−1)
ji ), l

j(2n−1)
j(n+i)

)
̸= ∅

by Definition 2.9 as a result

2n−1∩
m=1

Πn

(
fm−1
1 ,Πn(fn+m−1

m ), f2n−1
n+m

)
̸= ∅.

Thus Πn is weak associative. □
Definition 2.12. Let (L, ∗n) be a gnh-semilattice. An element a ∈ L is called
an absorbent element of L if it satisfies ci ∈ ∗n(a, cn−1

1 ), i = 1, ..., n − 1 for
all cn−1

1 ∈ L. An element b ∈ L is called a fixed element of L if it satisfies
∗n(cn−1

1 , b) = {b} for all cn−1
1 ∈ L.

Definition 2.13. Let (L, ∗n) be a gnh-semilattice. A subset A ∈ P ∗(L) is
called a fixed subset of P ∗(L) if it satisfies

⊗
n(An−1

1 , A) = A for all An−1
1 ∈

P ∗(L).
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Proposition 2.14. I ) Let (Lk, ∗nk
) be gnh-semilattices ( where k = 1, ..., n).

If an1 are absorbent elements of Ln
1 respectively, then (an1 ) is an absorbent ele-

ment of (
∏n

k=1 Lk,Πn).
II ) Let (L, ∗n) and (L′, ∗′n) be two gnh-semilattices and f : L −→ L′ be an
epimorphism of gnh-semilattices. If a is an absorbent element of L, then f(a)
is also an absorbent element of L′. Also image a fixed element of L is fixed
element of L′.

Proof. (I ) Since an1 are absorbent elements, for i = 1, ..., n− 1 and k = 1, ..., n,

we have cki ∈ ∗nk
(ak, c

k(n−1)
k1 ) and cki ∈  Lk. Then (cki)

n
k=1 ∈

∏n
k=1 Lk and

(cki)
n
k=1 ∈ {(fn1 )|fk ∈ ∗nk

(ak, c
k(n−1)
k1 }. Thus (an1 ) is an absorbent element of

(
∏n

k=1 Lk,Πn).

II ) There exists cn−1
1 ∈ L such that f(ci) = si for any sn−1

1 ∈ L′ because f
is surjective since a is an absorbent element provided ci ∈ ∗n(a, cn−1

1 ) for any
cn−1
1 ∈ L. Then we have
si = f(ci) ∈ f(∗n(a, cn−1

1 )) = ∗′n(f(a), f(c)n−1
1 ) = ∗′n(f(a), sn−1

1 ) for all sn−1
1 ∈

L′. Therefore f(a) is an absorbent element of L′. The proof for a fixed element
is analogous. □

3. gnh-subsemilattice

Let (L, ∗n) be a gnh-semilattice, and M be a non-empty subset of L. Then
M is called gnh-subsemilattice of (L, ∗n) if ∗n(mn

1 ) ∈ P ∗(M) for all mn
1 ∈

M . That is to say, M is an gnh-subsemilattice (L, ∗n) if and only if M is
closed under the gnh on L. A gnh-subsemilattice M is a single point gnh-
subsemilattice if |M | = 1 and a gnh-subsemilattice M such that M ̸= L is
called a proper subsemilattice. We may easily get the conclusion as follows: M
is a gnh-semilattice of (L, ∗n) if and only if

⊗
n(M) = M .

Proposition 3.1. Let f : L −→ L′ be a strong homomorphism of gnh-
semilattices. Then the following conditions hold:
I ) If M is a gnh-subsemilattice of (L, ∗n). Then f(M) is a gnh-subsemilattice
of (L′, ∗′n).
II ) If f is surjective and N is a gnh-subsemilattice of (L′, ∗′n), then f−1(N),
which is defined by f−1(N) = {l ∈ L|f(l) ∈ N}, is also a gnh-subsemilattice
of (L, ∗n).

Proof. (I ) Since f is a strong homomorphism of gnh-semilattice, there exists
mn

1 ∈M such that f(mi) = bi for all bi ∈ f(M), i = 1, ..., n. By the definition of
gnh-subsemilattice ∗n(mn

1 ) ⊆M holds. Hence, we have ∗′n(bn1 ) = ∗′n(f(m)n1 ) =
f(∗n(mn

1 )) ⊆ f(M). Consequently, f(M) is a gnh-subsemilattice of (L′, ∗′n).
(II ) Since f is a surjective function, f−1(N) always exists. For all mn

1 ∈
f−1(N), f(mi) ∈ N, i = 1, ..., n we have f(∗n(mn

1 )) = ∗′n(f(m)n1 ) ⊆ N . So
f−1(N) is a gnh-subsemilattice of (L, ∗n). □
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Proposition 3.2. Let (L, ∗n) be a gnh-semilattice and let M and N be gnh-
subsemilattices of (L, ∗n). Then M ∩N is also a gnh-subsemilattice of (L, ∗n)
if M ∩N is non-empty.

