Journal of Hyperstructures 9 (2) (2020), 68-80. ISSN: 2322-1666 print/2251-8436 online

FUZZY PAIRS IN FUZZY α -LATTICES

MEENAKSHI P. WASADIKAR AND PAYAL A. KHUBCHANDANI

ABSTRACT. In this paper, we introduce the notion of a fuzzy α -modular pair in a fuzzy α -lattice and obtain some results.

Key Words: Fuzzy α -lattice, fuzzy modular pair, fuzzy α -modular pair, α -comparable. 2010 Mathematics Subject Classification: Primary: 06D72; Secondary: 03E72.

1. INTRODUCTION

The concept of fuzzy ordering was defined by Zadeh [5] in 1971. Yuan and Wu [1] introduced the concept of a fuzzy sublattice. Ajmal and Thomas [8] defined a fuzzy lattice and a fuzzy sublattice as a fuzzy algebra in 1994. Chon [4] considered Zadeh's fuzzy order [6] and proposed a new notion of a fuzzy lattice and studied level sets of such structures. At the same time he also proved some results for distributive and modular fuzzy lattices. Mezzomo *et. al.* [3] changed the way to define the fuzzy supremum and the fuzzy infimum of a pair of elements by considering as a threshold fixed $\alpha \in [0, 1)$ instead of, as usual, zero.

The concept of a modular pair in a lattice is well investigated by Maeda and Maeda [2]. Recently, Wasadikar and Khubchandani [7] defined a fuzzy modular pair in a fuzzy lattice and obtained some properties of fuzzy modular pairs. In this paper, we introduce the notion of a fuzzy α -modular pair in a fuzzy α -lattice and prove some properties analogous to the classical theory.

Received: 1 February 2020, Accepted: 23 October 2020. Communicated by Ahmad Yousefian Darani;

^{*}Address correspondence to P. A. Khubchandani; E-mail: payal_khubchandani@yahoo.com © 2020 University of Mohaghegh Ardabili.

⁶⁸

Fuzzy Pairs In Fuzzy α -Lattices

2. Preliminaries

In fuzzy sets, each element of a nonempty set X is mapped to [0, 1] by a membership function $\mu: X \to [0, 1]$.

A mapping $A: X \times X \to [0,1]$ is called a fuzzy binary relation on X.

The following definition is from Zadeh [6]. A fuzzy binary relation A on X is called:

- (i) fuzzy reflexive if A(x, x) = 1, for all $x \in X$;
- (ii) fuzzy symmetric if A(x, y) = A(y, x), for all $x, y \in X$;
- (iii) fuzzy transitive if $A(x, z) \ge \sup_{y \in X} \min[A(x, y), A(y, z)];$
- (iv) fuzzy antisymmetric if A(x, y) > 0 and A(y, x) > 0 implies x = y.

Based on the above properties Zadeh [6] introduced the following concepts related to a fuzzy binary relation A on a set X:

- (i) A is called a fuzzy equivalence relation on X if A is fuzzy reflexive, fuzzy symmetric and fuzzy transitive;
- (ii) A is a fuzzy partial order relation if A is fuzzy reflexive, fuzzy antisymmetric and fuzzy transitive and the pair (X, A) is called a fuzzy partially ordered set or a fuzzy poset;
- (iii) A is a fuzzy total order relation if it is a fuzzy partial order relation and A(x, y) > 0 or A(y, x) > 0, for all $x, y \in X$, and the fuzzy poset (X, A) is called of a fuzzy totally ordered set or a fuzzy chain.

Definition 2.1. [4, Definition 3.1] Let (X, A) be a fuzzy poset and let $Y \subseteq X$. An element $u \in X$ is said to be an upper bound for Y iff A(y, u) > 0, for all $y \in Y$. An upper bound u_0 for Y is the least upper bound (or supremum) of Y iff $A(u_0, u) > 0$, for every upper bound u for Y. We then write $u_0 = \sup Y = \lor Y$. If $Y = \{x, y\}$, then we write $\lor Y = x \lor y$.

Similarly, an element $v \in X$ is said to be a lower bound for Y iff A(v, y) > 0, for all $y \in Y$. A lower bound v_0 for Y is the greatest lower bound (or infimum) of Y iff $A(v, v_0) > 0$, for every lower bound v for Y. We then write $v_0 = \inf Y = \wedge Y$. If $Y = \{x, y\}$, then we write $\wedge Y = x \wedge y$.

