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A NUMERICAL APPROACH BASED ON THE

REPRODUCING KERNEL HILBERT METHOD ON

NON-UNIFORM GIRDS FOR SOLVING SYSTEM OF

FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

MAJID ABEDINI AND KHOSRO SAYEVAND∗

Abstract. In this paper, we develop a numerical approach based
on the reproducing kernel Hilbert (RKHS) method on non-uniform
girds for solving the linear Fredholm integro-differential equations
with variable coefficients. Furthermore, convergence of the pro-
posed method is presented providing the theoretical basis of this
method. Finally, we test our method on one example to demon-
strate the efficiency and applicability of the proposed method.
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1. Introduction

Integro-differential equations system have an important role in the fields
of science and engineering [1–4]. Some boundary value problems aris-
ing in electromagnetic theory lead to the problem of solving integro-
differential equations system [5].
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This paper investigates the exact and approximate solutions of the fol-
lowing linear Fredholm integro-differential equations system with vari-
able coefficients using RKHSM

∑N
j=0 aij(s)u

(j)
1 (s) + λi

∫ 1

0
ki(s, t)u1(t) dt

+
∑N

j=0 bij(s)u
(j)
2 (s) + µi

∫ 1

0
hi(s, t)u2(t) dt = fi(s), i = 1, 2,∑N−1

j=0 u
(j)
r (0) = pr, r = 1, 2,∑N−1

j=0 u
(j)
r (1) = qr, r = 1, 2.

(1.1)

where aij(s), bij(s), fi(s) are arbitrary known smooth functions defined
on the interval [0, 1], ki(s, t), hi(s, t) are given continuous functions on
region [0, 1] × [0, 1], unknown functions u1(s), u2(s) are continuous on

the interval [0, 1], u
(j)
1 (s), u

(j)
2 (s) are the jth order derivatives of func-

tions u1(s), u2(s), respectively, λi, µi, pr, qr are given constants and
N belongs to N.
The integro-differential equation arises in many physical applications,
such as potential theory and Dirichlet problems, electrostatics, mathe-
matical problems of radiative equilibrium, the particle transport prob-
lems of astrophysics and reactor theory, and radiative heat transfer prob-
lems. Recently, a huge amount of research work has been motivated by
the concept of a system of integro-differential equations. Several power-
ful mathematical methods such as Galerkin method [6], Petrov Galerkin
method [7], Tau method [8], collocation method [9], block pulse functions
method [10], Chebyshev polynomial method [11], Legendre wavelets [12],
Taylor series [13], Adomain’s method [14], He’s homotopy perturbation
method [15] and others [16–22] have been proposed to obtain exact and
approximate solution of linear Fredholm integro-differential equations
system. The application of RKHSM in linear and nonlinear problems
has been developed by many researchers [23–25]. This method obtains
the exact solution in series form and provides approximate solution with
high precision [26–32].
The rest of the paper is organized as follows. Section 2 introduces some
reproducing kernel spaces. Section 3 is devoted to solve Eqs. (1.1) by
RKHSM. An numerical example is presented in Section 4. The last
section is a brief conclusion.

2. Reproducing kernel spaces

In this section, several reproducing kernel spaces are introduced.
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Definition 2.1. ( [32]) Let E be a nonempty abstract set and H be a
real Hilbert space of functions ϕ : E −→ R. A function k : E×E −→ R
is called reproducing kernel of the real Hilbert space H if and only if

(1) k(s, .) ∈ H for all s ∈ E,
(2) ϕ(s) = (ϕ(.), k(s, .))H for all ϕ ∈ H and all s ∈ E.

Definition 2.2. ( [32]) A real Hilbert space H of functions on a set
is called a reproducing kernel Hilbert space (RKHS) if there exists a
reproducing kernel k of H.

It is known that the reproducing kernel of a Hilbert space is unique,
and that existence of a reproducing kernel is due to the Riesz represen-
tation theorem. The reproducing kernel k of a Hilbert space H com-
pletely determines the space H. Every sequence of functions {ϕi}∞i=1
which converges strongly to a function ϕ in H, converges also in the
pointwise sense. Further, this convergence is uniform on every subset of
E on which s 7→ k(s, s) is bounded.

