Journal of Hyperstructures 9 (2) (2020), 68-80.
ISSN: 2822-1666 print/2251-8436 online

FUZZY PAIRS IN FUZZY o-LATTICES
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ABSTRACT. In this paper, we introduce the notion of a fuzzy a-
modular pair in a fuzzy a-lattice and obtain some results.
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1. INTRODUCTION

The concept of fuzzy ordering was defined by Zadeh [5] in 1971. Yuan
and Wu [1] introduced the concept of a fuzzy sublattice. Ajmal and
Thomas [3] defined a fuzzy lattice and a fuzzy sublattice as a fuzzy alge-
bra in 1994. Chon [!] considered Zadeh’s fuzzy order [6] and proposed a
new notion of a fuzzy lattice and studied level sets of such structures. At
the same time he also proved some results for distributive and modular
fuzzy lattices. Mezzomo et. al. [3] changed the way to define the fuzzy
supremum and the fuzzy infimum of a pair of elements by considering
as a threshold fixed o € [0, 1) instead of, as usual, zero.

The concept of a modular pair in a lattice is well investigated by
Maeda and Maeda [2]. Recently, Wasadikar and Khubchandani [7] de-
fined a fuzzy modular pair in a fuzzy lattice and obtained some prop-
erties of fuzzy modular pairs. In this paper, we introduce the notion of
a fuzzy a-modular pair in a fuzzy a-lattice and prove some properties
analogous to the classical theory.
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2. PRELIMINARIES

In fuzzy sets, each element of a nonempty set X is mapped to [0, 1]
by a membership function p: X — [0, 1].
A mapping A : X x X — [0,1] is called a fuzzy binary relation on X.
The following definition is from Zadeh [6]. A fuzzy binary relation A
on X is called:
(i) fuzzy reflexive if A(z,z) =1, for all z € X
(ii) fuzzy symmetric if A(z,y) = A(y,x), for all z,y € X;
(iii) fuzzy transitive if A(z,2) > sup,ecx min[A(z,y), A(y, 2)};
(iv) fuzzy antisymmetric if A(z,y) > 0 and A(y,z) > 0 implies
x=y.
Based on the above properties Zadeh [0] introduced the following
concepts related to a fuzzy binary relation A on a set X:

(i) A is called a fuzzy equivalence relation on X if A is fuzzy re-
flexive, fuzzy symmetric and fuzzy transitive;

(ii) A is a fuzzy partial order relation if A is fuzzy reflexive, fuzzy
antisymmetric and fuzzy transitive and the pair (X, A) is called
a fuzzy partially ordered set or a fuzzy poset;

(iii) A is a fuzzy total order relation if it is a fuzzy partial order
relation and A(z,y) > 0 or A(y,z) > 0, for all z,y € X, and
the fuzzy poset (X, A) is called of a fuzzy totally ordered set or
a fuzzy chain.

Definition 2.1. [, Definition 3.1] Let (X, A) be a fuzzy poset and let
Y C X. An element v € X is said to be an upper bound for Y iff
A(y,u) > 0, for all y € Y. An upper bound ug for Y is the least upper
bound (or supremum) of Y iff A(ug,u) > 0, for every upper bound u
for Y. We then write up = supY = VY. If Y = {z,y}, then we write
VY =z Vy.

Similarly, an element v € X is said to be a lower bound for Y iff
A(v,y) >0, for all y € Y. A lower bound vy for Y is the greatest lower
bound (or infimum) of Y iff A(v,vp) > 0, for every lower bound v for
Y. We then write vg = infY = AY. If Y = {z,y}, then we write
AY =z Ay.

3. Fuzzy a-LATTICES

Mezzomo and Bedregal [3] generalized the concept of a (fuzzy) upper
bound as follows.
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Definition 3.1. [3, Definition 3.1] Let (X, A) be a fuzzy poset. Let
Y C X and a € [0,1). An element v € X is said to be an a-upper
bound for Y whenever A(x,u) > a, for all x € Y. An a-upper bound
ug for Y is called a least a-upper bound (or a-Supremum) of Y iff
A(ug,u) > «, for every a-upper bound u of Y.

Dually, an element v € X is said to be an a-lower bound for Y iff
A(v,z) > a, forally € Y. An a-lower bound vy for Y is called a greatest
a-lower bound (or a-infimum) of Y iff A(v,v9) > «a for every a-lower
bound v for Y.