3. Fuzzy α -lattices

Mezzomo and Bedregal [3] generalized the concept of a (fuzzy) upper bound as follows. **Definition 3.1.** [3, Definition 3.1] Let (X, A) be a fuzzy poset. Let $Y \subseteq X$ and $\alpha \in [0, 1)$. An element $u \in X$ is said to be an α -upper bound for Y whenever $A(x, u) > \alpha$, for all $x \in Y$. An α -upper bound u_0 for Y is called a least α -upper bound (or α -Supremum) of Y iff $A(u_0, u) > \alpha$, for every α -upper bound u of Y.

Dually, an element $v \in X$ is said to be an α -lower bound for Y iff $A(v, x) > \alpha$, for all $y \in Y$. An α -lower bound v_0 for Y is called a greatest α -lower bound (or α -infimum) of Y iff $A(v, v_0) > \alpha$ for every α -lower bound v for Y.

We denote the least α -upper bound of the set {x, y} by $x \vee_{\alpha} y$ and the greatest α -lower bound of the set {x, y} by $x \wedge_{\alpha} y$.

Remark 3.2. [3, Remark 3.1] Since A is fuzzy antisymmetric, the least α -upper (greatest α -lower) bound, if it exists, is unique.

Proposition 3.3. [3, Proposition 3.1] Let (X, A) be fuzzy poset, $\alpha \in [0, 1)$ and $x, y, z \in X$. If $A(x, y) > \alpha$ and $A(y, z) > \alpha$, then $A(x, z) > \alpha$.

Definition 3.4. [3, Definition 3.2] A fuzzy poset (X, A) is a fuzzy α lattice iff $x \vee_{\alpha} y$ and $x \wedge_{\alpha} y$ exists for all $x, y \in X$, for some $\alpha \in [0, 1)$.

Definition 3.5. [3, Definition 3.4] A fuzzy poset (X, A) is called fuzzy sup α -lattice, if each pair of element has α -supremum in X, denoted by $sup_{\alpha} X$.

Dually, it is called fuzzy inf α -lattice, if each pair of element has α infimum in X, denoted by $inf_{\alpha} X$. A fuzzy semi α -lattice is a fuzzy
poset which is a fuzzy sup α -lattice or a fuzzy inf α -lattice.

Definition 3.6. [3, Definition 3.5] Let (X, A) be a fuzzy poset and I be a fuzzy set on X. The α -supremum in I denoted by $sup_{\alpha} I$, is an element of X such that if $x \in X$ and $\mu_I(x) > \alpha$, then $A(x, sup_{\alpha}I) > \alpha$ and if $u \in X$ is such that $A(x, u) > \alpha$ whenever $\mu_I(x) > \alpha$, then $A(sup_{\alpha}I, u) > \alpha$.

Similarly, the α -infimum in I denoted by $inf_{\alpha} I$, is an element of X such that if $x \in X$ and $\mu_I(x) > \alpha$, then $A(inf_{\alpha}I, x) > \alpha$ and if $v \in X$ is such that $A(v, x) > \alpha$ whenever $\mu_I(x) > \alpha$, then $A(v, inf_{\alpha}I) > \alpha$.

Definition 3.7. [3, Definition 3.6] A fuzzy inf α -lattice is called inf complete if all of its nonempty fuzzy sets have α -infimum.

Similarly, a fuzzy sup α -lattice is called sup-complete if all of its nonempty fuzzy set admit α -supremum. A fuzzy α -lattice is complete whenever it is, simultaneously, inf-complete and sup-complete.

Fuzzy Pairs In Fuzzy $\alpha\text{-Lattices}$

Proposition 3.8. [3, Proposition 3.2] Let (X, A) be a complete fuzzy sup α -lattice (inf α -lattice) and I be a fuzzy set on X. Then, $\sup_{\alpha} I$ (inf $_{\alpha} I$) exists and it is unique.

Proposition 3.9. [3, Proposition 3.3] Let $\mathcal{L} = (X, A)$ be a fuzzy sup α -lattice, then there exist an element \top in X, such that $A(x, \top) > \alpha$ for all $x \in X$.

Proposition 3.10. [3, Proposition 3.4] Let $\mathcal{L} = (X, A)$ be a fuzzy inf α -lattice, then there exist an element \perp in X, such that $A(\perp, x) > \alpha$ for all $x \in X$.

Definition 3.11. [3, Definition 3.6] A fuzzy lattice (X, A) is bounded if there exists \top and \bot in X such that for any $x \in X$, $A(\bot, x) > \alpha$ and $A(x, \top) > \alpha$.

Corollary 3.12. [3, Corollary 3.1] Every fuzzy lattice is a fuzzy α -lattice.

We illustrate the concepts of an α -upper bound and α -lower bound with an example.

