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ON EDGE PRODUCT HYPERGRAPHS

MEGHA M. JADHAV AND KISHOR F. PAWAR

Abstract. In this paper we introduced the notion of an edge prod-
uct hypergraph. A hypergraph H is said to be an edge product
hypergraph if edges of hypergraph can be labeled with distinct pos-
itive integers such that the product of all the labels of edges incident
to a vertex is again an edge label of H and if the product of any
collection of edges is a label of an edge in H then, they are incident
to a vertex. Here we have proved some important results by which
one can verify that given hypergraph is a unit edge product hyper-
graph or not. We also found some results on domination number
and inverse domination number of edge product hypergraph and its
complement.
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1. Introduction

In graph theory, graph labeling plays an important role in many appli-
cations such as astronomy, radar, x-ray crystallography, circuit design,
data base management, communication network addressing etc. The
concept of graph labeling was presented by Alexander Rosa in his paper
[6] in 1967. There are many different types of graph labeling such as
vertex labeling, edge labeling etc. In graph labeling, we assign integers
to the vertices or edges or both, subject to certain conditions. If the
domain is the set of vertices (or edges) then the labeling is called the
vertex (edge) labeling. If the labels are assigned to both vertices as well
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as edges of a graph then the labeling is called total labeling. Tradi-
tionally, the set of labels which we give to vertices or edges is a subset
of integers. For more details about graph labeling reader may refer to
Gallian [4]. In 1990 Harary [5] introduced the notion of sum graphs of
a graph G. A graph G(V,E) is said to be a sum graph if there exists a
bijection labeling f from the vertex set V to a set S of positive integers
such that xy ∈ E if and only if f(x) + f(y) ∈ S. The product analogue
of sum graphs was first introduced by Thavamani [7] in 2011. He in-
troduced edge product graph and edge product number of a graph. A
graph G is said to be an edge product graph if the edges of G can be
labeled with distinct positive integers such that the product of all the
labels of the edges incident on a vertex is again an edge label of G and
if the product of any collection of edges is a label of an edge in G then
they are incident on a vertex.

Hypergraph theory has been introduced in the 1960’s. It has many
applications in different sciences. Hypergraph is a very useful tool to
understand problems in a wide variety of scientific field. It also mod-
els many practical problems in many different sciences. Labeled hy-
pergraphs are one of the most widely appropriate and general way to
represent data on stateful machine. Hypergraph is a generalization of
a graph in which any subset of a given set may be an edge rather than
two element subsets. A hypergraph H is a pair (V,E) where V is a
set of elements called vertices or nodes and E is a set of non-empty
subsets of X called hyperedges or edges. It means that E is a subset
of P (X) \ φ where P (X) is the power set of X. A hypergraph whose
edges are assigned with weights are called weighted hypergraphs. The
weighted hypergraphs gained much attention in computer vision for the
purpose of representing geometrical information.

In the present paper, we introduced the notions of edge product hy-
pergraph, unit edge product hypergraph and studied their properties on
the line of [5] and [7]. We also proved some important results by which
one can verify that the given hypergraph is an unit edge product hy-
pergraph or not. Finally we obtain the dominating set and domination
number of edge product hypergraph and its complement.

2. Preliminaries

We begin with recalling some basic definitions from [1]-[3] required
for our purpose.
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Definition 2.1. A hypergraph H is a pair H(V,E) where V is a finite
nonempty set and E is a collection of subsets of V . The elements of V
are called vertices and the elements of E are called edges or hyperedges.
And ∪ei∈Eei = V and ei 6= φ are required, for all ei ∈ E. The number
of vertices in H is called the order of the hypergraph and is denoted by
|V |. The number of edges in H is called the size of H and is denoted by
|E|. A hypergraph of order n and size m is called a (n,m) hypergraph.
The number |ei| is called the degree (cardinality) of the edges ei. The
rank of a hypergraph H is r(H) = maxei∈E |ei|.
Definition 2.2. For any vertex v in a hypergraph H(V,E), the set
N [v] = {u ∈ V : u is adjacent to v} ∪ {v} is called the closed neighbor-
hood of v in H and each vertex in the set N [v]− {v} is called neighbor
of v. The open neighborhood of the vertex v is the set N [v] \ {v}. If
S ⊆ V then N(S) = ∪v∈SN(v) and N [S] = N(S) ∪ S.