2.1. The reproducing space WN+1
2 [0, 1].

Definition 2.3. The space WN+1
2 [0, 1] is defined by

(2.1) WN+1
2 [0, 1] = {u(s)|u(s), u

′
(s), . . . , u(N)(s),

which are absolute continuous real valued functions on the interval [0, 1]
and

(2.2) u(N+1) ∈ L2[0, 1],

N−1∑
j=0

u(j)
r (0) = 0,

N−1∑
j=0

u(j)
r (1) = 0, r = 1, 2.

It is equipped with the inner product

< u(s), v(s) >WN+1
2

=

N∑
j=0

u(j)(0)v(j)(0) +

∫ 1

0
u(N+1)(s)v(N+1)(s)ds,

u(s), v(s) ∈ WN+1
2 [0, 1],(2.3)

and the norm

(2.4) ||u||WN+1
2

=
√
< u(s), u(s) >WN+1

2
, u(s) ∈WN+1

2 [0, 1].

In [32], it is proved that space WN+1
2 [0, 1] normed by ||u||WN+1

2
, is a

Hilbert space.
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Theorem 2.4. Suppose that

(2.5) Rs(t) =


∑2N+1

j=0 αj(s)t
j , t ≤ s,∑2N+1

j=0 βj(s)t
j , t > s,

satisfies the following generalized differential equations

(2.6)



Rs(0)− ∂jRs(0)
∂tj + (−1)N−j ∂2N+1−jRs(0)

∂t2N+1−j − (−1)N ∂2N+1Rs(0)
∂t2N+1 = 0,

∂NRs(0)
∂tN

− ∂N+1Rs(0)
∂tN+1 = 0,

∂N+1Rs(1)
∂tN+1 = 0,

∂2N+1Rs(1)
∂t2N+1 − (−1)j ∂2N+1−jRs(1)

∂t2N+1−j = 0, j = 1, . . . , N − 1,

and

(2.7) (−1)N+1∂
2N+2Rs(t)

∂t2N+2
= δ(t− s).

then the Hilbert space WN+1
2 [0, 1] is a reproducing kernel space with the

reproducing kernel function Rs(t), that is, for each u ∈ WN+1
2 [0, 1] and

a fixed s ∈ [0, 1], it follows that

< u(t), Rs(t) >WN+1
2

= u(s).

Proof. Applying integration by parts several times, we have

< u(t), Rs(t) >
W

N+1
2

=

N∑
j=0

u
(j)

(0)(
∂jRs(0)

∂tj
) +

∫ 1

0

u
(N+1)

(t)(
∂N+1Rs(t)

∂tN+1
) dt

=

N∑
j=0

[u
(j)

(0)(
∂jRs(0)

∂tj
) + (−1)ju(N−j)

(t)(
∂N+1+jRs(t)

∂tN+1+j
)|10]

+ (−1)N+1
∫ 1

0

u(t)(
∂2N+2Rs(t)

∂t2N+2
) dt.(2.8)

Since

N∑
j=0

(−1)ju(N−j)
(t)(

∂N+1+jRs(t)

∂tN+1+j
) =

N∑
j=0

(−1)N−j
u
(j)

(t)(
∂2N+1−jRs(t)

∂t2N+1−j
),(2.9)
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then

< u(t), Rs(t) >
W

N+1
2

=

N−1∑
j=1

−u(j)
(0)[Rs(0)−

∂jRs(0)

∂tj
+ (−1)N−j ∂

2N+1−jRs(0)

∂t2N+1−j

− (−1)N
∂2N+1Rs(0)

∂t2N+1
] + u

(N)
(0)[

∂NRs(0)

∂tN
−

∂N+1Rs(0)

∂tN+1
]

+

N−1∑
j=1

(−1)N+1
u
(j)

(1)[
∂2N+1Rs(1)

∂t2N+1
− (−1)j

∂2N+1−jRs(1)

∂t2N+1−j
]

+ u
(N)

(1)[
∂N+1Rs(1)

∂tN+1
] + (−1)N+1

∫ 1

0

u(t)(
∂2N+2Rs(t)

∂t2N+2
) dt.

