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SOME RESULTS ON PIT AND GPIT THEOREMS

M. EBRAHIMPOUR

Abstract. In this paper we generalize the PIT and the GPIT
that can be used to study the heights of prime ideals in a general
commutative Noetherian ring R and the dimension theory of such a
ring and we use these generalizations to prove some useful results.
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1. Introduction

We assume throughout that R is a commutative Noetherian ring and
M is a non-zero finitely generated R-module.

In this paper, we are going to generalize heights of prime ideals in R,
and the dimension theory of such a ring. The start point will be Krull’s
Principal Ideal Theorem (PIT ): this states that, if a ∈ R is a non-unit
of R and P ∈ Spec(R) is a minimal prime ideal of the principal ideal
(a), then htP ≤ 1. From this, we are able to go on to prove Generalized
Principal Ideal Theorem GPIT , which shows that, if I be a proper ideal
of R which can be generated by n elements, then htP ≤ n , for every
minimal prime ideal P of I. A consequence is that each Q ∈ Spec(R)
has finite height, because Q is a minimal prime ideal of itself and every
ideal of R is finitely generated.

There are consequences for local rings. If (R, J) is a local ring, ?then
dimR = htJ , ?and so R has finite dimension. In fact, we know that
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18 M. Ebrahimpour

dimR is the least integer n for which there exists an J−primary ideal
that can be generated by n elements.

In Theorem 2.4 and Corollary 2.5 we generalize the GPIT and the
PIT and in Theorem 2.9, we prove the promised converse of Theorem
2.4.

Let I be an ideal of R. We recall that

htI = min{htP |P ∈ Spec(R), I ⊆ P}.

Let a1, ..., an ∈ R. We know by [1, 16.1], that a1, ..., an form an
M−sequence of elements of R precisely when

(i) M ̸= (a1, ..., an)M , and
(ii) For each i = 1, ..., n, the element ai is a non-zerodivisor on the

R−module M
(a1,...,ai−1)M

.

For P ∈ Supp(M), we know by [4, Ex.17.15], that the M−height of

P , denoted htMP , is defined by dimRP
MP = dim( RP

AnnRP
(MP )). Let

I be an ideal of R such that M ̸= IM . We know by [4, Ex.9.23] that
there exists a prime ideal P ∈ Supp(M) such that I ⊆ P and we know
by [4, Ex.17.15], that the M−height of I, denoted htMI, is defined by

htMI = min{htMP |P ∈ Supp(M), I ⊆ P}.

If (R, J) is a local ring, then we show the htMJ by dimM .
We will denote the set of all prime ideals of R by Spec(R) and the set

of all maximal ideals of R by Max(R).

2. Main Results

Remark 2.1. Let R be a commutative Noetherian ring, M be a non-
zero finitely generated R-module and I be an ideal of R such that M ̸=
IM . The M -sequence (ai)

n
i=1 is a maximal M -sequence in I if it is

impassible to fined an element an+1 ∈ I such that a1, ..., an+1 form
an M -sequence of length n + 1. This is equivalent to the statement
that I ⊆ ZdvR(

M
(a1,...,an)M

). Because, for every b ∈ I, we have M ̸=
(a1, ..., an, b)M . There exists an M -sequence contained in I, for the
empty M -sequence is one such. We know by [4, Thm. 16.13], that every
two maximal M−sequence in I have the same length. The common
length of all maximalM−sequences in I denoted by gradeMI. IfM = R,
then we show gradeRI by gradeI. Also, every M -sequence in I can be
extended to a maximal M -sequence in I and we have gradeM (I) < ∞,
by [4, Prop. 16.10].
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Theorem 2.2. Let R be a commutative Noetherian ring, M be a non-
zero finitely generated R-module and I be an ideal of R such that M ̸=
IM . Let gradeM (I) = n and I generate by n elements. Then I can be
generate by the elements of an M -sequence of length n.