Definition 2.3. A simple hypergraph (or sperner family) is a hyper-
graph H(V,E) where E = {e1, e2, · · · , em} such that ei ⊂ ej implies
i = j.

Definition 2.4. For any hypergraph H(V,E) two vertices v and u are
said to be adjacent if there exists an edge e ∈ E that contains both v
and u and non adjacent otherwise.

Definition 2.5. For any hypergraph H(V,E) two edges are said to be
adjacent if their intersection is nonempty. If a vertex vi ∈ V belongs to
an edge ej ∈ E then we say that they are incident to each other.

Definition 2.6. An edge in a hypergraph H is called a pure hyperedge
if it contains at least three vertices; otherwise it is called ordinary, and
H is called a pure hypergraph if each edge of H is a pure hyperedge.

Definition 2.7. The vertex degree of a vertex v is the number of vertices
adjacent to the vertex v in H. It is denoted by d(v).
The maximum (minimum) vertex degree of a hypergraph is denoted by
∆(H)(δ(H)).

Definition 2.8. The edge degree of a vertex v is the number of edges
containing the vertex v. It is denoted by dE(v).

The maximum (minimum) edge degree of a hypergraph is denoted
by ∆E(H)(δE(H)). A vertex of a hypergraph which is incident to no
edge is called an isolated vertex. The edge degree (or vertex degree) of
an isolated vertex is trivially 0. An edge of cardinality one is called a
singleton (loop), a vertex of edge degree one is called a pendant vertex.
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Definition 2.9. The hypergraph H(V,E) is called connected if for any
pair of its vertices, there is a path connecting them. IfH is not connected
then it consists of two or more connected components, each of which is
a connected hypergraph.

Definition 2.10. A hypergraph is said to be of rank k if each of its
edge contains at most k vertices.

Definition 2.11. The complement of H̄ of a hypergraph H(V,E) is
defined as H̄(V, Ē) where Ē = {ē|e ∈ E} with ē ∈ Ē, ē = {v /∈ e|e ∈ E}.
Definition 2.12. For a hypergraph H(V,E), a set D ⊆ V is called a
dominating set of H if for every v ∈ V \D there exists u ∈ D such that
u and v are adjacent in H, that is there exists e ∈ E such that u, v ∈ e.
Definition 2.13. A dominating set D of a hypergraph H is called a
minimal dominating set, if no proper subset of D is a dominating set
of H. The minimum cardinality of a minimal dominating set in a hy-
pergraph H is called the domination number of H and is denoted by
γ(H).

Definition 2.14. Let D ∈ D0(H), the set of all minimum dominating
sets (of cardinality γ(H)). An inverse dominating set with respect to
D is any dominating set D′ of H such that D′ ⊆ V \ D. The inverse
domination number of H is defined as

γ−1(H) = min{|D′| | D ∈ D0(H), D′is an inverse dominating set

with respect to D}
In this paper, we consider a simple hypergraph (n,m) without isolated

vertices and of size m > 1.

3. Edge Product Hypergraph

In this section the notion of an edge function is given and using this
edge function an edge product hypergraph is defined. Later the notion of
a unit edge product hypergraph is introduced. These definitions are ver-
ified with examples and some important results are obtained. Lastly the
results based on the domination number and inverse domination number
of unit edge product hypergraph and its complement are obtained.

Definition 3.1. Let H(V,E) be a simple and connected hypergraph.
Let V (H) be the vertex set of H and E(H) be the edge set of H. Let
P be a set of positive integers such that |E| = |P |. Then any bijection
f : E → P is called an edge function of the hypergraph H.
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Definition 3.2. The function

F (v) =
∏
{f(e)| edge e is incident to the vertex v}

on V (H) is called an edge product function of the edge function f .

