ON THE MATRIX OF RANK ONE OVER A UFD

SOMAYEH HADJIREZAEI AND SOMAYEH KARIMZADEH

ABSTRACT. In this paper we characterize all matrices of rank one over a unique factorization domain (UFD). Also we find the Rmodule generated by the rows and the R-module generated by the columns of a matrix of rank one and assert some properties of them.

Key Words: unique factorization domain, rank of a matrix, irreducible element.2010 Mathematics Subject Classification: Primary: 15A23; Secondary: 15B33, 16U10.

1. INTRODUCTION

Let R denotes a commutative ring with identity and A be an $m \times n$ matrix over R. Each of the m rows of A can be regarded as an element of R^n and each of the n columns of A can be regarded as an element of R^m . The *i*-th row of A will be denoted by $Row_i(A)$ and the *j*th column of A will be denoted by $Col_j(A)$. Thus if $A = (a_{ij})_{m \times n}$, then $Row_i(A) = (a_{i1}, ..., a_{in})$ and $Col_j(A) = (a_{1j}, ..., a_{mj})^t$. The Rsubmodule of R^n generated by $Row_1(A), ..., Row_m(A)$ is denoted by $< A >_r$ and the R-submodule of R^m generated by $Col_1(A), ..., Col_n(A)$ is denoted by $< A >_c$. The set of all $m \times n$ matrices with entries from Rwill be denoted by $\mathbb{M}_{m \times n}(R)$. For each $t = 1, ..., r = min\{m, n\}, I_t(A)$ will denote the ideal in R generated by all $t \times t$ minors of A. Thus we have the following ascending chain of ideals in R:

$$I_r(A) \subseteq I_{r-1}(A) \subseteq ... \subseteq I_2(A) \subseteq I_1(A) \subseteq R.$$

Received: 22 December 2015, Accepted: 20 May 2016. Communicated by Ahmad Yousefian Darani;

^{*}Address correspondence to Somayeh Hadjirezaei; E-mail: s.hajirezaei@vru.ac.ir

^{© 2016} University of Mohaghegh Ardabili.

³³

It will be notationally convenient to extend the definition of $I_t(A)$ to all values of $t \in \mathbb{Z}$ as follows: $I_t(A) = 0$, if $t > \min\{m, n\}$ and $I_t(A) = R$, if $t \leq 0$. Then we have $I_t(A) \subseteq I_{t-1}(A)$, for all $t \in \mathbb{Z}$.

The rank of A, denoted by $\operatorname{rk}(A)$, is the following integer: $\operatorname{rk}(A) = \max\{t \mid Ann_R(I_t(A)) = 0\}$ ([1]). Suppose F is a field and $A \in \mathbb{M}_{m \times n}(F)$. In most elementary textbooks in linear algebra, the classical rank of A, denoted by $\operatorname{rank}_F(A)$ is defined to be the maximum number of linearly independent rows (or columns) of A. It is well known that $\operatorname{rank}_F(A)$ is the largest integer t such that A contains a $t \times t$ submatrix whose determinant is nonzero. (See [2, Chapter 3, Theorem 3.22]). Since F is a field, $Ann_F(I_t(A)) = 0$ if and only if $I_t(A) \neq 0$. Thus $\operatorname{rk}(A)$ is the largest integer t such that A contains a $t \times t$ submatrix whose determinant is nonzero. In other words, $\operatorname{rk}(A) = \operatorname{rank}_F(A)$.

We can carry this discussion one step further. Suppose that R is an integral domain with quotient field F. Let $A \in \mathbb{M}_{m \times n}(R)$. Since $R \subseteq F$, $\mathbb{M}_{m \times n}(R) \subseteq \mathbb{M}_{m \times n}(F)$, and we can view A as a matrix in $\mathbb{M}_{m \times n}(F)$. Since R is an integral domain, $\operatorname{Ann}_R(I_t(A)) = 0$ if and only if $I_t(A) \neq 0$. Thus, $\operatorname{rk}(A) = \max\{t \mid A \text{ has a nonzero } t \times t \text{ minor}\}$. Now this number $\max\{t \mid A \text{ has a nonzero } t \times t \text{ minor}\}$ is the same whether we view A as a matrix in $\mathbb{M}_{m \times n}(R)$ or $\mathbb{M}_{m \times n}(F)$. Hence, $\operatorname{rk}(A)$ is just the classical rank of A when A is viewed as a matrix in $\mathbb{M}_{m \times n}(F)$. So $\operatorname{rk}(A) = \operatorname{rank}_F(A)$, in this case.