Example 3.13. Consider the set $X = \{x, y, z, w\}$, let $\alpha = 0.2$ and let $A : X \times X \longrightarrow [0, 1]$ be a fuzzy relation defined as follows: A(x, x) = A(y, y) = A(z, z) = A(w, w) = 1.0, A(w, z) = 0.2, A(w, y) = 0.5, A(w, x) = 0.9, A(z, w) = 0.0, A(z, y) = 0.3, A(z, x) = 0.6, A(y, w) = 0.0, A(y, z) = 0.0, A(y, x) = 0.4, A(x, w) = 0.0, A(x, z) = 0.0, A(x, y) = 0.0. Then A is a fuzzy total order relation.

Let $Y = \{w, z\}$. Then x, y and z are the α -upper bounds of Y. Since A(z, w) = 0.0 and $A(w, z) = 0.2 \ge \alpha$, it follows that the α -supremum of Y is z and the α -infimum is w.

The fuzzy α -join and fuzzy α -meet tables are as follows:

\vee_{α}	x	y	z	w	\wedge_{α}	x	y	z	w
x	x	x	x	x	x	x	y	z	w
y	x	y	y	y	y	y	y	z	w
z	x	y	z	z	z	z	z	z	w
w	x	y	z	w	w	w	w	w	w

We note that (X, A) is a fuzzy lattice as well as a fuzzy α -lattice for $\alpha = 0.2$.

In Figure 1, we show the related tabular and graphical representations for the fuzzy relation A.

Figure 1

The following example shows that a subset of a fuzzy poset may not have a greatest α -lower bound (least α -upper bound).

Example 3.14. Let $X = \{x_1, y_1, z_1, w_1\}$. Let $A : X \times X \longrightarrow [0, 1]$ be a fuzzy relation defined as follows: $A(x_1, x_1) = A(y_1, y_1) = A(z_1, z_1) = A(w_1, w_1) = 1.0,$ $A(x_1, y_1) = 0.20, A(x_1, z_1) = 0.30, A(x_1, w_1) = 0.90,$ $A(y_1, x_1) = 0.0, A(y_1, z_1) = 0.0, A(y_1, w_1) = 0.50,$ $A(z_1, x_1) = 0.0, A(z_1, y_1) = 0.0, A(z_1, w_1) = 0.70,$ $A(w_1, x_1) = 0.0, A(w_1, y_1) = 0.0, A(w_1, z_1) = 0.0.$ Then A is a fuzzy partial order relation.

The fuzzy α -join and fuzzy α -meet tables are as follows:

\vee_{α}	x_1	y_1	z_1	w_1	\wedge	α	x_1	y_1	z_1	w_1
x_1	x_1	y_1	z_1	w_1	x	1	x_1	x_1	x_1	x_1
y_1	y_1	y_1	w_1	w_1	y	1	x_1	y_1	x_1	y_1
z_1	z_1	w_1	z_1	w_1	z	1	x_1	x_1	z_1	z_1
w_1	w_1	w_1	w_1	w_1	u	$y_1 \mid$	x_1	y_1	z_1	w_1

We note that (X, A) is a fuzzy lattice.

In Figure 2, we show the related tabular and graphical representation for the fuzzy relation A.

72

Α

 $\frac{w}{z}$

y

x

A	x_1	y_1	z_1	w_1
x_1	1.0	0.20	0.30	0.90
y_1	0.0	1.0	0.0	0.50
z_1	0.0	0.0	1.0	0.70
w_1	0.0	0.0	0.0	1.0

Figure 2

 w_1

In Figure 3, we show the related tabular and graphical representations for the fuzzy relation A for $\alpha > 0.30$. Here $x_1 \vee_{\alpha} w_1 = w_1, x_1 \wedge_{\alpha} w_1 = x_1$,

 $y_1 \vee_\alpha w_1 = w_1, \, y_1 \wedge_\alpha w_1 = y_1,$

 $z_1 \vee_\alpha w_1 = w_1, \ z_1 \wedge_\alpha w_1 = z_1,$

 $y_1 \vee_{\alpha} z_1 = w_1, \, y_1 \vee_{\alpha} x_1 = w_1, \, z_1 \vee_{\alpha} x_1 = w_1.$

But $y_1 \wedge_{\alpha} z_1$, $y_1 \wedge_{\alpha} x_1$, $z_1 \wedge_{\alpha} x_1$ does not exist.

A	x_1	y_1	z_1	w_1	
x_1	1.0	0.0	0.0	0.90) ``
y_1	0.0	1.0	0.0	0.50	$\mathbf{\hat{y}}_1$
z_1	0.0	0.0	1.0	0.70	
w_1	0.0	0.0	0.0	1.0	
					$\overset{\bullet}{x_1}$

Figure 3

Remark 3.15. We note that Example 3.13 is an example of a fuzzy α -lattice for $\alpha = 0.2$ whereas Example 3.14, is not a fuzzy α -lattice for $\alpha > 0.30$.