We denote the least a-upper bound of the set {x, y} by = V4 y and
the greatest a-lower bound of the set {x, y} by z Ay ¥.

Remark 3.2. [3, Remark 3.1] Since A is fuzzy antisymmetric, the least
a-upper (greatest a-lower) bound, if it exists, is unique.

Proposition 3.3. [3, Proposition 3.1] Let (X, A) be fuzzy poset, a €
[0,1) and x,y,z € X. If A(xz,y) > o and A(y, z) > «a, then A(z,z) > a.

Definition 3.4. [3, Definition 3.2] A fuzzy poset (X, A) is a fuzzy a-
lattice iff x V4 y and x A, y exists for all z,y € X, for some « € [0,1).

Definition 3.5. [3, Definition 3.4] A fuzzy poset (X, A) is called fuzzy
sup a-lattice, if each pair of element has a-supremum in X, denoted by
supq, X.

Dually, it is called fuzzy inf a-lattice, if each pair of element has a-
infimum in X, denoted by inf, X. A fuzzy semi a-lattice is a fuzzy
poset which is a fuzzy sup a-lattice or a fuzzy inf a-lattice.

Definition 3.6. [3, Definition 3.5] Let (X, A) be a fuzzy poset and I
be a fuzzy set on X. The a-supremum in I denoted by sup, I, is an
element of X such that if z € X and ps(x) > «, then A(z, supaI) >
and if uw € X is such that A(x,u) > « whenever pr(x) > «, then
A(supoI,u) > a.

Similarly, the a-infimum in I denoted by inf, I, is an element of X
such that if x € X and ps(z) > «, then A(infol,x) > cand if v € X is
such that A(v,z) > a whenever pur(z) > a, then A(v,inf,I) > a.

Definition 3.7. [3, Definition 3.6] A fuzzy inf a-lattice is called inf
complete if all of its nonempty fuzzy sets have a-infimum.

Similarly, a fuzzy sup «-lattice is called sup-complete if all of its
nonempty fuzzy set admit a-supremum. A fuzzy a-lattice is complete
whenever it is, simultaneously, inf-complete and sup-complete.
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Proposition 3.8. [3, Proposition 3.2] Let (X, A) be a complete fuzzy
sup a-lattice (inf a-lattice) and I be a fuzzy set on X. Then, sup, I
(info I) exists and it is unique.

Proposition 3.9. [3, Proposition 3.3] Let L = (X, A) be a fuzzy sup
a-lattice, then there exist an element T in X, such that A(x, T) > « for
all x € X.

Proposition 3.10. [3, Proposition 3.4] Let £ = (X, A) be a fuzzy inf
a-lattice, then there exist an element L in X, such that A(L,z) > « for
all x € X.

Definition 3.11. [3, Definition 3.6] A fuzzy lattice (X, A) is bounded
if there exists T and L in X such that for any x € X, A(L,z) > « and
Az, T) > a.

Corollary 3.12. [3, Corollary 3.1] Every fuzzy lattice is a fuzzy a-
lattice.

We illustrate the concepts of an a-upper bound and a-lower bound
with an example.

Ezample 3.13. Consider the set X = {x,y, z,w}, let @=0.2 and
let A: X x X — [0,1] be a fuzzy relation defined as follows:
A(z,z) = A(y,y) = A(z,2) = A(w,w) = 1.0,

A(w,z) = 0.2, A(w,y) = 0.5, A(w,z) = 0.9,
A(z,w) =0.0, A(z,y) = 0.3, A(z,x) = 0.6,
A(y,w) =0.0, A(y,2) = 0.0, A(y,z) = 0.4,

A(z,w) = 0.0, Az, z) = 0.0, A(z,y) = 0.0.

Then A is a fuzzy total order relation.

Let Y = {w, z}. Then z,y and z are the a-upper bounds of Y. Since
A(z,w) = 0.0 and A(w, z) = 0.2 > a, it follows that the a-supremum of
Y is z and the a-infimum is w.

The fuzzy a-join and fuzzy a-meet tables are as follows:

\/a‘myzw /\a‘a: Yy z w
r|lr r x x rT|lr Yy z w
y|\r vy y yl|l\y v z w
zZlx y z =z zZ |z 2z z w
wlr Yy z w wlw w ow w
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We note that (X, A) is a fuzzy lattice as well as a fuzzy a-lattice for
a=0.2.