Since Rs(t) ∈WN+1
2 [0, 1], it follows that

(2.10)
N−1∑
j=0

∂jRs(0)

∂tj
= 0,

N−1∑
j=0

∂jRs(1)

∂tj
= 0.

Then Eqs. (2.6) and (2.7) imply that

< u(t), Rs(t) >WN+1
2

=
∫ 1

0 u(t)δ(t− s) dt = u(s).

Characteristic equation of Eq. (2.7) is given by λ2N+2 = 0, then we can
obtain characteristic values λ = 0 (a 2N + 2 multiple root). On the
other hand, for Eq. (2.7), let Rs(t) satisfy

(2.11)
∂lRs(s− 0)

∂tl
=
∂lRs(s+ 0)

∂tl
, l = 0, 1, . . . , 2N.

Integrating Eq. (2.7) from s− ε to s+ ε with respect to t and let ε→ 0,

we have the jump degree of ∂2N+1Rs(t)
∂t2N+1 at t = s,

(2.12)
∂2N+1Rs(s− 0)

∂t2N+1
− ∂2N+1Rs(s+ 0)

∂t2N+1
= 1.

Applying Eqs. (2.6), (2.10), (2.11), (2.12), the unknown coefficients of
Eq. (2.5) has obtained a unique in Appendix A. �

Theorem 2.5. Let {si}∞i=1 be a dense subset of interval [0, 1], then

{Rsi(t)}∞i=1 is a complete system of the space WN+1
2 [0, 1].

Proof. For each fixed u = u(s) ∈WN+1
2 [0, 1]; if< u(t), Rsi(t) >WN+1

2 [0,1]=

0; then u(si) = 0.
Taking into account the density of {si}∞i=1 ⊂ [0, 1], It follows that
u(s) = 0.
So, the proof of the theorem is complete. �
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2.2. The reproducing kernel space W 1
2 [0, 1].

Definition 2.6. The space W 1
2 [0, 1] is defined by

W 1
2 [0, 1] = {u(s)|u(s) is absolute continuous real valued function on the

interval [0, 1] and u
′ ∈ L2[0, 1]}.

It is equipped with the inner product

< u(s), v(s) >W 1
2
= u(0)v(0) +

∫ 1
0 u

′
(s)v

′
(s) ds ,u(s), v(s) ∈W 1

2 [0, 1],

and the norm ||u||W 1
2

=
√

(u(s), u(s))W 1
2
, u(s) ∈W 1

2 [0, 1].

In [32], it is proved that space W 1
2 [0, 1] normed by ||u||W 1

2
, is a Hilbert

space.

Theorem 2.7. Hilbert space W 1
2 [0, 1] is a reproducing kernel space with

the reproducing kernel function

(2.13) rs(t) =

{
1 + t, t ≤ s,
1 + s, t > s,

that is, for each u(s) ∈W 1
2 [0, 1] and a fixed s ∈ [0, 1], it follows that

(u(t), rs(t))W 1
2 [0,1] = u(s).

Theorem 2.8. Let {si}∞i=1 be a dense subset of interval [0, 1], then
{rsi(t)}∞i=1 is a complete system of W 1

2 [0, 1].

Proof. The proof is similar to proof of Theorem 2.5. �

3. The reproducing kernel method

In this paper, we shall give the exact or approximate solution of Eqs.
(1.1) in a reproducing kernel space. We assume that Eqs. (1.1) have a
unique solution.
To deal with the system, we consider Eqs. (1.1) as

(3.1) Au(s) = f(s),

where

A : WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] −→W 1
2 [0, 1]

⊕
W 1

2 [0, 1],

A = [
A11 A12

A21 A22
].

with

(3.2)

Ai1u1(s) =
∑N

j=0 aiju
(j)
1 (s) + λi

∫ 1
0 ki(s, t)u1(t) dt, i = 1, 2,

Ai2u2(s) =
∑N

j=0 biju
(j)
2 (s) + µi

∫ 1
0 hi(s, t)u2(t) dt, i = 1, 2,
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(3.3) f(s) = (f1(s), f2(s))T ∈W 1
2 [0, 1]

⊕
W 1

2 [0, 1],

(3.4) u(s) = (u1(s), u2(s))T ∈WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1].