Proposition 3.16. [3, Proposition 3.7] Let (X, A) be a fuzzy α -lattice, $\alpha \in [0, 1)$ and let $x, y, z \in X$. The following statements hold: (i) $A(x, x \lor_{\alpha} y) > \alpha$, $A(y, x \lor_{\alpha} y) > \alpha$, $A(x \land_{\alpha} y, x) > \alpha$, $A(x \land_{\alpha} y, y) > \alpha$; (ii) $A(x, z) > \alpha$ and $A(y, z) > \alpha$ implies $A(x \lor_{\alpha} y, z) > \alpha$; (iii) $A(z, x) > \alpha$ and $A(z, y) > \alpha$ implies $A(z, x \land_{\alpha} y) > \alpha$; (iv) $A(x, y) > \alpha$ iff $x \lor_{\alpha} y = y$; (v) $A(x, y) > \alpha$ iff $x \land_{\alpha} y = x$; (vi) If $A(y, z) > \alpha$, then $A(x \land_{\alpha} y, x \land_{\alpha} z) > \alpha$ and $A(x \lor_{\alpha} y, x \lor_{\alpha} z) > \alpha$; (vii) If $A(x \lor_{\alpha} y, z) > \alpha$, then $A(x, z) > \alpha$ and $A(y, z) > \alpha$; (viii) If $A(x, y \land_{\alpha} z) > \alpha$, then $A(x, y) > \alpha$ and $A(x, z) > \alpha$.

Proposition 3.17. [3, Proposition 3.8] Let (X, A) be a fuzzy α -lattice and let $x, y, z \in X$. Then (i) $x \vee_{\alpha} x = x$ and $x \wedge_{\alpha} x = x$; (ii) $x \vee_{\alpha} y = y \vee_{\alpha} x$ and $x \wedge_{\alpha} y = y \wedge_{\alpha} x$; (iii) $(x \vee_{\alpha} y) \vee_{\alpha} z = x \vee_{\alpha} (y \vee_{\alpha} z)$ and $(x \wedge_{\alpha} y) \wedge_{\alpha} z = x \wedge_{\alpha} (y \wedge_{\alpha} z)$; (iv) $(x \vee_{\alpha} y) \wedge_{\alpha} x = x$ and $(x \wedge_{\alpha} y) \vee_{\alpha} x = x$.

Lemma 3.18. Let (X, A) be a fuzzy α -lattice and $x, y, x', y' \in X$. If $A(x', x) > \alpha$ and $A(y', y) > \alpha$, then $A(x' \wedge_{\alpha} y', x \wedge_{\alpha} y) > \alpha$ and $A(x' \vee_{\alpha} y', x \vee_{\alpha} y) > \alpha$.

$$\begin{array}{l} Proof. \ \mathrm{As} \ A(x',x) > \alpha \ \mathrm{so}, \ \mathrm{by} \ (\mathrm{vi}) \ \mathrm{of} \ \mathrm{Proposition} \ 3.16,\\ \mathrm{we \ have \ that} \ A(x' \wedge_{\alpha} y', x \wedge_{\alpha} y') > \alpha. \end{array} \tag{I} \\ \mathrm{Also}, \ A(y',y) > \alpha \ \mathrm{so}, \ \mathrm{by} \ (\mathrm{vi}) \ \mathrm{of} \ \mathrm{Proposition} \ 3.16,\\ \mathrm{we \ have} \ A(x \wedge_{\alpha} y', x \wedge_{\alpha} y) > \alpha. \end{aligned} \tag{II} \\ \mathrm{From} \ (\mathrm{I}) \ \mathrm{and} \ (\mathrm{II}) \ \mathrm{by} \ \mathrm{fuzzy} \ \mathrm{transitivity} \ \mathrm{of} \ A \ \mathrm{we \ have} \\ A(x' \wedge_{\alpha} y', x \wedge_{\alpha} y) > \alpha. \end{aligned}$$

Similarly, we can show that $A(x' \lor_{\alpha} y', x \lor_{\alpha} y) > \alpha$. \Box

Definition 3.19. [3, Definition 3.8] Let (X, A) be a fuzzy α -lattice. (X, A) is fuzzy distributive iff $x \wedge_{\alpha} (y \vee_{\alpha} z) = (x \wedge_{\alpha} y) \vee_{\alpha} (x \wedge_{\alpha} z)$ and $(x \vee_{\alpha} y) \wedge_{\alpha} (x \vee_{\alpha} z) = x \vee_{\alpha} (y \wedge_{\alpha} z)$.