Proof. If n = 0, then there is nothing to prove. So we assume that
n > 0. Suppose that I = (a1, ..., an). We show that there exists an
M -sequence (bi)

n
i=1 in I such that bn = an and for suitable elements

rij ∈ R (1 ≤ i ≤ n − 1 and i + 1 ≤ j ≤ n), bi = ai + Σn
j=i+1rijaj . We

have I = (a1, ..., an) = (b1, ..., bn) and so the theorem will be proved.
Now, we construct b1, ..., bn by an inductive process. We assume that

j ∈ N with 1 ≤ j ≤ n, and that we have constructed elements bi of R for
1 ≤ i < j with the required properties. This is certainly the case when
j = 1. Set J = (b1, ..., bj−1). (for j = 1, set J = (0) and other, similar,

simplifications should be made in that case). Since (bi)
n−1
i=1 is an M -

sequence in I and gradeM (I) = n > j−1, we have I ̸⊆ ZdvR(
M
JM ). Now,

we show that (aj , aj+1, ..., an) ̸⊆ ZdvR(
M
JM ). Suppose on the contrary,

that (aj , ..., an) ⊆ ZdvR(
M
JM ).

Let c ∈ I. We have c = s1a1 + ... + snan, where si ∈ R, (1 ≤ i ≤ n).
We have

a1 = b1 − Σn
k=2r1kak

a2 = b2 − Σn
k=3r2kak

...
aj−1 = bj−1 − Σn

k=jrjkak

So there exist t1, ..., tn ∈ R with c = t1b1+..., tj−1bj−1+tjaj+...+tnan.

Our supposition that (aj , ..., an) ⊆ ZdvR(
M
JM ) means that tjaj + ... +

tnan ∈ ZdvR(
M
JM ). Thus c − t1b1 − ... − tj−1bj−1 ∈ ZdvR ∈ ( M

JM ). So

there exists x + JM ∈ M
JM with x ̸∈ JM such that c − t1b1 − ... −

tj−1bj−1(x+ JM) = JM . So c(x+ JM) = JM and so c ∈ ZdvR(
M
JM ).

Hence I ⊆ ZdvR(
M
JM ), which is a contradiction. Therefore, (aj , ..., an) ̸⊆

ZdvR(
M
JM ).

We have ZdvR(
M
JM ) = ∪P∈Ass( M

JM
)P , by [4, Corollary 9.36]. Since R is

Noetherian and M
JM is finitely generated we have |Ass( M

JM )| < ∞, by [2,

Page72, Cor. 2]. Let Ass( M
JM ) = {P1, ..., Pt}. So ZdvR(

M
JM ) = ∪t

i=1Pi.
Thus (aj , ...an) ̸⊆ ∪t

i=1Pi and so (aj) + (aj+1, ..., an) ̸⊆ ∪t
i=1Pi. So there

exists b′j ∈ (aj+1, ..., an) with aj + b′j ̸∈ ZdvR(
M
JM ), by [4,Theorem 3.64

]. There exist rjj+1, ..., rjn ∈ R such that b′j = rjj+1aj+1 + ... + rjnan.
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Thus aj+rjj+1aj+1+ ...+rjnan ̸∈ ZdvR(
M
JM ). Set bj = aj+rjj+1aj+1+

...+ rjnan. □
Remark 2.3. Let R be a commutative Noetherian ring, M be a non-zero
finitely generated R−module and I be an ideal of R with IM ̸= M . We
know that P ∈ Supp( M

IM ) if and only if I+Ann(M) ⊆ P , by [1, Page46,
Ex19(vii)].

In Theorem 2.4, we generalize the GPIT.

Theorem 2.4. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module. Let a1, ..., an ∈ R with
(a1, ..., an)M ̸= M . Then htMP ≤ n, for every minimal ideal P in
Supp( M

(a1,...,an)M
).

Proof. Set I = AnnM and S = R
I . So S is a commutative Noetherian

ring and M is a non-zero finitely generated S-module. Also, (a1 +
I, ..., an + I)M = (a1, ..., an)M ̸= M .

Let P be a minimal ideal in Supp( M
(a1,...,an)M

). We show that P
I is a

minimal ideal in Supp( M
(a1+I,...,an+I)M ). Since (a1, ..., an) ⊆ P we have

(a1+I, ..., an+I) ⊆ P
I . AlsoAnnSM = 0. So P

I ∈ Supp( M
(a1+I,...,an+I)M ),

by Remark 2.3. Let Q
I ∈ Supp( M

(a1+I,...,an+I)M ) and Q
I ⊆ P

I . So (a1 +

I, ..., an + I) ⊆ Q
I , by Remark 2.3. Since I + (a1, ..., an) ⊆ Q we have

Q ∈ Supp( M
(a1,...an)M

), by Remark 2.3. Since P is a minimal ideal in

Supp( M
(a1,...,an)M

) and Q ⊆ P we have P = Q. Therefore, P is a minimal

ideal in Supp( M
(a1+I,...,an+I)M ).