The inner product space WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] is defined as

WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] = {u(s) = (u1(s), u2(s))T |u1(s), u2(s) ∈
WN+1

2 [0, 1]}.
The inner product and norm are defined by

< u(s), v(s) >=
∑2

i=1 < ui(s), ui(s) >WN+1
2 [0,1], u(s), v(s) ∈

WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1],

||u(s)|| =
√∑2

i=1 ||ui(s)||2WN+1
2 [0,1]

, u(s) ∈WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1].

It is easy to verify that WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] is a Hilbert space.
Also, W 1

2 [0, 1]
⊕
W 1

2 [0, 1] is a Hilbert space in a similar manner.

Lemma 3.1. If Aij : WN+1
2 [0, 1] → W 1

2 [0, 1] are bounded linear op-

erators, then A : WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] → W 1
2 [0, 1]

⊕
W 1

2 [0, 1] is a
bounded linear operator.

Proof. Clearly, A is a linear operator. For each

u ∈WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1],

we have

||Au(s)|| =

√√√√ 2∑
i=1

||
2∑

j=1

Aijuj(s)||2
WN+1

2 [0,1]

≤

√√√√ 2∑
i=1

(
2∑

j=1

||Aij ||||uj(s)||WN+1
2 [0,1])

2

≤

√√√√ 2∑
i=1

(

2∑
j=1

||Aij ||2)(

2∑
j=1

||uj(s)||2
WN+1

2 [0,1]
)

= (

2∑
i=1

2∑
j=1

||Aij ||2)
1
2 ||u(s)||WN+1

2 [0,1].(3.5)

Thus A is a bounded operator. �
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It is easy to see that the adjoint operator of A is A∗ = [
A∗11 A∗21

A∗12 A∗22
],

where A∗ij is the adjoint operator of Aij .

3.1. The representation of the solution of system (3.1). In this
section, we will give the representation of analytical solution of sys-
tem (3.1) in the space WN+1

2 [0, 1]
⊕
WN+1

2 [0, 1]. In system (3.1), in

view of Lemma 3.1, it is clear that A : WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] →
W 1

2 [0, 1]
⊕
W 1

2 [0, 1] is a bounded linear operator. Put

(3.6) ϕij(s) = rsi(s)~ej =

 (rsi(s), 0)T , j = 1,

(0, rsi(s))
T , j = 2,

and ψij(s) = A∗ϕij(s), i = 1, 2, ..., j = 1, 2, where rsi(s) is the
reproducing kernel of W 1

2 [0, 1] and A∗ is the adjoint operator of A. The

orthonormal system {ψ̄i1(s), ψ̄i2(s)}∞i=1 of WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1] can
be derived from Gram-Schmidt orthogonalization process of

{ψi1(s), ψi2(s)}∞i=1,

i.e.

ψ̄ij(s) =
∑i

l=1

∑j
k=1 β

ij
lkψlk(s).

Theorem 3.2. For system (3.1), if {si}∞i=1 is dense on [0, 1], then

{ψi1(s), ψi2(s)}∞i=1 is a complete system for WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1]
and ψij(s) = AtRs(t)~ej |t=si .

Proof. Note that

ψij(s) = A∗ϕij(s) =< A∗ϕij(t), Rs(t)~ej >=< ϕij(t), AtRs(t)~ej >=<
rsi(t)~ej , AtRs(t)~ej >= AtRs(t)~ej |t=si .

For each fixed u(s) ∈ WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1], let < u(s), ψij(s) >=
0, i = 1, 2, . . . which means that,

(3.7) < Au(s), ϕij(s) >= 0.

Note that

u(s) =
∑2

j=1 uj(s)~ej =
∑2

j=1 < u(t), Rs(t)~ej > ~ej .