Note that (X, A) is fuzzy distributive iff $A(x \wedge_{\alpha} (y \vee_{\alpha} z), (x \wedge_{\alpha} y) \vee_{\alpha} (x \wedge_{\alpha} z)) > \alpha$ and $A((x \vee_{\alpha} y) \wedge_{\alpha} (x \vee_{\alpha} z), x \vee_{\alpha} (y \wedge_{\alpha} z)) > \alpha$. We now define fuzzy modularity in a fuzzy α -lattice.

Proposition 3.20. (Modular inequality) Let (X, A) be a fuzzy α -lattice and let $x, y, z \in X$. Then $A(x, z) > \alpha$ implies $A(x \lor_{\alpha} (y \land_{\alpha} z), (x \lor_{\alpha} y) \land_{\alpha} z) > \alpha$.

Proof. As $A(x, x \vee_{\alpha} y) > \alpha$ and $A(x, z) > \alpha$ by (iii) of Proposition 3.16, we have $A(x, (x \vee_{\alpha} y) \wedge_{\alpha} z) > \alpha$. (I)

74

Fuzzy Pairs In Fuzzy $\alpha\text{-Lattices}$

Since $A(y \wedge_{\alpha} z, y) > \alpha$ and $A(y, x \vee_{\alpha} y) > \alpha$ by fuzzy transitivity of Awe have $A(y \wedge_{\alpha} z, x \vee_{\alpha} y) > \alpha$. Using (iii) of Proposition 3.16, we have $A(y \wedge_{\alpha} z, (x \vee_{\alpha} y) \wedge_{\alpha} z) > \alpha$. (II) Thus by (I) and (II) and by (ii) of Proposition 3.16, we have $A(x \vee_{\alpha} (y \wedge_{\alpha} z), (x \vee_{\alpha} y) \wedge_{\alpha} z) > \alpha$.

Definition 3.21. Let (X, A) be a fuzzy α -lattice. (X, A) is fuzzy α modular iff $A(x, z) > \alpha$ implies $x \vee_{\alpha} (y \wedge_{\alpha} z) = (x \vee_{\alpha} y) \wedge_{\alpha} z$ for all $x, y, z \in X$.

By the modular inequality, a fuzzy α -lattice (X, A) is fuzzy α -modular iff $A(x, z) > \alpha$ implies $A(x \lor_{\alpha} y) \land_{\alpha} z, x \lor_{\alpha} (y \land_{\alpha} z)) > \alpha$ for $x, y, z \in X$.

Proposition 3.22. Let (X, A) be a fuzzy α -lattice. (X, A) be a fuzzy distributive lattice, then (X, A) is fuzzy α -modular lattice.

Proof. Let $x, y, z \in X$. Suppose $A(x, z) > \alpha$. Since (X, A) is fuzzy distributive so, we have $(x \lor_{\alpha} y) \land_{\alpha} z = (x \land_{\alpha} z) \lor_{\alpha} (y \land_{\alpha} z)$. Thus, $A((x \lor_{\alpha} y) \land_{\alpha} z, x \lor_{\alpha} (y \land_{\alpha} z)) = A((x \land_{\alpha} z) \lor_{\alpha} (y \land_{\alpha} z), x \lor_{\alpha} (y \land_{\alpha} z)).$ (I) As $A(x, z) > \alpha$ by (v) of Proposition 3.16, we have $x \land_{\alpha} z = x$. So, (I) reduces to $A((x \lor_{\alpha} y) \land_{\alpha} z, x \lor_{\alpha} (y \land_{\alpha} z)) = A(x \lor_{\alpha} (y \land_{\alpha} z), x \lor_{\alpha} (y \land_{\alpha} z)) > \alpha$. Hence $(x \lor_{\alpha} y) \land_{\alpha} z = x \lor_{\alpha} (y \land_{\alpha} z)$. Thus, (X, A) is fuzzy α -modular lattice.

4. Fuzzy α -modular pairs in a fuzzy α -lattice

In this section, we define a fuzzy α -modular pair in a fuzzy α -lattice and we prove some propositions.

We recall the definition of a fuzzy modular pair in a fuzzy lattice from [7].

Definition 4.1. Let X be a nonempty set and $\mathcal{L} = (X, A)$ be a fuzzy lattice with \bot . Let $x, y \in X$. We say that (x, y) is a fuzzy meet-modular pair and we write $(x, y)_F M_m$ if whenever A(z, y) > 0, then $(z \vee_F x) \wedge_F y = z \vee_F (x \wedge_F y)$.