2. MATRIX OF RANK ONE

Let R be a commutative ring. Elements a, b of R are said to be associates if $a \mid b$ and $b \mid a$. A nonunit and nonzero element $p \in R$ is called an irreducible element, If p = ab implies that either a or bis a unit element of R. Recall that an integral domain R is a unique factorization domain (UFD) provided every nonzero nonunit element of R can be written $a = p_1...p_n$, with $p_1, ..., p_n$ irreducible and if $a = q_1...q_m$ $(q_i \text{ irreducible})$ then n = m and for some permutation σ of $\{1, ..., n\}$, p_i and q_i are associates for every i. Note that in a unique factorization domain (UFD), a greatest common divisor (GCD) of any collection of elements always exists. Also, for every a, b, c in a UFD, if $a \mid bc$ and a, bare relatively prime (i.e. GCD(a, b) = 1), then $a \mid c$.

In the next Theorem we characterize all $m \times n$ matrices of rank one over a unique factorization domain. matrix of rank one over a UFD

Theorem 2.1. Let R be a UFD and $0 \neq A = (a_{ij}) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one. Let $x_j = GCD(a_{1j}, ..., a_{mj}), 1 \leq j \leq n$. If l-th column of A is nonzero, then

$$A = \begin{pmatrix} \frac{a_{1l}}{x_l} x_1 & \dots & a_{1l} & \dots & \frac{a_{1l}}{x_l} x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{a_{ml}}{x_l} x_1 & \dots & a_{ml} & \dots & \frac{a_{ml}}{x_l} x_n \end{pmatrix}$$

Proof. Let $(a_{ij}) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one and *l*-th column of A be nonzero. We consider two cases.

Case 1: Suppose that $GCD(a_{1l}, \ldots, a_{ml}) = 1$. Assume that $a_{i_1l}, \ldots, a_{i_tl} \neq a_{i_1l}$ 0, where $1 \le i_1 < ... < i_t \le m$ and $a_{il} = 0$, for all $i \ne i_k$, $1 \le k \le t$. Put $d_k = GCD(a_{i_k l}, a_{(i_k+1)l}), 1 \le k \le t$ and, for the moment, fix $j, 1 \le t$ $j \neq l \leq n$. Since $\operatorname{rk}(A) = 1$, hence for $i = 1, \ldots, t$ we have $a_{i_k l} a_{(i_k+1)j} =$ $a_{i_kj}a_{(i_k+1)l}$. Thus $\frac{a_{i_kl}}{d_k}a_{(i_k+1)j} = a_{i_kj}\frac{a_{(i_k+1)l}}{d_k}$ and so $\frac{a_{i_kl}}{d_k} \mid a_{i_kj}$ which implies that there exists $r_{kj} \in R$ such that $a_{i_kj} = \frac{a_{i_kl}}{d_k}r_{kj}$ and so $a_{(i_k+1)j} = \frac{a_{(i_k+1)l}}{d_k}r_{kj}$, $1 \le k \le t$. Therefore $a_{i_kj} = \frac{a_{i_kl}}{d_k}r_{kj} = \frac{a_{i_kl}}{d_{k-1}}r_{(k-1)j}$, $2 \le k \le t$ and $a_{i_1j} = \frac{a_{1l}}{d_1}r_{1j}$. Hence, $r_{kj}d_{k-1} = r_{(k-1)j}d_k$. Now, we show by induction that $\frac{d_k}{GCD(d_1,...,d_k)} \mid r_{kj}$. For k = 2, since $r_{2j}d_1 = r_{1j}d_2$, hence $\frac{d_2}{GCD(d_1,d_2)}$ | r_{2j} . Assume that $d_k s_k = r_{kj}GCD(d_1,\ldots,d_k)$, for some $s_k \in \mathbb{R}$. We have $r_{(k+1)j}d_ks_k = r_{kj}d_{k+1}s_k$. Thus

(2.1)
$$r_{(k+1)j}GCD(d_1,\ldots,d_k) = d_{k+1}s_k$$

On the other hand, from $r_{(k+1)j}d_k = r_{kj}d_{k+1}$ we obtain $\frac{d_{k+1}}{GCD(d_k,d_{k+1})}$ $r_{(k+1)j}$ and so there exists $s'_k \in R$ such that

(2.2)
$$r_{(k+1)j}GCD(d_k, d_{k+1}) = d_{k+1}s'_k$$

Combining (2.1) and (2.2) we have

$$d_{k+1}s_k GCD(d_k, d_{k+1}) = r_{(k+1)j} GCD(d_1, \dots, d_k) GCD(d_k, d_{k+1})$$

= $d_{k+1}s'_k GCD(d_1, \dots, d_k).$

Thus $s_k GCD(d_k, d_{k+1}) = s'_k GCD(d_1, \dots, d_k)$ and so $\frac{GCD(d_k, d_{k+1})}{GCD(d_1, \dots, d_{k+1})} | s'_k$. Now, by (2.2), we have $\frac{d_{k+1}GCD(d_k, d_{k+1})}{GCD(d_1, \dots, d_{k+1})} | r_{(k+1)j}GCD(d_k, d_{k+1})$ and hence $\frac{d_{k+1}}{GCD(d_1,\ldots,d_{k+1})} \mid r_{(k+1)j}$ which completes the induction. Therefore $d_t =$