Now, we show that htMP = htM
P
I . Let htMP = t. So there exists a

chain of prime ideals P0 ⊂ P! ⊂ ... ⊂ Pt = P such that Pi ∈ Supp(M).

So I ⊆ Pi , for all i ∈ {1, ..., t}, by Remark 2.3. So P0
I ⊂ ... ⊂ Pt

I = P
I

is a chain of prime ideals in SuppS(M). So htM (PI ) ≥ htMP . If P0
I ⊂

... ⊂ Pk
I = P

I be a chain in SuppS(M), then I ⊆ Pi, for all i ∈ {1, ..., k}
and P0 ⊂ ... ⊂ Pk = P is a chain in SuppR(M) and so htMP ≥ htM

P
I .

Therefore, htMP = htM
P
I .

So we can assume that AnnM = 0.
Also, we know that htM

P
I = htS

P
I and Q

I is a minimal ideal in

Supp( M
(a1+I,...,an+I)M ) if and only if Q

I is a minimal prime ideal over

(a1+I, ..., an+I), because AnnSM = 0. So without loss of generality we
can assume that R is a commutative Noetherian ring andM is a non-zero
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finitely generated R-module and a1, ..., an ∈ R with (a1, ...an)M ̸= M
and P is a minimal prime ideal over (a1, ..., an). We must show that
htP ≤ n. Since (a1, ...an)M ̸= M we have (a1, ..., an) is a proper ideal
of R. so htP ≤ n, by GPIT. □

Now, we have a generalization for the PIT in Corollary 2.5.

Corollary 2.5. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module. Let a ∈ R with (a)M ̸= M .
Then htMP ≤ 1, for every minimal ideal P in Supp( M

(a)M ).

Corollary 2.6. Let R be a commutative Noetherian ring and M be
a non-zero finitely generated R−module.Then htMP < ∞, for every
P ∈ Supp(M). So if (R, J) is a local ring, then dimM < ∞.

Proof. We show that PM ̸= M . If PM = M , then MP = PRPMP . So
MP = 0, by Nakayama’s lemma, a contradiction. So PM ̸= M .

Since P ∈ Supp(M) we have AnnM ⊆ P , by Remark 2.3, and hence
P ∈ Supp( M

PM ). Let Q ∈ Supp( M
PM ) and Q ⊆ P . So P +Ann(M) ⊆ Q,

by Remark 2.3. So P = Q. Hence P is a minimal ideal in Supp( M
PM ).

Since R is Noetherian, P is finitely generated. So htMP < ∞, by
Theorem 2.4.

Let (R, J) be a local ring. Since M ̸= 0 we have AnnM ⊆ J and so
J ∈ SuppM , by Remark 2.3. So dimM = htMJ < ∞. □
Corollary 2.7. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module.

(i) Let P,Q ∈ Supp(M) with P ⊆ Q. Then htMP ≤ htMQ, and
htMP = htMQ if and only if P = Q.

(ii) The ring R satisfies descending chain condition on Supp(M).

Proof. (i) We know that htMP < ∞ by Lemma 2.6. Let htMP = n
and P0 ⊂ P1 ⊂ ... ⊂ Pn = P be a chain of prime ideals in Supp(M). If
P ̸= Q, then the chain P0 ⊂ P1 ⊂ ... ⊂ Pn ⊂ Q in Supp(M) shows that
htMQ ≥ n+ 1. All the claims follow quickly from this.

(ii) Let P0 ⊇ P1 ⊇ ... be a descending chain in Supp(M). We have
htMP0 < ∞ by Corollary 2.6. So there exists an n ∈ N ∪ {0} such that
Pi = Pn, for every i ≥ n. □
Lemma 2.8. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module. Let I be an ideal of R and P ∈
Supp(M) with I ⊆ P . Suppose that htMI = htMP . Then P is a
minimal ideal in Supp( M

IM ).
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Proof. Suppose that P is not a minimal ideal in Supp( M
IM ). Since I +

AnnM ⊆ P we have P ∈ Supp( M
IM ), by Remark 2.3. So there exists a

minimal ideal Q in Supp( M
IM ) such that Q ⊂ P . Hence htMQ < htMP ,

by Corollary 2.7(i). Since htMI = min{htMP |P ∈ Supp( M
IM )}, we have

htMI ≤ htMQ < htMP , which is a contradiction. □

We are now in a position to prove the promised converse of Theorem
2.4.