We say that (x, y) is a fuzzy join-modular pair and we write $(x, y)_F M_j$ if whenever A(y, z) > 0, then $(z \wedge_F x) \vee_F y = z \wedge_F (x \vee_F y)$.

We write $(x, y)_F \overline{M_j}$ or $(x, y)_F \overline{M_m}$ when the pair (x, y) is not a fuzzy join-modular or fuzzy meet-modular pair respectively.

Definition 4.2. Let (X, A) be a fuzzy α -lattice. We say that (x, y) is a fuzzy α -modular pair and we write $(x, y)FM_{\alpha}$, if whenever $A(z, y) > \alpha$ for some $z \in X$, $\alpha \in [0, 1)$, then $(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y)$.

We say that (x, y) is a fuzzy dual α -modular pair and we write $(x, y)FM_{\alpha}^*$, if whenever $A(y, z) > \alpha$ for some $z \in X$, then $(z \wedge_{\alpha} x) \vee_{\alpha} y = z \wedge_{\alpha} (x \vee_{\alpha} y)$.

We write $(x, y)\overline{FM_{\alpha}}$ when the pair (x, y) is not a fuzzy α -modular pair.

Example 4.3. Let $X = \{v, w, x, y, z\}$ and let $A : X \times X \longrightarrow [0, 1]$ be a fuzzy relation defined as follows:

$$\begin{split} A(v,v) &= A(w,w) = A(x,x) = A(y,y) = A(z,z) = 1.0, \\ A(v,w) &= 0.40, \ A(v,x) = 0.50, \ A(v,y) = 0.80, \ A(v,z) = 0.94, \\ A(w,v) &= 0.0, \ A(w,x) = 0.20, \ A(w,y) = 0.60, \ A(w,z) = 0.90, \\ A(x,v) &= 0.0, \ A(x,w) = 0.0, \ A(x,y) = 0.30, \ A(x,z) = 0.70, \\ A(y,v) &= 0.0, \ A(y,w) = 0.0, \ A(y,x) = 0.0, \ A(y,z) = 0.40, \\ A(z,v) &= 0.0, \ A(z,w) = 0.0, \ A(z,x) = 0.0, \ A(z,y) = 0.0. \\ \text{Then A is a fuzzy partial order relation.} \end{split}$$

The fuzzy α -join and α -fuzzy meet tables are as follows:

\vee_{α}	v	w	x	y	z	_	\wedge_{α}	v	w	x	y	z
v	v	w	x	y	z		v	v	v	v	v	v
w	w	w	x	y	z		w	v	w	w	w	w
x	x	x	x	y	z		x	v	w	x	x	x
y	y	y	y	y	z		y	v	w	x	y	y
z	z	z	z	z	z		z	v	w	x	y	z

We note that (X, A) is a fuzzy lattice.

Here for A(v, x) = 0.50 > 0, $(y, x)_F M_m$ holds in a fuzzy lattice (X, A)as $(v \lor_F y) \land_F x = y \land_F x = x = v \lor_F x = v \lor_F (y \land_F x)$. For A(w, y) = 0.60 > 0, $(x, y)_F M_m$ holds in a fuzzy lattice (X, A)as $(w \lor_F x) \land_F y = x \land_F y = x = w \lor_F x = w \lor_F (x \land_F y)$.

In Figure 4, we show the related tabular and graphical representations for the fuzzy relation A.

76

A	v	w	x	y	z
v	1.0	0.40	0.50	0.80	0.94
w	0.0	1.0	0.20	0.60	0.90
x	0.0	0.0	1.0	0.30	0.70
y	0.0	0.0	0.0	1.0	0.40
z	0.0	0.0	0.0	0.0	1.0

Figure 4

Now using Example 4.3 we construct an example which shows that a pair may be a fuzzy meet modular pair in a fuzzy lattice but may not be a fuzzy α -modular pair in a fuzzy α -lattice.

Example 4.4. We use Example 4.3 to construct a fuzzy α -lattice for $\alpha \geq 0.40$.

We have A(v, v) = A(w, w) = A(x, x) = A(y, y) = A(z, z) = 1.0, A(v, w) = 0.40, A(v, x) = 0.50, A(v, y) = 0.80, A(v, z) = 0.94, A(w, v) = 0.0, A(w, x) = 0.0, A(w, y) = 0.60, A(w, z) = 0.90, A(x, v) = 0.0, A(x, w) = 0.0, A(x, y) = 0.0, A(x, z) = 0.70, A(y, v) = 0.0, A(y, w) = 0.0, A(y, x) = 0.0, A(y, z) = 0.40, A(z, v) = 0.0, A(z, w) = 0.0, A(z, x) = 0.0, A(z, y) = 0.0.