In Figure 1, we show the related tabular and graphical representations
for the fuzzy relation A.

xT
//‘I&\
(Al w |z [y][a] TR
w]1.0]02]05]0.9 AR
2 |0.0[1.0[0.3]0.6 N vz
y |0.0]00[1.0/04 K
2 [[0.0[0.0]/00]1.0 w
w
Figure 1

The following example shows that a subset of a fuzzy poset may not
have a greatest a-lower bound (least a-upper bound).

Ezample 3.14. Let X = {x1,y1, 21, w1 }.

Let A: X x X — [0,1] be a fuzzy relation defined as follows:
A(z1,21) = A(y1,y1) = A(z1,21) = A(wi,wy) = 1.0,

A(.Z'l, yl) = 0.20, A(Q,’l, 21) = 0.30, A(xl, wl) = 0.907

A(yl,l‘l) = 0.0, A(yl, Zl) = 0.0, A(yl, wl) e 0.50,

A(zl, 1’1) = 0.0, A(zl,yl) = 0.0, A(zl,wl) = 0.70,

A(wy,z1) = 0.0, A(wy,y1) = 0.0, A(wr, 21) = 0.0.

Then A is a fuzzy partial order relation.

The fuzzy a-join and fuzzy a-meet tables are as follows:

Vo |z y1 21w N |z y1 21wy
i | r1 Yyr 21 w r1 |1 T1 T1 X1
Y|y yr w1 w Y1 |1 Y1 1 Y1
21 | &1 w1 21 w1 21 |1 1 21 21
wp | wr wp wip wi wy |1 Y1 21 w1

We note that (X, A) is a fuzzy lattice.

In Figure 2, we show the related tabular and graphical representation
for the fuzzy relation A.



Fuzzy Pairs In Fuzzy a-Lattices 73

w1
A
(Ao [ [ 2o Jw | 250 0
21 1.0 10.20 [ 0.30 | 0.90 NN
y1 [[0.0] 1.0 [ 0.0 [ 0.50 N U
2 |0.0] 0.0 | 1.0 | 0.70 o
wy [[0.0] 0.0 | 0.0 | 1.0
z
Figure 2

In Figure 3, we show the related tabular and graphical representations
for the fuzzy relation A for o > 0.30.
Here z1 V4 w1 = wy, 1 Aq w1 = 1,
Y1 Va W1 = W1, Y1 Na W1 = Y1,
21 Vo W1 = W1, 21 N W1 = 21,
Y1 Vo 21 = W1, Y1 Vo T1 = W1, 21 Vo T1 = W1.
But y1 Aq 21, y1 Ao T1, 21 Aq 21 does not exist.

w1
A

Zlo’// : \\\

(Aller o [= ] w | N

1 [ L0[0.0]0.0]0.90 TN

y1 || 0.0 1.0[0.0]0.50 L Ay

2 |[0.0[0.0 [ 1.0 0.70 !
w; [[0.0]0.0]0.0] 1.0 :
7

Figure 3

Remark 3.15. We note that Example 3.13 is an example of a fuzzy a-
lattice for v = 0.2 whereas Example 3.14, is not a fuzzy a-lattice for
a > 0.30.

Proposition 3.16. [3, Proposition 3.7] Let (X, A) be a fuzzy a-lattice,
a €10,1) and let x,y,z € X. The following statements hold:
(1) A(z,zVay) > a, Ay, xVay) > a, A(xN\ay,z) > o, A(zA0y,y) > o
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(i) A(z,z) > a and A(y, z) > « implies A(x Va y, 2) >

(13i) A(z,z) > o and A(z,y) > « implies A(z,x N\q y) > «;

(v) Alz,y) > iff e Vay =y;

(v) A(z,y) > a iff x Aoy = x;

(vi) If A(y, z) > «, then A(x Aqy,x Ao 2) > a and A(xVay,xVaz) > a;
(vii) If A(x Vo y, 2) > «, then A(x,z) > a and A(y,z) > «;

(viii) If A(z,y Na 2) > «, then A(z,y) > a and A(z,z) > a.
Proposition 3.17. [3, Proposition 3.8] Let (X, A) be a fuzzy a-lattice
and let x, y, z € X. Then

(i) xVoxr =2 and x N\q T = x;

(i) xVoy=yVaT and T No Yy =y Ao

(731) (x Vo y) Va2 =2 Va (Y Va 2) and (x Aa y) Na 2 =2 Ao (Y Na 2);
(iv) (x Vo y) Nax = and (£ N y) Vo T = T.