Theorem 2.9. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module. Let P ∈ Supp(M) with htMP =
n. Then there exists an ideal I of R which can be generated by n elements
such that I ⊆ P and htMI = n.

Proof. We use induction on n. When n = 0, we just take I = 0 to
fined an ideal with the stated properties. So suppose, inductively, that
n > 0 and the claim has been proved for smaller values of n. Now there
exists a chain P0 ⊂ P1 ⊂ ... ⊂ pn−1 ⊂ Pn = P of Supp(M). Note that
htMPn−1 = n−1, because, htMPn−1 < htMP , by Corrolary 2.7(i), while
htMPn−1 ≥ n − 1, by virtue of the above chain. So we can apply the
inductive hypothesis to Pn−1.

The conclusion is that there exists a proper ideal J of R which can be
generated by n−1 elements, a1, ..., an−1 and which is such that J ⊆ Pn−1

and htMJ = n − 1. So we have P is a minimal ideal in Supp( M
JM ), by

Lemma 2.8. We have Ass( M
JM ) is finite, by [2, Page72, Cor. 2] also

minnimal elements of Ass( M
JM ) and minimal elements of Supp( M

JM ) are
the same, by [2, Page75, Cor. of Prop. 7]. So minimal elements in
Supp( M

JM ) are finite. Note also that, in view of the Theorem 2.4, and
the fact htMJ = n − 1, htMQ = n − 1, for every minimal ideal Q in
Supp( M

JM ).

Let the other minimal ideals in Supp( M
JM ), in addition to Pn−1, be

Q1, ..., Qt. (In fact, t could be 0, but this does not affect the argument
significantly.) We now use the Prime Avoidance Theorem to see that
P1 ̸⊆ Pn−1∪Q1∪ ...∪Qt. If this were not the case, then either P ⊆ Pn−1

or P ⊆ Qi, for some i with i ∈ {1, ..., t}, which are contradictions, by
Corollary 2.7(i). Because, htMP = n and htMPn−1 = htMQ1 = ... =
htMQt = n− 1. Therefore, there exists an ∈ P \ (Pn−1 ∪Q1 ∪ ... ∪Qt).

Set I := Σn
i=1Rai = J + Ran. We show that I has all the desired

properties. It is clear from its definition that I can be generated by n
elements and that I = J + Ran ⊆ Pn+1 + P = P . Now, we show that
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htMI = n. Since J ⊆ I ⊆ P and htMJ = n − 1 and htMP = n, we
must have htMI = n − 1 or htMI = n. Suppose that htMI = n − 1.
So there exists a minimal ideal P ′ in Supp( M

IM ) with htMP ′ = n − 1.
Now, J ⊆ I ⊆ P ′ and htMJ = n − 1. We have P ′ is a minimal ideal
in Supp( M

JM ), by Lemma 2.8. So P ′ = Pn−1 or P ′ = Qi, for some
i ∈ {1, ..., t}. But, we have an ∈ I ⊆ P ′ and an ̸∈ Pn−1 and an ̸∈ Qi, for
all i ∈ {1, ..., t}. So htMI = n. □

Corollary 2.10. With the same assumptions as in Theorem 2.9, we
have P is a minimal ideal in Supp( M

IM ).

Proof. This is clear by Lemma 2.8 and Theorem 2.9. □

Lemma 2.11. Let R be a commutative Noetherian ring, M be a non-
zero finitely generated R−module and I be an ideal of R with IM ̸= M .
Then AnnR

I

M
IM ⊆ rad( I+AnnM

I ).

Proof. Let r+I ∈ AnnR
I

M
IM and M = (x1, ..., xn). So there exist aij ∈ I

,1 ≤ i, j ≤ n, such that rxi = Σn
j=1aijxj . Let

A =


r − a11 −a12 · · · −a1n
−a21 r − a22 · · · −a2n

...
. . .