The fuzzy α -join and fuzzy α -meet tables are as follows:

\vee_{α}	v	w	x	y	z	\wedge_{α}	v	w	x	y	z
v	v	w	x	y	z	v	v	v	v	v	v
w	w	w	z	y	z	w	v	w	v	w	w
x	x	z	x	z	z	x	v	v	x	v	x
y	y	y	z	y	z	y	v	w	v	y	y
z	z	z	z	z	z	z	v	w	x	y	z

We note that for $A(v, x) = 0.50 > \alpha$, $(y, x)FM_{\alpha}$ holds as $(v \lor_{\alpha} y) \land_{\alpha} x = y \land_{\alpha} x = v = v \lor_{\alpha} v = v \lor_{\alpha} (y \land_{\alpha} x)$.

We note that for $A(w, y) = 0.60 > \alpha$, $(x, y)FM_{\alpha}$ does not hold as $(w \lor_{\alpha} x) \land_{\alpha} y = z \land_{\alpha} y = y$ and $w \lor_{\alpha} (x \land_{\alpha} y) = w \lor_{\alpha} v = w \neq y$.

Note that $(x, y)_F M_m$ holds but $(x, y)FM_\alpha$ does not hold for $\alpha \ge 0.40$.

 γ

						y *
A	v	w	x	y	z	
v	1.0	0.40	0.50	0.80	0.94	
w	0.0	1.0	0.0	0.60	0.90	
\boldsymbol{x}	0.0	0.0	1.0	0.0	0.70	$w \not\in$
y	0.0	0.0	0.0	1.0	0.40	
z	0.0	0.0	0.0	0.0	1.0	

In Figure 5, we show the related tabular and graphical representations for the fuzzy relation A.

Figure 5

Remark 4.5. Let (X, A) be a fuzzy poset and $x, y \in X$. We say that x and y are α -comparable, if $A(x, y) > \alpha$ or $A(y, x) > \alpha$ for some $\alpha \in [0, 1)$.

Proposition 4.6. Let (X, A) be a fuzzy α -lattice. If x and y are α comparable, then $(y, x)FM_{\alpha}$ for some $\alpha \in [0, 1)$.

Proof. Since x and y are α -comparable, then $A(x, y) > \alpha$ or $A(y, x) > \alpha$. Case (1): Let $A(x, y) > \alpha$. Suppose that $A(z, x) > \alpha$ for some $z \in X$. Then by fuzzy transitivity of A we have $A(z, y) > \alpha$, that is, $z \vee_{\alpha} y = y$. As $A(z, x) > \alpha$ and $A(z, y) > \alpha$ so, by (iii) of Proposition 3.16, we get $A(z, x \wedge_{\alpha} y) > \alpha$. Hence $z \vee_{\alpha} (y \wedge_{\alpha} x) = y \wedge_{\alpha} x = (z \vee_{\alpha} y) \wedge_{\alpha} x$. Therefore $(y, x)FM_{\alpha}$ holds.

Case (2): Let $A(y, x) > \alpha$. Suppose that $A(z, x) > \alpha$. Since $A(z, x) > \alpha$ and $A(y, x) > \alpha$ by (ii) of Proposition 3.16, we have $A(z \lor_{\alpha} y, x) > \alpha$ such that $z \lor_{\alpha} (y \land_{\alpha} x) = z \lor_{\alpha} y = (z \lor_{\alpha} y) \land_{\alpha} x$. Hence $(y, x)FM_{\alpha}$ holds.

Corollary 4.7. Let (X, A) be a fuzzy α -lattice. Then $(x \wedge_{\alpha} y, x)FM_{\alpha}$, $(x \wedge_{\alpha} y, y)FM_{\alpha}$, $(x, x \vee_{\alpha} y)FM_{\alpha}$, $(y, x \vee_{\alpha} y)FM_{\alpha}$ and $(x \wedge_{\alpha} y, x \vee_{\alpha} y)FM_{\alpha}$.

Proposition 4.8. Let (X, A) be a fuzzy α -lattice. Suppose that $(x, y)FM_{\alpha}$ holds. Let $z \in X$. If $A(x \wedge_{\alpha} y, z) > \alpha$ and $A(z, y) > \alpha$, then $(z \vee_{\alpha} x) \wedge_{\alpha} y = z$.