Lemma 3.18. Let (X, A) be a fuzzy a-lattice and z,y, 2’y € X. If

A2 z) > a and A(Y',y) > «, then A2 Aoy 2 Ao y) > a and
A(@' Vo, Vay) > a.

Proof. As A(2',z) > « so, by (vi) of Proposition 3.16,

we have that A(z' Ao ¢/, 2 Ao ¥') > . (I)
Also, A(y',y) > « so, by (vi) of Proposition 3.16,
we have A(x Ao v, 2 Ao y) > . (II)

From (I) and (II) by fuzzy transitivity of A we have
A Na 2 N y) > .
Similarly, we can show that A(z' Vo ¢/, 2 Ve y) > a. O

Definition 3.19. [3, Definition 3.8] Let (X, A) be a fuzzy a-lattice.
(X, A) is fuzzy distributive iff © Ay (y Vo 2) = ( Aa ¥) Vo (2 Ay 2) and
(xVay) Ao (Vo 2) =2V (Y A 2).

Note that (X, A) is fuzzy distributive iff A(x Ay (y Va 2), ( Aq y) V
(x Na 2)) > aand A((2 Va y) Ao (£ Vo 2),2 Vo (Y Ao 2)) > a.
We now define fuzzy modularity in a fuzzy a-lattice.

Proposition 3.20. (Modular inequality) Let (X, A) be a fuzzy a-lattice
and let x,y,z € X. Then A(z,z) > « implies
A(x Vo (Y Na 2), (Vo y) Ao 2) > a.

Proof. As A(x,xVqy) > a and A(z, z) > « by (iii) of Proposition 3.16,
we have A(z, (x Vo y) Ao 2) > . (I)
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Since A(y Ao 2,y) > « and A(y, = V4 y) > a by fuzzy transitivity of A
we have A(y Ao 2,2 Vo y) > a.
Using (iii) of Proposition 3.16, we have

Ay Na 2, (Vo y) Ao 2) > a. (II)
Thus by (I) and (II) and by (ii) of Proposition 3.16, we have
A(x Vo (Y Na 2), (Vo y) Na 2) > . O

Definition 3.21. Let (X, A) be a fuzzy a-lattice. (X, A) is fuzzy a-
modular iff A(z,z) > « implies Vo (Y Aq 2) = (2 Vo y) Ao 2 for all
x,y,z € X.

By the modular inequality, a fuzzy a-lattice (X, A) is fuzzy a-modular
iff A(x,z) > o implies A(x VoY) Ao 2,2 Vo (YA 2)) > afor z,y,z € X.

Proposition 3.22. Let (X, A) be a fuzzy a-lattice. (X, A) be a fuzzy
distributive lattice, then (X, A) is fuzzy a-modular lattice.

Proof. Let x,y,z € X. Suppose A(zx, z) > a.

Since (X, A) is fuzzy distributive so, we have

(xVay) Aoz =( Aq 2) Vo (Y Aq 2). Thus,

A((x Vay) Na 2,2 Vo (Y Na 2)=A((x Na 2) Va (Y Ao 2), 2 Vo (Y N 2))-(T)
As A(z,z) > a by (v) of Proposition 3.16, we have = Ay z = .

So, (I) reduces to

A((x Vo y) Na 2,2 Vo (YNa 2)) = Az Vo (Y Na 2),2 Vo (Y Na 2)) >
Hence (z Vq y) Na 2 = Vo (Y Aa 2).

Thus, (X, A) is fuzzy a-modular lattice. O

4. FuzzYy a-MODULAR PAIRS IN A FUZZY «a-LATTICE

In this section, we define a fuzzy a-modular pair in a fuzzy a-lattice
and we prove some propositions.
We recall the definition of a fuzzy modular pair in a fuzzy lattice from

[7]-

Definition 4.1. Let X be a nonempty set and £ = (X, A) be a fuzzy
lattice with L. Let z,y € X. We say that (z,y) is a fuzzy meet-modular
pair and we write (z,y)pM,, if whenever A(z,y) > 0, then
(zVrpz)Apy=2zVp (xApy).

We say that (x,y) is a fuzzy join-modular pair and we write (z,y)rM;
if whenever A(y,z) > 0, then (z Apz) Vrpy =2 Ap (z VFYy).
We write (z,y)pM; or (z,y)pM,, when the pair (z,y) is not a fuzzy
join-modular or fuzzy meet-modular pair respectively.
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Definition 4.2. Let (X, A) be a fuzzy a-lattice. We say that (z,y) is a
fuzzy a-modular pair and we write (x,y)F M,, if whenever A(z,y) > «
for some z € X, a € [0,1), then (2 Vo @) Aq ¥ = 2 Vo (T Ao Y).