Proof. The proof is obvious according to subsemilattice definition which have
been mentioned above. □
Example 3.3. Consider Km denote the space of m×m real idempotent matrices.
Then (Km, ∗n) is a gnh-subsemilattice of (Lm, ∗n).

Example 3.4. In example 2.3, each non-empty subset ofK is a gnh-subsemilattice
of (K, ∗n).

4. The ideal of gnh-semilattice

The concept ideal play a vital role in the study of algebra structure. In
this section, we introduce the definition of ideal of gnh-semilattice and discuss
some basic properties of it.

Definition 4.1. Let (L, ∗n) be a gnh-semilatice, and I be non-empty subset
of L. We say I is an ideal of (L, ∗n) if

⊗
n(L, ..., L, I) ⊆ I. If I ̸= L, then I is

called a proper ideal of (L, ∗n).

Proposition 4.2. Let (L, ∗n) be a gnh-semilattice and let I be a non-empty
subset of L. Then the following condition are equivalent:
I ) I is an ideal of (L, ∗n),
II ) ∗n(ln−1

1 , i) ∈ P ∗(I) for all ln−1
1 ∈ L and i ∈ I,

III )
⊗

n(ln−1
1 , I) ⊆ I.

Proof. By Definitions 2.1, 4.1 and Proposition 2.5 the proof is clear □
Obviously, any gnh-semilattice is a gnh-subsemilattice and ideal of itself.

If I is an ideal of (L, ∗n), then I is a gnh-subsemilattice of (L, ∗n).

Proposition 4.3. Let I, J be ideals and M a gnh-subsemilattice of a gnh-
semilattice (L, ∗n).
I ) Then I ∩M is an ideal of M , I ∪M is a gnh-subsemilattice of L.
II ) (i) I ∩ J is an ideal of (L, ∗n) and I ∩ J =

⊗
n(L, ..., L, I, J),

(ii) I ∪ J is also an ideal of (L, ∗n).
III ) If a is an absorbent element L, then the following condition hold:
(i) I = L if and only if a ∈ I,
(ii) I is a proper ideal of (L, ∗n) if and only if a /∈ I.

Proof. The proofs (I ) and (III ) are obvious according to Proposition 4.2, sub-
semilattice and 2.12 Definitions . We only give the main ideas of the prove
(II ).
(i) Let us prove I ∩ J ̸= ∅. Suppose that i ∈ I, j ∈ J , ln−2

1 ∈ L. Then
∗n(ln−2

1 , i, j) ⊆ I, ∗n(ln−2
1 , i, j) ⊆ J by item (II ) of proposition 4.2, that is
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∗n(ln−2
1 , j, i) ⊆ I ∩ J . So, we have I ∩ J ̸= ∅.

For all i ∈ I∩J , i.e., i ∈ I and i ∈ J , and for all ln−1
1 ∈ L, we have ∗n(ln−1

1 , i) ⊆
I and ∗n(ln−1

1 , i) ⊆ J , i.e., ∗n(ln−1
1 , i) ∈ P ∗(I ∩ J). Thus I ∩ J is an ideal of

(L, ∗n). By Definition 4.1, we can easily get that
⊗

n(L, ..., L, I, J) ⊆ I ∩ J .
For all i ∈ I ∩ J we have i ∈ ∗n(i) ⊆ I ∩ J , i.e., I ∩ J ⊆

⊗
n(L, ..., L, I, J). So

I ∩ J =
⊗

n(L, ..., L, I, J).

(ii) For all i ∈ I ∪ J and for all ln−1
1 ∈ L, we have ∗n(ln−1

1 , i) ⊆ I or
∗n(ln−1

1 , i) ⊆ J . Hence ∗n(ln−1
1 , i) ⊆ I ∪ J i.e., ∗n(ln−1

1 , i) ∈ P ∗(I ∪ J). Conse-
quently I ∪ J is an ideal of (L, ∗n). □
Proposition 4.4. I ) Let f : L −→ L′ be a strong homomorphism of gnh-
semilattices. If a is a fixed element of L′, then f−1(a) = {l ∈ L|f(l) = a} is
an ideal of (L, ∗n),
II ) If f be an epimorphism then we can get the following results:
i) If I is an ideal of (L, ∗n), then f(I) is also an ideal of (L′, ∗′n) and
ii) If J is an ideal of (L′, ∗′n), then f−1(J), which is denoted by f−1(J) = {l ∈
L|f(l) ∈ J} is also an ideal of (L, ∗n).