78

Fuzzy Pairs In Fuzzy α -Lattices

Proof. Let $(x, y)FM_{\alpha}$ hold and let $z \in X$. Suppose that $A(x \wedge_{\alpha} y, z) > \alpha$, so by (iv) of Proposition 3.16, we have $(x \wedge_{\alpha} y) \vee_{\alpha} z = z$. Since $(x, y)FM_{\alpha}$ holds, if $A(z, y) > \alpha$, then $(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y)$. Hence $(z \vee_{\alpha} x) \wedge_{\alpha} y = z$.

Proposition 4.9. Let (X, A) be a fuzzy α -lattice. Let $x, y \in X$ be such that $(x, y)FM_{\alpha}$. If $A(x \wedge_{\alpha} y, x') > \alpha$, $A(x', x) > \alpha$, $A(x \wedge_{\alpha} y, y') > \alpha$ and $A(y', y) > \alpha$, then $(x', y')FM_{\alpha}$.

Proof. To prove this we use Proposition 4.8. Let $(x, y)FM_{\alpha}$ hold. Suppose that $A(x \wedge_{\alpha} y, y') > \alpha$ and $A(y', y) > \alpha$. Since $A(x \wedge_{\alpha} y, x') > \alpha$ and $A(x \wedge_{\alpha} y, y') > \alpha$, by (iii) of Proposition 3.16, we have $A(x \wedge_{\alpha} y, x' \wedge_{\alpha} y') > \alpha$. (I) As $A(x', x) > \alpha$ and $A(y', y) > \alpha$ so by Lemma 3.18, we get $A(x' \wedge_{\alpha} y', x \wedge_{\alpha} y) > \alpha.$ (II)From (I) and (II) by fuzzy antisymmetry of A we get $x' \wedge_{\alpha} y' = x \wedge_{\alpha} y.$ (III)Now, let $z \in X$ be such that $A(z, y') > \alpha$. As $A(z, y') > \alpha$ and $A(y', y) > \alpha$ by fuzzy antisymmetry of A we have $A(z, y) > \alpha.$ As $(x, y)FM_{\alpha}$ holds, we have $(z \vee_{\alpha} x) \wedge_{\alpha} y = z \vee_{\alpha} (x \wedge_{\alpha} y)$. Thus, by (III) we obtain $(z \lor_{\alpha} x) \land_{\alpha} y = z \lor_{\alpha} (x' \land_{\alpha} y')$. (IV)Since $A(x', x) > \alpha$ by (iii) of Proposition 3.16, we have $A(z \vee_{\alpha} x', z \vee_{\alpha} x) > \alpha.$ As $A(y', y) > \alpha$ and $A(z \lor_{\alpha} x', z \lor_{\alpha} x) > \alpha$ again using Lemma 3.18, we have $A((z \lor_{\alpha} x') \land_{\alpha} y', (z \lor_{\alpha} x) \land_{\alpha} y) > \alpha.$ By using (IV) we get $A((z \lor_{\alpha} x') \land_{\alpha} y', z \lor_{\alpha} (x' \land_{\alpha} y')) > \alpha$. Thus, $(x', y')FM_{\alpha}$ holds.

5. Conclusion

In this paper, we have presented a novel approach to modularity in fuzzy α -lattices.

Acknowledgments

The authors are thankful to the referee for helpful suggestions, which improved the paper.

References

- B. Yaun and W. Wu, Fuzzy ideals on distributive lattices, Fuzzy sets and Systems 35 (1990), 231–240.
- [2] F. Maeda and S. Maeda, *Theory of Symmetric Lattices*, Springer-verlag, Berlin, 1970.
- [3] I. Mezzomo and B. Bedregal, On fuzzy α -lattices, IEEE World Congress on Computational Intelligence - WCCI (2016), 775–781. doi:10.1109/FUZZ-IEEE.2016.7737766.
- [4] I. Chon, Fuzzy partial order relations and fuzzy lattices, Korean J. Math. 17 (4) (2009), 361–374.
- [5] L. Zadeh, Fuzzy sets, Information and control 8 (1965), 338–353.
- [6] L. Zadeh, Similarity relations and fuzzy orderings, Information Sci. 3 (1971), 177– 200.
- [7] M. P. Wasadikar and P. A. Khubchandani, Fuzzy modularity in fuzzy lattices, The Journal of Fuzzy Mathematics 27(4) (2019), 985–998.
- [8] N. Ajmal and K. V. Thomas, *Fuzzy lattices*, Information Science, 79 (1994), 271–291.

Meenakshi P. Wasadikar

Department of Mathematics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 431004, India Email: wasadikar@yahoo.com

Payal A. Khubchandani

Department of Mathematics,

Dr. Vitthalrao Vikhe Patil College of Engineering,

Ahmednagar 414001, India

Email: payal_khubchandani@yahoo.com