From Eq. (3.7), we have

Au(si) =
∑2

j=1 < Au(s), ϕij(s) > ~ej = 0, i = 1, 2, . . . .
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Since {si}∞i=1 is dense on [0, 1], we must have Au(s) = 0. Since sys-
tem (3.1) has a unique solution, it follows that u = 0 from the exis-
tence of A−1. Therefore, {ψi1(s), ψi2(s)}∞i=1 is the complete system of

WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1]. �

Theorem 3.3. If {si}∞i=1 is dense on [0, 1], and the solution of system
(3.1) is unique, then the solution of system (3.1) is

(3.8) u(s) =

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βijlkfk(sl)ψ̄lk(s).

Proof. Theorem 3.2, it is easy to show that {ψ̄i1(s), ψ̄i2(s)}∞i=1 is a com-

plete orthonormal basis for WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1].
Note that < v(s), ϕij(s) >= vj(si) for each v(s) ∈ W 1

2 [0, 1]
⊕
W 1

2 [0, 1].
Hence, we have

u(s) =
∞∑
i=1

2∑
j=1

< u(s), ψ̄ij(s) > ψ̄ij(s)

=

∞∑
i=1

2∑
j=1

< u(s),

i∑
l=1

j∑
k=1

βijlkψlk(s) > ψ̄ij(s)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βijlk < u(s), A∗ϕlk(s) > ψ̄lk(s)

=
∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βijlk < Au(s), ϕlk(s) > ψ̄lk(s)

=

∞∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βijlkfk(sl)ψ̄lk(s).(3.9)

�

Lemma 3.4. |u(s)| ≤ (N + 2)||u||WN+1
2 [0,1], for u(s) ∈WN+1

2 [0, 1].

Proof. Suppose that u(s) ∈WN+1
2 [0, 1] then

(3.10) u(N)(s) = u(N)(0) +

∫ s

0
u(N+1)(t) dt.
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Subsequently, we can obtain

u(N−1)(s) = u(N−1)(0) + su(N)(0) +

∫ s

0

∫ t1

0

u(N+1)(t) dtdt1,

u(N−2)(s) =

2∑
k=0

1

k!
s(k)u(N−2+k)(0) +

∫ s

0

∫ t1

0

∫ t2

0

u(N+1)(t) dtdt1dt2,

...

u(s) =

N∑
k=0

1

k!
sku(k)(0) +

∫ s

0

∫ t1

0

· · ·
∫ tN

0

u(N+1)(t) dtdt1 . . . dtN ,

and therefore, |u(s)| ≤
∑N

k=0 |u(k)(0)|+
∫ 1

0 |u
(N+1)(t)| dt.

Note that

|u(0)| ≤

[
(u(0))2 +

N∑
k=1

(u(k)(0))2 +

∫ 1

0

(u(N+1)(t))2dt

] 1
2

= ||u||WN+1
2

|u
′
(0)| ≤

(u
′
(0))2 +

N∑
k=0,k 6=1

(u(k)(0))2 +

∫ 1

0

(u(N+1)(t))2dt

 1
2

= ||u||WN+1
2

,

...

|u(N)(0)| ≤

[
N−1∑
k=0

(u(k)(0))2 + (uN (0))2 +

∫ 1

0

(u(N+1)(t))2dt

] 1
2

= ||u||WN+1
2

.

and∫ 1

0

|uN+1(t)| dt ≤
[∫ 1

0

dt

] 1
2
[∫ 1

0

(uN+1(t))2dt

] 1
2

=

[∫ 1

0

(uN+1(t))2dt

] 1
2

≤

[
N∑

k=0

(u(k)(0))2 +

∫ 1

0

(u(N+1)(t))2dt

] 1
2

,(3.11)

thus, |u(s)| ≤ (N + 2)||u||WN+1
2

. �

Theorem 3.5. Truncating n-term of the infinite series in Eq. (3.8), we
obtain the approximate solution of Eqs. (1.1)

(3.12) un(s) = (u1,n(s), u2,n(s))T =

n∑
i=1

2∑
j=1

i∑
l=1

j∑
k=1

βijlkfk(sl)ψ̄lk(s),

which converges uniformly to the exact solution u(s) = (u1(s), u2(s))T

as n→∞.
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Proof. It suffices to prove that ||u− un||2 → 0 as n→∞.