−an1 · · · · · · r − ann


We have A

 x1
...
xn

 =

 0
...
0

. So AtA

 x1
...
xn

 =

 0
...
0

, where

At is the transposed of A. Thus (detA)In

 x1
...
xn

 =

 0
...
0

 and so

detA ∈ AnnM . So we have detA = rn − α, for some α ∈ I. Thus
rn − detA ∈ I. So rn + I ∈ AnnM+I

I . Therefore, r + I ∈ rad(AnnM+I
I ),

by [3, Chap. 8, Thm. 2.6]. □

Corollary 2.12. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module. Let I be an ideal of R which can
be generated by n elements and P ∈ Supp(M) be such that I ⊆ P . Then

ht M
IM

P

I
≤ htMP ≤ ht M

IM

P

I
+ n.
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Proof. Let ht M
IM

P
I = t. So there exists a chain P0

I ⊂ P1
I ⊂ ... ⊂ Pt

I = P
I

with Pi
I ∈ Supp( M

IM ), for all i ∈ {1, ..., t}. So AnnR
I
( M
IM ) ⊆ Pi

I , by

Remark 2.3. But, it is easy to show that Ann(M)+I
I ⊆ AnnR

I
( M
IM ).

Thus, Ann(M)+I
I ⊆ Pi

I and so Ann(M) ⊆ Pi, for all i ∈ {1, ..., t}. So
Pi ∈ Supp(M), by Remark 4, and P0 ⊂ P1 ⊂ ... ⊂ Pt = P is a chain of
Supp(M) and so htMP ≥ t. Therefore, htMP ≥ ht M

IM

P
I .

Let b1, ..., bn generate I and ht M
IM

P
I = t. By Lemma 2.8 and The-

orem 2.9, there exist a1, ..., at ∈ R such that P
I is a minimal ideal in

Supp(
M
IM

(a1,...at)+I
I

M
IM

).

Set J := (a1, ..., at). We show that P is a minimal ideal in Supp( M
(I+J)M ).

First we have J+I
I + AnnR

I

M
IM ⊆ P

I . So AnnR
I

M
IM ⊆ P

I and we know that
AnnRM

I ⊆ AnnR
I

M
IM . So AnnM

I ⊆ P
I and so AnnM ⊆ P . Also, we have

J + I ⊆ P . So (J + I) + AnnM ⊆ P . Therefore, P is a minimal ideal in
Supp( M

(J+I)M ), by Remark 2.3.

Let P ′ ∈ Supp( M
(J+I)M ) with P ′ ⊆ P . So (J + I) + AnnM ⊆ P ′. Thus,

I+AnnM
I ⊆ P ′

I . So rad( I+AnnM
I ) ⊆ P ′

I and so AnnR
I

M
IM ⊆ P ′

I , by Lemma 2.11.

Thus we have I+J
I + AnnR

I

M
IM ⊆ P ′

I and so P ′

I ∈ Supp(
M
IM

I+J
I

M
IM

), by Remark

2.3.

Since P ′

I ⊆ P
I and P

I is a minimal ideal in Supp(
M
IM

I+J
I

M
IM

) we have P ′

I = P
I and

so P ′ = P . Therefore, P is a minimal ideal in Supp( M
(I+J)M ). So htMP ≤ t+n,

by Theorem 2.4. □

Proposition 2.13. Let R be a commutative Noetherian ring and M be a
non-zero finitely generated R−module. Let a1, ..., an be an M−sequence
of elements of R and I = (a1, ..., an). Then htMI = n.

Proof. Since (ai)
n
i=1 is an M -sequence we have IM ̸= M . So there exists

x ∈ M \ IM . So aix ∈ IM , for all i ∈ {1, ..., n}. Thus I ⊆ ZdvR(
M
IM ).

So (ai)
n
i=1 is a maximal M -sequence of elements of I, by Remark 2.1,

and so gradeMI = n.
We know that gradeMI ≤ dimRP

MP = htMP , for all P ∈ Supp(M)
with I ⊆ P , by [4 , 16.31]. So gradeMI ≤ min{htMP |I ⊆ P ∈
Supp(M)} = htMI. Thus, n = gradeMI ≤ htMI. We have
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htMI = min{htMP |I ⊆ P ∈ Supp(M)}
= min{htMP |I +Ann(M) ⊆ P}

= min{htMP |P ∈ Supp(
M

IM
)}

= min{htMP |P ∈ min{Supp( M

IM
)}}

by Remark 2.3. Since IM ̸= M we have htMP ≤ n, for every minimal
ideal P in Supp( M

IM ), by Theorem 2.4. So htMI ≤ n. Therefore htMI =
n. □
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