Proof. (I ) For all ln−1
1 ∈ L and all l ∈ f−1(a),

f(∗n(ln−1
1 , l)) = ∗′n(f(l)n−1

1 , f(l)) = ∗′n(f(l)n−1
1 , a) = {a},

i.e., ∗n(ln−1
1 , l) ⊆ f−1(a). Therefore f−1(a) is an ideal of (L, ∗n).

(II ) It follows easily that proposition 4.2. □

5. General n-order on a Gnh-semilattice

In this section we define a general n-order (gno) on (L, ∗n) and a Gno
(General n-order) on (P ∗(L),

⊗
n).

Definition 5.1. i) Let (L, ∗n), be a gnh-semilattice and a, b ∈ L. We say that
a ≤L b if ∗n(a, cn−1

1 ) ⊆ ∗n(b, cn−1
1 ) for all cn−1

1 ∈ L, and ≤L is called the gno
on gnh-semilattice L.
ii) LetA,B ∈ P ∗(L). We say thatA ≤P∗(L) B if

⊗
n(A,Cn−1

1 ) ⊆
⊗

n(B,Cn−1
1 )

for all Cn−1
1 ∈ P ∗(L), and ≤P∗(L) is called the Gno on Gnh-semilattice P ∗(L).

Definition 5.2. i) Let (L, ∗n), be a gnh-semilattice and a, b ∈ L. If a ≤L b
and b ≤L a, then we say a is gn-equal to b which is denoted be a =L b.
ii) Let A,B ∈ P ∗(L). If A ≤P∗(L) B and B ≤P∗(L) A, then we say A is
Gn-equal to B which is denoted be A =P∗(L) B.

Remark 5.3. Let (L, ∗n), be a gnh-semilattice and a, b ∈ L. Also let A,B ∈
P ∗(L) then a =L b if and only if ∗n(a, cn−1

1 ) =L ∗n(b, cn−1
1 ) for all cn−1

1 ∈ L
and A =P∗(L) B if and only if

⊗
n(A,Cn−1

1 ) =P∗(L)

⊗
n(B,Cn−1

1 ) for all

Cn−1
1 ∈ P ∗(L)

Proposition 5.4. Let (L, ∗n), be a gnh-semilattice. Then =L and =P∗(L) are
respectively equivalence relation on L and P ∗(L).
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Proof. The proof is immediate. □
Proposition 5.5. Let (L, ∗n), be a gnh-semilattice and A, B be non-empty
subsets of L. If a ≤L b (a =L b), for all a ∈ A and b ∈ B, then A ≤P∗(L) B
(A =P∗(L) B).

Proof. The proof is straightforward. □
Proposition 5.6. Let (L, ∗n), be a gnh-semilattice and let I be a ideal of
(L, ∗n). If b ∈ I and a ≤L b, then a ∈ I.

Proof. If a ≤L b we have ∗n(a, cn−1
1 ) ∩ ∗n(b, cn−1

1 ) ̸= ∅ for all cn−1
1 ∈ L. Let

c1 = ... = cn−1 = a. Then a ∈ ∗n(a) ⊆ ∗n(b, a, ..., a) ⊆ I, then a ∈ I. □
Proposition 5.7. I ) Let (L, ∗n) be a gnh-semilattice, [k] = {x ∈ L|x =L k}
and ∆L = {[k]|k ∈ L}. We may define a gnh on ∆L by ∗′n([l1], ..., [ln]) =
{[l]|l ∈ ∗n(ln1 )}, then (∆L, ∗′n) is also a gnh-semilattice.
II ) Let (P ∗(L),

⊗
n) be a Gnh-semilattice, [K] = {X ∈ P ∗(L)|X =P∗(L)

K} and ∆P∗(L) = {[K]|K ∈ P ∗(L)}. We may define a Gnh on ∆∗
P (L) by⊗′

n([A1], ..., [An]) = {[N ]|N ∈
⊗

n(An
1 )}, then (∆P∗(L),

⊗′
n) is also a Gnh-

semilattice.