Definition 3.3. The hypergraph H(V,E) is said to be an edge product
hypergraph if there exists an edge function f : E → P such that the
edge function f and the corresponding edge product function F of f on
V (H) have the following two conditions:

(1) F (v) ∈ P , for every v ∈ V .
(2) If f(e1)×f(e2)×. . .×f(ep) ∈ P , for some edges e1, e2, . . . , ep ∈ E

then the edges e1, e2, . . . , ep are all incident to a vertex v ∈ V .

Example 3.4. Let H(V,E) be a hypergraph, where V = {v1, v2, . . . , v20}
and E = {e1, e2, . . . , e7}. In which the edges of H are defined as follows:
e1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9},
e2 = {v1, v2, v3, v10},
e3 = {v1, v2, v3, v11, v12},
e4 = {v4, v5, v13},
e5 = {v4, v5, v14, v15, v16},
e6 = {v4, v5, v17, v18}, and
e7 = {v19, v20}.

Now define the edge function f : E → P by f(e1) = 11, f(e2) = 30,
f(e3) = 4, f(e4) = 3, f(e5) = 20, f(e6) = 2, f(e7) = 1320.

The edge product function F of f is defined by, F (v1) = 1320, F (v2) =
1320, F (v3) = 1320, F (v4) = 1320, F (v5) = 1320, F (v6) = 11, F (v7) =
11, F (v8) = 11, F (v9) = 11, F (v10) = 30, F (v11) = 4, F (v12) = 4,
F (v13) = 3, F (v14) = 20, F (v15) = 20, F (v16) = 20, F (v17) = 2,
F (v18) = 2, F (v19) = 1320, F (v20) = 1320.

Hence the given hypergraph is a edge product hypergraph.

Definition 3.5. For an edge product hypergraph H(V,E) there exists
an edge function f : E → P such that an element 1 ∈ P then the
hypergraph H is called a unit edge product hypergraph.

Theorem 3.6. Let H be a unit edge product hypergraph with an edge
e∗ ∈ E and f(e∗) = 1. Then e∗ must be adjacent to all the edges of H.

Proof. Let H(V,E) be a unit edge product hypergraph with f(e∗) = 1.
Let ej be any edge in H such that f(ej) ∈ P . Suppose that ej is not
adjacent to e∗. It means that there is no common vertex in ej and
e∗ ⇒ ej ∩ e∗ = ø. Now, f(ej) = f(ej) · 1 ⇒ f(ej) = f(ej) · f(e∗) ∈ P .
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Therefore edges ej and e∗ are incident to a vertex v ∈ V that is v ∈
ej ∩ e∗. This is a contradiction to our assumption and hence e∗ must be
adjacent to all the edges of H. �

Example 3.7. Let H(V,E) be a hypergraph, where V = {v1, v2, . . . , v24}
and E = {e1, e2, . . . , e6}. In which the edges of H are defined as follows:
e1 = {v1, v2, v11, v12, v13, v14, v15, v16, v23},
e2 = {v1, v2, v3, v4, v5},
e3 = {v1, v2, v6, v7, v8, v9, v10},
e4 = {v14, v15, v16, v17, v18},
e5 = {v14, v15, v16, v19, v20, v21, v22}, and
e6 = {v23, v24}.

Define the edge function f : E → P by f(e1) = 1, f(e2) = 24,
f(e3) = 27, f(e4) = 25, f(e5) = 26, f(e6) = 211.

The edge product function F of f is defined by, F (v1) = F (v2) = 211,
F (v3) = F (v4) = F (v5) = 24, F (v6) = F (v7) = F (v8) = F (v9) =
F (v10) = 27, F (v14) = (v15) = F (v16) = 211, F (v17) = F (v18) = 25,
F (v11) = F (v12) = F (v13) = 1, F (v19) = F (v20) = F (v21) = F (v22) =
26, F (v23) = 211, F (v24) = 211.

Hence the given hypergraph H(V,E) is a unit edge product hyper-
graph.