We say that (z,y) is a fuzzy dual a-modular pair and we write
(x,y)FMZ, if whenever A(y,z) > « for some z € X, then
(zNa @) Vay=2Na (T Vay).

We write (x,y)F M, when the pair (x,y) is not a fuzzy a-modular
pair.

Ezample 4.3. Let X = {v,w,z,y,2z} and let A: X x X — [0,1] be a
fuzzy relation defined as follows:

A(v,v) = A(w,w) = A(z,x) = Ay, y) = A(z, z) = 1.0,

A(v,w) = 0.40, A(v,z) = 0.50, A(v,y) = 0.80, A(v, z) = 0.94,

A(w,v) = 0.0, A(w, z) = 0.20, A(w,y) = 0.60, A(w, z) = 0.90,

A(z,v) = 0.0, A(x,w) = 0.0, A(z,y) = 0.30, A(z, z) = 0.70,

A(y,v) = 0.0, A(y,w) = 0.0, A(y,z) = 0.0, A(y, z) = 0.40,

A(z,v) = 0.0, A(z,w) = 0.0, A(z,x) = 0.0, A(z,y) = 0.0.

Then A is a fuzzy partial order relation.

Y
Y

The fuzzy a-join and a-fuzzy meet tables are as follows:

w w T

SRS
S - P

[SEINSIINSIIN SIS N

ne 8 8 e
ne 8 g 8
e 8 8 88
NW W W W W
SERSERSEESERSH RS
ISERSIINSEI SN
88 8 &
e e ] 8 el
nNe 8 2 S|

We note that (X, A) is a fuzzy lattice.

Here for A(v,z) = 0.50 > 0, (y,x)pM,, holds in a fuzzy lattice (X, A)
as (WWVrpy)Apz=yApz=x=vVpzr=vVp(yArx).

For A(w,y) = 0.60 > 0, (z,y) My, holds in a fuzzy lattice (X, A)

as (WVpz)Apy=zApy=z=wVpx=wVp (xAry).

In Figure 4, we show the related tabular and graphical representations
for the fuzzy relation A.
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z
TN
vl SN
(Al v [ w [z |y | =] AN SN
v [ 1.0]0.40 [ 0.50 [ 0.80 | 0.94 I R
w | 0.0 1.0 [0.20 [ 0.60 [ 0.90 SN T
2 ][0.0] 0.0 | 1.0 |0.30]0.70 wi S
y [[0.0]0.0 [ 0.0 ] 1.0 [0.40
z [0.0] 0.0 [ 000010 N
v
Figure 4

Now using Example 4.3 we construct an example which shows that a
pair may be a fuzzy meet modular pair in a fuzzy lattice but may not
be a fuzzy a-modular pair in a fuzzy a-lattice.

Ezample 4.4. We use Example 4.3 to construct a fuzzy a-lattice for
a > 0.40.
We have A(v,v) = A(w,w) = A(z,x) =
(v,w) = 0.40, A(v,z) = 0.50, A(v,y) = 0.80, A(v,z) = 0.94,
A(w,v) = 0.0, A(w,z) = 0.0, A(w,y) = 0.60, A(w, z) = 0.90,
A(z,v) = 0.0, A(z,w) = 0.0, A(z,y) = 0.0, A(x, z) = 0.70,
A(y,v) =0.0, A(y,w) = 0.0, A(y,z) = 0.0, A(y, z) = 0.40,
A(z,v) = 0.0, A(z,w) = 0.0, A(z,2) = 0.0, A(z,y) = 0.0.

The fuzzy a-join and fuzzy a-meet tables are as follows:

Aly,y) = Alz,2) = 1.0,

Va |l w =z y =z N |V W = Yy =z
v|lvow Ty 2 v|v v v v v
wlw w oz Yy z wlv o w v w w
rT|lrx z x z Z r|lv v T UV X
yly vy =2y = y|vw v y y
zZ |z z zZ zZ z zZ|lv w T Yy =z

We note that for A(v,z) = 0.50 > «, (y,z)F M, holds
as (VoY) Aa T =yNaZ=0=0Va0=0Vq (Y Ao ).

We note that for A(w,y) = 0.60 > «, (x,y)FM, does not hold as
(WVaZ)Nay=2Nay=yand wV, (zAqy) =wVev=w #y.