Proof. I ) For all [l1], ..., [l2n−1] ∈ ∆L, we have:
I − i) Since l1 ∈ ∗n(l1), then [l1] ∈ {[l]|l ∈ ∗n(l1)} = ∗′n([l1]).

I−ii) Since ∗n(ln1 ) = ∗n(l
σ(n)
σ(1) ), then ∗′n([l1], ..., [ln]) = {[l]|l ∈ ∗n(ln1 )} = {[l]|l ∈

∗n(l
σ(n)
σ(1) )} = ∗′n([lσ(1)], ..., [lσ(n)]).

I − iii) Since
∩2n−1

i=1 ∗n(li−1
1 , (ln+i−1

i ), l2n−1
n+i ) ̸= ∅. By Definition 1.2, gnh ∗′n is

weak associative.
In the same manner we can see that;
II ) For all [A1], ..., [A2n−1] ∈ ∆P∗(L) we have:

II−i) Since A1 ∈
⊗

n(A1), we see that [A1] ∈ {[N ]|N ∈
⊗

n(A1)} =
⊗′

n([A1]).

II − ii) Since
⊗

n(An
1 ) =

⊗
n(A

σ(n)
σ(1) ), then

⊗′
n([A1], ..., [An]) = {[N ]|N ∈⊗

n(An
1 )} = {[N ]|N ∈

⊗
n(A

σ(n)
σ(1) )} =

⊗′
n([Aσ(1)], ..., [Aσ(n)]).

II−iii) By Definition 1.2 and Proposition 2.5 Gnh
⊗′

n is weak associative. □

6. Mutipliers of gnh-semilattices

In this section notation multipliers of gnh-semilattice of type α and mul-
tipliers of Gnh-semilattice of type α will be introduced and some properties
of multipliers are studied. In addition, a set of equivalent conditions are es-
tablished for two multipliers of a gnh-semilattice of type α to be equal in the
sense of mappings. Further, we introduce the multipliers of direct products
of n gnh-semilattices of type α = n − 1. In addition, the properties of quasi
invariance subsets are studied with respect to multipliers of gnh-semilattices
of type α.
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Definition 6.1. Let (L, ∗n) be a gnh-semilattice and f : L −→ L be a self
mapping. Also let F : P ∗(L) −→ P ∗(L) be given by F (A) = ∪a∈Af(a) for all
A ∈ P ∗(L).
i) Then F is called a multiplier of P ∗(L) of type α (where α = 1, ..., n) if for
all An

1 ∈ P ∗(L) is satisfies

F
(⊗

n

(Aα
1 , A

n
α+1)

)
=

⊗
n

(
Aα

1 , F (A)nα+1

)
,

ii) a self mapping f is called multiplier of L of type α (where α = 1, ..., n) if
for all ln1 ∈ L is satisfies

F
(
∗n (lα1 , l

n
α+1)

)
= ∗n(lα1 , f(l)nα+1).

Proposition 6.2. Let (P ∗(L),
⊗

n) be a Gnh-semilattice and F multiplier of
P ∗(L) of type α. Then for any An

1 ∈ P ∗(L), we have the following:
I ) If A1 is a fixed subset of P ∗(L) then F (A1) = A1.
II ) If α = n − 1 then

⊗
n

(
An−1

1 , F (An)
)

=
⊗

n

(
Ai−1

1 , F (Ai), A
n
i+1

)
for i =

1, ..., n− 1.
III ) If α = 1 then

⊗
n

(
A1, F (A)n2

)
=

⊗
n

(
F (A)i−1

1 , Ai, F (A)ni+1

)
for i =

2, ..., n.

Proof. I ) Let A1 be a fixed subset of P ∗(L). Then
⊗

n(An
1 ) = A1 for all

An
2 ∈ P ∗(L). Since A1 ∈

⊗
n(A1, ..., A1) we get

F (A1) ∈ F
(⊗

n(A1, ..., A1)
)

=
(
A1, ..., A1︸ ︷︷ ︸
α−time

, F (A1), ..., F (A1)
)

= A1. So F (A1) =

A1.
II ) For any An

1 ∈ P ∗(L) and i = 1, ..., n− 1.⊗
n

(
An−1

1 , F (An)
)

=

F
(⊗

n(An
1 )
)

= F
(⊗

n(A
σ(n)
σ(1) )

)
=

⊗
n

(
Ai−1

1 , F (Ai), A
n
i+1

)
. The proof (III ) is

similar to (II ). □

Proposition 6.3. Let (L, ∗n) be a gnh-semilattice, f be a multiplier of L of
type α and F be idempotent of P ∗(L). If f2 = IdL then F

(
∗n (ln1 )

)
= ∗n(ln1 ).