Example 3.8. LetH(V,E) be a hypergrapgh, where V = {v1, v2, . . . , v22}
and E = {e1, e2, . . . e5}. In which the edges of H are defined as follows:
e1 = {v1, v2, v3, v10, v11, v12, v13, v14, v15, v16},
e2 = {v1, v2, v3, v4},
e3 = {v1, v2, v3, v5, v6},
e4 = {v1, v2, v3, v7, v8, v9}, and
e5 = {v12, v13, v14, v15, v16, v17, v18, v19, v20, v21, v22}.

Define the edge function f : E → P by f(e1) = 1, f(e2) = 2, f(e3) =
3, f(e4) = 4, f(e5) = 24,

The edge product function F of f is defined by, F (v1) = F (v2) =
F (v3) = 24, F (v4) = 2, F (v5) = 3 = F (v6), F (v7) = F (v8) = F (v9) = 4,
F (v10) = (v11) = 1, F (v12) = F (v13) = F (v14) = F (v15) = F (v16) =
F (v17) = 24, F (v18) = F (v19) = F (v20) = F (v21) = F (v22) = 24.

Hence the given hypergraph H(V,E) is a unit edge product hyper-
graph.

Theorem 3.9. Let H(V,E) be a hypergraph with an edge e∗ ∈ E such
that f(e∗) = 1. Let for any other edge (excluding e∗), there is exactly
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one distinct vertex xi ∈ ei∩e∗, for i = 1, 2, . . . ,m− 1 and ei∩ej = φ, for
i 6= j , i, j = 1, 2, . . . ,m− 1. Then H is a unit edge product hypergraph.

Proof. Let H(V,E) be a hypergraph satisfying the hypothesis. Let
e1, e2, . . . , em−1 be other edges in H and ei ∩ ej = φ for i 6= j,
i, j = 1, 2, . . . ,m− 1. Now for each edge ei we have only one distinct
vertex xi ∈ ei ∩ e∗ that is x1, x2, . . . , xm−1 are the vertices in e∗. Let
t1, t2, . . . , tq be the other vertices in e∗ such that t1, t2, . . . , tq /∈ ei for
i = 1, 2, . . . ,m− 1 which implies t1, t2, . . . , tq are pendant vertices in H.

Now let ei be the edge with vertices yi1, y
i
2, · · · , yiri in H, for i =

1, 2, . . . ,m− 1, where r1, r2, . . . , rm−1 are the non-negative integers rep-
resenting the number of elements in e1, e2, . . . , em−1 respectively.

Thus,

V (H) = {x1, x2, . . . , xm−1, t1, t2, . . . , tq, y
1
1 , y

1
2 , . . . , y

1
r1

, y
2
1 , y

2
2 , . . . , y

2
r2

, . . . , y
m−1
1 , y

m−1
2 , . . . , y

m−1
rm−1

}

and

E(H) = {e∗, e1, e2, . . . , em−1},
where e∗ = {x1, x2, . . . , xm−1, t1, t2, . . . , tq} and ei = {yi1, yi2, . . . , yiri} for
i = 1, 2, . . . ,m−1 is the vertex set and edge set of the given hypergraph
respectively.

The set of all elements of P = {1, p1, p2, . . . , pm−1} where pi denote the
ith prime number, when we enumerate prime numbers in the increasing
order. The edge function f : E → P defined by f(e∗) = 1, f(ei) = pi for
i = 1, 2, . . .m− 1.

The edge product function F of f is defined by, F (xi) = pi for 1 ≤
i ≤ m− 1.
F (tj) = 1 for 1 ≤ j ≤ q
F (y11) = F (y12) = F (y13) = · · · = F (y1r1) = p1
F (y21) = F (y22) = F (y23) = · · · = F (y2r2) = p2
...
F (ym−11 ) = F (ym−12 ) = F (ym−13 ) = · · · = F (ym−1rm−1