Notice that ||u−un||2 →
∑2

i=1 ||ui−ui,n||2WN+1
2 [0,1]

→ 0. By the expres-

sion of Rs(t), we have

|ui(s)− ui,n(s)| = | < ui(t)− ui,n(t), Rs(t) > |
≤ ||Rs(t)||||ui − ui,n||WN+1

2 [0,1]

=
√
Rs(s)||ui − ui,n||WN+1

2 [0,1]

≤
√
N + 2||ui − ui,n||WN+1

2 [0,1].(3.13)

This argument shows that ui,n(s) converges uniformly to ui(s) on the
interval [0, 1] as n→∞. �

4. Numerical example

Table 2. The error ‖en(s)‖ for n = 30, 40, 50.

s ‖e30(s)‖ ‖e40(s)‖ ‖e50(s)‖
0.1 2.4563e− 4 1.3612e− 4 8.8451e− 5
0.2 2.3196e− 4 1.0241e− 4 8.5206e− 5
0.3 1.9270e− 4 8.4289e− 5 6.8210e− 5
0.4 1.6043e− 4 6.5873e− 5 5.4135e− 5
0.5 7.9323e− 5 6.3517e− 5 5.2324e− 5
0.6 6.1109e− 5 6.3641e− 5 5.0136e− 5
0.7 5.1956e− 5 5.6710e− 5 3.5107e− 5
0.8 2.7836e− 5 2.2457e− 5 2.7234e− 5
0.9 2.4374e− 5 2.5376e− 5 2.0538e− 5
1.0 1.7321e− 5 1.7901e− 5 1.6206e− 5

To illustrate the effectiveness of the proposed method , a test example
is carried out in this section. For comparing the solution series given by
RKHS method with exact solution, we report the sum of absolute errors
which is defined by

‖en(s)‖ = |u1(s)− u1,n(s)|+ |u2(s)− u2,n(s)|.(4.1)
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Example 4.1. Consider a system of second-order linear Fredholm integro-
differential equations [8]

u
′′

1 (s) + 2
∫ 1

0
stu1(t) dt+ u

′

2(s)− 6
∫ 1

0
stu2(t) dt = 3s2 + 3

10s+ 8,

u
′

1(s) + 3
∫ 1

0
(2s+ t2)u1(t) dt+ u

′′

2 (s)− 6
∫ 1

0
(2s+ t2)u2(t) dt = 21s+ 4

5 ,

u1(0) + u
′

1(0) = 1, u1(1) + u
′

1(1) = 10,

u2(0) + u
′

2(0) = 1, u2(1) + u
′

2(1) = 7.

(4.2)

The exact solutions are u1(s) = 3s2 + 1 and u2(s) = s3 + 2s− 1.
Applying the RKHS method, we obtain the approximate solution for
n = 30, 40, 50. We choose {si = i−1

n−1}
n
i=1 to construct the orthonormal

system {ψ̄i1(s), ψ̄i2(s)}ni=1 in the space reproducing Hilbert

(4.3) WN+1
2 [0, 1]

⊕
WN+1

2 [0, 1].

The numerical results are given in Table 1 and Fig. 1. We see that
the approximation solution obtained by the present method has good
agreement with the exact solution.

5. Conclusions

In this paper, it is shown that the RKHS method is quiet efficient and
well suited for finding the exact or approximate solution for system of
linear Fredholm integro-differential equations with variable coefficients.
The applicability and accuracy of the approaches were checked by cal-
culating the approximate solution at selected grid points. Based on
obtained results of the proposed method for illustrative example, we
have the following remarkable conclusions:

• The proposed method provides the solution in a convergent series
with components that can be simply computed.
• The results obtained by using the proposed method are very

attractive and contributed to the good agreement between ap-
proximate and exact values in the numerical example.
• The proposed method can be easily implemented and its algo-

rithm is simple and efficient to the approximate solution.
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