Proof. Since f2 is identity on L we have F
(
∗n (ln1 )

)
= F 2

(
∗n (ln1 )

)
= F

(
F
(
∗n

(ln1 )
))

= F
(
∗n (lα1 , f(l)nα+1)

)
= ∗n(lα1 , f

2(l)nα+1) = ∗n(ln1 ). □

Lemma 6.4. Let (L, ∗n) be a gnh-semilattice and f a multiplier of L of type
α. Then for any ln1 ∈ L, we have the following:
I ) If l1 is a fixed element then f(l1) = l1.
II ) If α = 1 then ∗n(l1, f(l)n2 ) = ∗n(f(l)i−1

1 , li, f(l)ni+1) for i = 2, ..., n.

II ) If α = n− 1 then ∗n(ln−1
1 , f(ln)) = ∗n(li−1

1 , f(li), l
n
i+1) for i = 1, ..., n− 1.
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Proof. I ) Let l1 be a fixed element of L. Then ∗n(ln1 ) = {l1} for all ln2 ∈ L. Since
l1 ∈ ∗n(l1, ..., l1) we get F (l1) ∈ F (∗n(l1, ..., l1)) = ∗n(l1, ..., l1︸ ︷︷ ︸

α−time

, f(l1), ..., f(l1)) =

{l1}.
So f(l1) = F (l1) = l1.
II ) For any ln1 ∈ L and for i = 2, ..., n.

∗n
(
l1, f(l)n2

)
= F

(
∗n (ln1 )

)
= F

(
∗n (l

σ(n)
σ(1)

)
= ∗n

(
f(l)i−1

1 , li, f(l)ni+1

)
.

The proof (III ) is clear. □

Remark 6.5. I ) Let (L, ∗n) be gnh-semilattice and n be even.
If f be multiplier of L of type α = n/2 and F be multiplier of P ∗(L) of type
α = n/2, then

∗n(l
n/2
1 , f(l)nn/2+1) = ∗n(f(l)

n/2
1 , lnn/2+1) and

⊗
n(A

n/2
1 , F (A)nn/2+1)

=
⊗

n(F (A)
n/2
1 , An

n/2+1).

II ) F = IdP∗(L) if and only if F be multiplier of type n on P ∗(L).

Proposition 6.6. Let (
∏n

k=1,Πn) is direct product of gnh-semilattices (Lk, ∗nk
),

k = 1, ..., k and ek be a fixed element of Lk. Define self mapping fi :
∏n

k=1 Lk −→∏n
k=1 Lk by

fi(l
i−1
1 , li, l

n
i+1) = (li−1

1 , ei, l
n
i+1)

for all (ln1 ) ∈
∏n

k=1 Lk, i = 1, ..., n i.e., the functions fi are multipliers of the
direct product

∏n
k=1 Lk of type α = n− 1.

Proof. Let (lk1)nk=1, ..., (lkn)nk=1 ∈
∏n

k=1 Lk. Then we get

fi

(
Πn

(
(lk1)nk=1, ..., (lkn)nk=1

))
= fi

(
{(cn1 )|cj ∈ ∗nj (ljk)nk=1, j = 1, ..., n}

)
= {(ci−1

1 , ei, c
n
i+1)|cj ∈ ∗nj (ljk)nk=1, if j ̸= i, j = 1, ..., n and for j = i, ei ∈

∗ni(l
i(i−1)
i1 , ei, l

in
i(i+1))}

= Πn

(
(lk1)nk=1, ..., (lk(i−1))

n
k=1, (l

(i−1)i
1i , ei, l

ni
(i+1)i), (lk(i+1))

n
k=1, ..., (lkn)nk=1

)
= Πn

(
(lk1)nk=1, ..., (lk(i−1))

n
k=1, fi(lki)

n
k=1, ..., (lkn)nk=1

)
.

Thus, for i = 1, ..., n. The self mappings fi are multipliers of the direct product∏n
k=1 Lk of type α = n− 1. □

Proposition 6.7. Let f be a muliplier of a gnh-semilattice (L, ∗n) of type
α = n− 1. Then we have the following:
I ) If a is a fixed element of L, then f−1(a) is an ideal of L.
II ) If I is an ideal of L, F (I) = f(I) then f(I) is an ideal of L.
III ) If I is an ideal of L, then f−1(I) is an ideal of L.
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Proof. I ) Let a be a fixed element of L. Let l ∈ f−1(a). Then f(l) = a. For
any ln−1

1 ∈ L, we have F (∗n(ln−1
1 , l)) = ∗n(ln−1

1 , f(l)) = ∗n(ln−1
1 , a) = {a}. So

∗n(ln−1
1 , l) ⊆ F−1(a) = f−1(a). Therefore f−1(a) is an ideal of L.