) = pm−1
Here for every vertex v ∈ V (H), we have F (v) ∈ P and if the product

of a collection of more than one element of P is in P then the collection
consists of exactly two elements 1 and pi. For 1 and pi, we have edges
e∗ and ei incident to a vertex xi ∈ V (H). Hence the given hypergraph
is a unit edge product hypergraph. �

Example 3.10. LetH(V,E) be a hypergraph. Where V = {v1, v2, . . . , v21}
and E = {e1, e2, . . . , e7}. In which the edges of H are defined as follows:
e1 = {v1, v2, v3, v4, v5, v6, v7, v8, v9},
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e2 = {v1, v10},
e3 = {v2, v11},
e4 = {v3, v12, v13},
e5 = {v4, v14, v15},
e6 = {v5, v16, v17, v18}, and
e7 = {v6, v19, v20, v21}.

Define edge function f : E → P by f(e1) = 1, f(e2) = 2, f(e3) = 3,
f(e4) = 5, f(e5) = 7, f(e6) = 11, f(e7) = 13.

The edge product function F of f is defined by F (v1) = F (v10) = 2,
F (v2) = F (v11) = 3, F (v3) = F (v12) = F (v13) = 5, F (v4) = F (v14) =
F (v15) = 7, F (v5) = F (v16) = (v17) = F (v18) = 11, F (v6) = F (v19) =
F (v20) = F (v21) = 13, F (v7) = F (v8) = F (v9) = 1.

Hence the given hypergraph H(V,E) is a unit edge product hyper-
graph.

Theorem 3.11. Let H(V,E) be a unit edge product hypergraph and
e∗ ∈ E such that f(e∗) = 1. Then H contains at least one edge which is
adjacent to only e∗.

Proof. Let H be a unit edge product hypergraph with e∗ ∈ E such that
f(e∗) = 1. Let f be an edge function and F be an edge product function
of f . Let us suppose that p be the largest element in the set of positive
integers P . Then for bijection f : E → P there exists an edge e ∈ E
such that f(e) = p. Consider there is no edge in H which is adjacent to
only e∗. This implies an edge e is adjacent to some other edge ej ∈ E
in H. Hence we have a vertex v ∈ e ∩ ej or v ∈ e ∩ ej ∩ e∗. We also
obtain F (v) = f(e) · f(ej) > p or F (v) = f(e) · f(ej) · f(e∗) > p, which
is a contradiction. Thus H contains at least one edge which is adjacent
to only e∗. �

Theorem 3.12. Let H be a unit edge product hypergraph and e∗ ∈ E
such that f(e∗) = 1. Let v1, v2, . . . , vr be the pendant vertices in e∗.
Then γ(H) ≤ |e∗| − r.

Proof. Let H be a unit edge product hypergraph with e∗ ∈ E and
f(e∗) = 1 and v1, v2, . . . , vr be the pendant vertices in e∗. By Theo-
rem 3.6 we have xi ∈ (ei ∩ e∗). Hence x1, x2, . . . , xm−1 be non pen-
dant vertices in e∗ (which may or may not be distinct). Now each xi
dominates rest of all vertices of ei, for i = 1, 2, . . . ,m− 1. Therefore
{x1, x2, . . . , xm−1} is a dominating set of H with cardinality |e∗| − r.
Hence γ(H) ≤ |e∗| − r. �
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Remark 3.13. The bound given in the Theorem 3.12 is sharp:
For, consider the hypergraph with the vertex set V = {v1, v2, . . . , v19}
and the edge set E = {e1, e2, . . . , e5}. In which the edges of H are
defined as follows: e1 = {v1, v2, v3, v4, v5, v6, v7, v8},
e2 = {v1, v9},
e3 = {v2, v10, v11},
e4 = {v3, v12, v13, v14}, and
e5 = {v4, v15, v16, v17, v18, v19}.

We define the edge function f : E → P by f(e1) = 1, f(e2) = 2,
f(e3) = 3, f(e4) = 5, f(e5) = 7, where P = {1, 2, 3, 5, 7}.