Note that (z,y) M, holds but (z,y)F M, does not hold for v > 0.40.
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In Figure 5, we show the related tabular and graphical representations
for the fuzzy relation A.

z
///T\\
ye SN
Alv[w =z [y =] »/ 0
v [1.0]0.40 [0.50 [ 0.80 [ 0.94 A o
w [ 0.0] 1.0 [ 0.0 [0.60 | 0.90 SN
z [[0.0] 0.0 [ 1.0 [ 0.0 |0.70 R
y [0.0[ 0.0 [ 0.0 ] 1.0 [0.40
2]0.0]0.0[00]00]10 %
v
Figure 5

Remark 4.5. Let (X, A) be a fuzzy poset and z,y € X. We say that
x and y are a-comparable, if A(z,y) > « or A(y,z) > « for some
ael0,1).

Proposition 4.6. Let (X, A) be a fuzzy a-lattice. If x and y are a-
comparable, then (y,x)F M, for some a € [0,1).

Proof. Since x and y are a-comparable, then A(x,y) > a or Ay, x) > a.

Case (1): Let A(z,y) > a. Suppose that A(z,x) > « for some z € X.
Then by fuzzy transitivity of A we have A(z,y) > «, that is, 2 Vo y = v.
As A(z,z) > o and A(z,y) > « so, by (iii) of Proposition 3.16, we get
Az, Ao y) > .

Hence 2 Vo (Y Aa ) =y Ao = (2Va y) N .

Therefore (y, x)F M, holds.

Case (2): Let A(y,x) > a. Suppose that A(z,x) > «.

Since A(z,x) > a and A(y,z) > « by (ii) of Proposition 3.16, we have
A(zVay,x) > asuch that 2 Va (Y Aa ) = 2Vay = (2Va y) Ao T.
Hence (y, z)F M, holds. O

Corollary 4.7. Let (X, A) be a fuzzy a-lattice. Then (x Aoy, x)F M,,
(xNay, ) F My, (x,2Voy)F My, (y,xVoy)F My and (xAqy, xVoy) FM,.

Proposition 4.8. Let (X, A) be a fuzzy a-lattice. Suppose that (x,y)F M,
holds. Let z € X. If A(x N y,2) > o and A(z,y) > «, then
(zVax) Aoy = 2.
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Proof. Let (x,y)F M, hold and let z € X.

Suppose that A(x Ay y, 2) > «, so by (iv) of Proposition 3.16, we have
(xNay) Vo 2z = 2.

Since (x,y)F M, holds, if A(z,y) > «, then

(2Vax) Aoy =2Va (T Aqy).

Hence (2 Vo ) Na y = 2. O

Proposition 4.9. Let (X, A) be a fuzzy a-lattice. Let x, y € X be such
that (z,y)FMy. If A(x Aq y,2') > a, A2, z) > o, A(x Ao y,Y) > «
and A(y',y) > «a, then (2',y')FM,.

Proof. To prove this we use Proposition 4.8.
Let (x,y)F M, hold. Suppose that A(z Ay y,y") > a and A(y,y) > a.
Since A(z A y,2') > o and A(x Ao y,Y') > «a,

by (iii) of Proposition 3.16, we have A(x Aq y, 2’ Ao y') > . (I)
As A(2',z) > o and A(y',y) > « so by Lemma 3.18, we get

Al Ntz N y) > (II)
From (I) and (II) by fuzzy antisymmetry of A we get

Ny =2 Ao y. (IIT)

Now, let z € X be such that A(z,y') > a.
As A(z,y') > aand A(y',y) > a by fuzzy antisymmetry of A we have

A(z,y) > a.
As (z,y)F M, holds, we have (z Vo ) Aq ¥y = 2 Vo (T Aq y).
Thus, by (III) we obtain (z V4 ) Aq ¥y = 2 Vo (' Ao V). (IV)

Since A(2’,2) > « by (iii) of Proposition 3.16, we have

A(zVa o' 2Vo ) > .

As A(y',y) > a and A(zVq 2/, 2 Vo ) > « again using Lemma 3.18, we
have A((z Vo 2') Aa ¥/, (2 Va ) Ao y) > .

By using (IV) we get A((2 Vo ') Aa ¥, 2 Va (7' Ao Y')) > a.

Thus, (2/,y")F M, holds. O

5. Conclusion

In this paper, we have presented a novel approach to modularity in
fuzzy a-lattices.
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