II ) Let I be an ideal of L. Let ln−1
1 ∈ L and y ∈ f(I). Then y = f(a) for some

a ∈ I. Since I is an ideal, we get that ∗n(ln−1
1 , a) ⊆ I. Now ∗n(ln−1

1 , f(a)) =
F
(
∗n (ln−1

1 , a)
)
⊆ F (I) = f(I). So f(I) is an ideal of L.

III ) Let I be an ideal L. Let ln−1
1 ∈ L and a ∈ f−1(I). Then f(a) ∈ I. Since

I is an ideal, we get that F (∗n(ln−1
1 , a)) = ∗n(ln−1

1 , f(a)) ⊆
⊗

n(ln−1
1 , I) ⊆ I.

Thus f−1(I) is an ideal of L □

Remark 6.8. Let f be a multiplier of a gnh-semilattice (L, ∗n) of type α. If a
is a fixed element of L, then f−1(a) is an ideal of L.

Definition 6.9. Let f be a multiplier of (L, ∗n) of type α. Define Ωf (L) =
{l ∈ L|f(l) = l}.

By Lemma 6.4, every fixed element of L is a member of Ωf (L). If f is an
idempotent multiplier, then obviously f(l) ∈ Ωf (L) for all l ∈ L.

Proposition 6.10. Let f and g be two idempotent multipliers of a gnh-
semilattice L of type α such that f ◦ g = g ◦ f . Then the following conditions
are equivalent.
I ) f = g.
II ) f(L) = g(L).
III ) Ωf (L) = Ωg(L).

Proof. The proof is similar to the proof of Theorem 2.10 [?]. □

Definition 6.11. Let (L, ∗n) be gnh-semilattice and F be a multiplier of a
Gnh-semilattice P ∗(L) of type α. A subset M of L is called F -quasi invariant
if for at least a non-emty subset K of M . K ⊆M implies F (K) ⊆M .

Note that ∅ and L are F -quasi invariant subset of L. Also Ωf (L) is a F -
quasi invariant subset of L. Let us denoted the set of all F -quasi invariant
subsets of a Gnh-semilattice by ΛF (L).

Theorem 6.12. Let F be a multiplier of a Gnh-semilattice (P ∗(L),
⊗

n) of
type α. Then (ΛF (L),

⊗
n) is a Gnh-semilattice.

Proof. LetAn
1 ∈ ΛF (L) and F be a multiplier of a Gnh-semilattice (P ∗(L),

⊗
n)

of type α. Let X ⊆
⊗

n(An
1 ). Then X = ∗n(an1 ) for some ai ∈ Ai, i = 1, ..., n.

Thus F (X) = F (∗n(an1 )) = ∗n(aα1 , F (a)nα+1) ⊆
⊗

n(An
1 ).

Hence
⊗

n(An
1 ) is F -quasi invariant. According to Proposition 2.5, the pair

(ΛF (L),
⊗

n) is a Gnh-semilattice. □

Definition 6.13. Let (L, ∗n) be a gnh-semilattice. By a congruence on L we
means an equivalence relation ρ such that (l, t) ∈ ρ if and only if for every
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ln−1
1 ∈ L and for every u ∈ ∗n(l, ln−1

1 ), there exists v ∈ ∗n(t, ln−1
1 ) such that

(u, v) ∈ ρ.

We now introduce a congruence on L in terms of multipliers of type α = n−1.

Proposition 6.14. Let f be a multiplier of a gnh-semilattice (L, ∗n) of type
α = n − 1. Define a relation ρf on L by (l, t) ∈ ρf if and only if f(l) = f(t)
for all l, t ∈ L. Then ρf is a congruence on L.

Proof. Clearly ρf is an equivalence relation on L. Let ln−1
1 ∈ L and u ∈

∗n(l, ln−1
1 ). Then F (u) ∈ F (∗n(l, ln−1

1 )) = ∗n(f(l), ln−1
1 ) = ∗n(f(t), ln−1

1 ) =
F (∗n(t, ln−1

1 ). So there exists v ∈ ∗n(t, ln−1
1 ). Thus f(u) = F (v) = f(v) as a

result (u, v) ∈ ρf . □
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