The edge product function F of f is defined by, F (v1) = F (v9) = 2,
F (v2) = F (v10) = F (v11) = 3, F (v3) = F (v12) = F (v13) = F (v14) = 5,
F (v4) = F (v15) = F (v16) = (v17) = F (v18) = 7, F (v6) = F (v7) =
F (v5) = F (v8) = 1.

Thus, H(V,E) is a unit edge product hypergraph. Here e1 ∈ E and
f(e1) = 1, |e1| = 8. The vertices {v5, v6, v7, v8} are pendant vertices in
e1. clearly the set D = {v1, v2, v3, v4} is a minimum dominating set of a
given hypergraph and γ(H) = 4 that is γ(H) = |e1| − r.

In order to avoid the trivial anomalies, whenever we talk about H̄,
we restrict ourselves to those hypergraphs which satisfies the condition
that, every vertex v of H is incident with some edge e of cardinality,
2 ≤ |e| ≤ |v| − 2, and avoiding v and dE(v) < |E| and |V | ≥ 4.

Lemma 3.14. Let H(V,E) be a unit edge product hypergraph and e∗ ∈
E such that f(e∗) = 1 and e∗ contains two pendant vertices. Then
γ(H̄) = γ−1(H̄) = 1.

Proof. Let H be a unit edge product hypergraph with e∗ ∈ E and
f(e∗) = 1. Let u and v be the pendant vertices in e∗. Then by Theorem
3.11, there exists an edge ek which is adjacent to only e∗. For the vertex
w ∈ X|ek∪{u} we have ēk = X|ek ∈ Ē such that u,w are in ēk. Hence

the vertex u dominates the vertex w in H̄. Now let x ∈ ek. Then there
exists ej ∈ E such that x /∈ ej . Since u and x are not in ej , the edge
ēj = X|ej ∈ Ē contains the vertices u and x both. Therefore the vertex

x is dominated by u. Hence {u} is a dominating set of H̄ and {v} is the
inverse dominating set of H̄. �

4. Non unit Edge Product Hypergraphs

In this section all the edge product hypergraphs are non unit edge
product hypergraph unless otherwise stated. This section deals with
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disconnectedness, adjacency, edge degree, dominating set and domina-
tion number of edge product hypergraph. Finally we proved that for a
edge product hypergraph γ(H̄) = γ−1(H̄) = 1.

Theorem 4.1. Edge product hypergraph is always disconnected.

Proof. Let H(V,E) be an edge product hypergraph. Let f : E → P
be an edge function and F be an edge product function of f . Let us
suppose that p be the largest element in the set of positive integers P .
Then for the bijection f : E → P , there exists an edge e ∈ E such that
f(e) = p. Suppose the edge e is adjacent to any other edge ej in H
then we have x ∈ (e ∩ ej) and F (x) = f(e)f(ej) > f(e) = p, which is a
contradiction. Hence the edge e is not adjacent to any other edge in H.
Thus H is a disconnected hypergraph. �

Note 4.2. To make the hypergraph a edge product hypergraph one can
add any edge of cardinality less than or equal to n. To avoid inconve-
nience we add a subset of V of cardinality two.

Corollary 4.3. If H(V,E) is a edge product hypergraph then K2 is the
component of H.

Theorem 4.4. Let H(V,E) be an edge product hypergraph. Let u be a
non pendant vertex and ej ∈ E such that F (u) = f(ej). Let e1, e2, . . . , ep
be the collection of edges incident to a vertex u. Then if an edge ej ∈ E
is adjacent to any edge (excluding e1, e2, . . . , ep) in H then that edge
must contains a vertex v such that dE(v) ≥ 3.

Proof. Let H be an edge product hypergraph. Let u be a non pendant
vertex and ej ∈ E such that F (u) = f(ej). Let u be incident to the edges
e1, e2, . . . , ep and p ≥ 2. Therefore F (u) = f(e1)× f(e2)× . . .× f(ep) ∈
P . Let edges ej and em are adjacent and em 6= ei, for i = 1, 2, . . . , p.
Then we have a vertex x ∈ ej∩em and F (x) = f(ej)× f(em) ∈ P which
implies F (x) = f(e1)× f(e2)× . . .× f(ep)× f(em) ∈ P . Hence the
edges e1, e2, . . . , ep, em are incident to a vertex v ∈ V (H) and dE(v) ≥ 3.
Hence the proof. �

Theorem 4.5. Let H(V,E) be an edge product hypergraph. Let u be a
non pendant vertex such that edges e1, e2, . . . , ep are incident to it and
ej ∈ E such that F (u) = f(ej). If edge ej is adjacent to any edge em
(excluding e1, e2, . . . , ep) in H. Then em must be adjacent to the edges
e1, e2, . . . , ep in H.
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Theorem 4.6. Let H(V,E) be an edge product hypergraph. Let
e1, e2, . . . , ep be the edges incident to a vertex u and l1, l2, . . . , lq be the
edges incident to a vertex v. If there exists a proper sub collection
e1, e2, . . . , er of e1, e2, . . . , ep and l1, l2, . . . , ls of l1, l2, . . . , lq such that
f(e1)× f(e2)× . . .× f(er) = f(l1)× f(l2)× . . .× f(ls). Then there ex-
ists vertices w1 and w2 such that dE(w1) = p−r+s and dE(w2) = q−s+p
in H.

Proof. Let H(V,E) be an edge product hypergraph satisfying the hy-
pothesis. Let e1, e2, . . . , ep be the edges incident to a vertex u and
e1, e2, . . . , er is the sub collection of e1, e2, . . . , ep and r < p. Now

F (u) = f(e1)× f(e2)× . . .× f(er)× f(er+1)× f(er+2)× . . .× f(ep) ∈ P
implies

F (u) = f(l1)× f(l2)× . . .× f(ls)× f(er+1)× f(er+2)× . . .× f(ep) ∈ P.
Therefore the edges l1, l2, . . . , ls, er+1, er+2, . . . ep are all incident to a
vertex say w1 ∈ V and the edge degree of w1 is p− r + s. Similarly,

F (v) = f(l1)× f(l2)× . . .× f(ls)× f(ls+1)× f(ls+2)× . . .× f(lq) ∈ P
implies

F (v) = f(e1)× f(e2)× . . .× f(er)× f(ls+1)× f(ls+2)× . . .× f(lq) ∈ P
and s < q. Hence the edges e1, e2, . . . , er, ls+1, ls+2, . . . , lq all are incident
to a vertex, say w2 ∈ V and edge degree of w2 is q − s+ r. �

Theorem 4.7. If H(V,E) is a edge product hypergraph. Then any sin-
gleton subset of H can not be a dominating set of H.

Proof. Let H(V,E) be an edge product hypergraph. Suppose that D =
{x} is a dominating set of H. By Theorem 4.1 H is disconnected which
implies H has at least two components say H1 and H2. Then the vertex
x is in H1 or in H2. If the vertex x is in H1 then for every vertex v ∈ H2,
we have no vertex in D, which is adjacent to v a contradiction to our
hypothesis that D is a dominating set. Hence any singleton subset of H
can not be a dominating set of H. �

Corollary 4.8. If H(V,E) is a edge product hypergraph then γ(H) ≥ 2.

Proof. let H(V,E) be an edge product hypergraph. Therefore by Theo-
rem 4.7 γ(H) ≥ 2. �

Lemma 4.9. Let H(V,E) be an edge product hypergraph. Then γ(H̄) =
γ−1(H̄) = 1.
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Proof. Let H be an edge product hypergraph. Let ek = {u, v} be a K2

component in H. Let w ∈ X|{u,v} then there exists e ∈ E such that w /∈
e. Since ek is a K2 component of H, ē = X|e contains vertices w, u, v.
Hence u and v are dominated by w. Now for any vertex x ∈ X|{u,v}, we
have ēk = X|ek contains both x and w. Hence w dominates x. Therefore
{w} is a dominating set of H̄. Similarly {x} forms an inverse domination
of H̄ and x ∈ X|{u,v}. Thus γ(H̄) = γ−1(H̄) = 1. �
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