 $\frac{d_t}{GCD(d_1,\dots,d_t)} \mid r_{tj}. \text{ Since } r_{tj}d_{t-1} = r_{(t-1)j}d_t, \text{ hence } d_{t-1} \mid r_{(t-1)j}. \text{ Continuing this process, we have } d_k \mid r_{kj}, 1 \leq k \leq t. \text{ As a consequence,} \\ a_{i_kj} = \frac{a_{i_kl}}{d_k}r_{kj} = a_{i_kl}\frac{r_{kj}}{d_k}, 1 \leq k \leq t. \text{ Also for } i \neq i_k, 1 \leq k \leq t, \text{ we have } \\ a_{i1} = 0. \text{ Since } \operatorname{rk}(A) = 1, \text{ hence } a_{i2}a_{11} = a_{12}a_{i1} = 0. \text{ So } a_{i2} = 0. \text{ Thus for all } 1 \leq i \leq m, \text{ we have } a_{ij} = \frac{a_{il}}{x_l}x_j.$

Case 2: Suppose that $GCD(a_{1l}, \ldots, a_{ml}) = x_l$ is not a unit element of R. For the moment, fix $j, 1 \leq j \neq l \leq n$. By the same argument and notation as in case 1, we have $\frac{d_t}{GCD(d_1,\ldots,d_l)} | r_{tj}$. Thus $\frac{d_t}{x_l} | r_{tj}$ and therefore there exists $r'_{tj} \in R$ such that $r_{tj} = \frac{d_t}{x_l}r'_{tj}$. Thus $a_{tj} = \frac{a_{tl}}{x_l}r'_{tj}$. On the other hand, $r_{(t-1)j}d_t = r_{tj}d_{t-1}$. Hence $r_{(t-1)j}d_t = \frac{d_t}{x_l}r'_{tj}d_{t-1}$ and so $r_{(t-1)j} = r'_{tj}\frac{d_{t-1}}{x_l}$. Therefore $a_{(t-1)j} = \frac{a_{(t-1)j}}{d_{(t-1)j}}r_{(t-1)j} = \frac{a_{(t-1)l}}{x_l}r'_{tj}$. Continuing this process we obtain $r_{kj} = r'_{tj}\frac{d_k}{x_l}$ and so $a_{i_kj} = \frac{a_{i_kl}}{x_l}r'_{tj}$, $1 \leq k \leq t, 1 \leq j \neq l \leq n$. Thus in fact, $r'_{tj} = GCD(a_{1j}, \ldots, a_{mj}) = x_j$. Hence

$$A = \begin{pmatrix} \frac{a_{1l}}{x_l} x_1 & \dots & a_{1l} & \dots & \frac{a_{1l}}{x_l} x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{a_{ml}}{x_l} x_1 & \dots & a_{ml} & \dots & \frac{a_{ml}}{x_l} x_n \end{pmatrix}.$$

Corollary 2.2. Let R be UFD and $A = (a_{ij}) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one with nonzero column l. Let $x_j = GCD(a_{1j}, ..., a_{mj}), 1 \leq j \leq n$, I be the ideal of R generated by $x_1, ..., x_n$ and J be the ideal of R generated by $\frac{a_{1l}}{x_l}, ..., \frac{a_{ml}}{x_l}$. Then

(1)
$$\langle A \rangle_c = I < (\frac{a_{1l}}{x_l}, ..., \frac{a_{ml}}{x_l})^t >;$$

(2) $\langle A \rangle_r = J < (x_1, ..., x_n) > .$

Proof. By Theorem 2.1, it is obvious.

Let $\mu(M)$ denotes the minimal number of generators of M. It is well known that if A is a matrix over a field F, then $\operatorname{rk}(A) = s$ if and only if the dimension of column space of A (equal to the dimension of row space of A) is s. Let R be a principal ideal domain (PID) and $A \in \mathbb{M}_{m \times n}(R)$. Then $\langle A \rangle_c$ is a submodule of R^m . Since R is a PID and R^m is a free R-module, then $\langle A \rangle_c$ is a free R- module. In fact $\langle A \rangle_c$ is matrix of rank one over a UFD

free of rank s if and only if rk(A) = s. (See Proposition 2.3, from [3, Proposition 7-2-11]).

Proposition 2.3. If A is an $n \times m$ matrix of rank r > 0 over a principal ideal domain R, then A is equivalent to a matrix of the form $\begin{pmatrix} L_r & 0 \\ 0 & 0 \end{pmatrix}$, where L_r is an $r \times r$ diagonal matrix with nonzero diagonal entries $d_1, ..., d_r$ such that $d_1 \mid ... \mid d_r$. The ideals $(d_1), ..., (d_r)$ in R are uniquely determined by the equivalence class of A.

Thus if R is either a field or a PID and A is a matrix over R, then $\operatorname{rk}(A) = s$ if and only if $\mu(\langle A \rangle_r) = \mu(\langle A \rangle_c) = s$.

Now, let R be an integral domain with quotient field F and $A = (a_{ij}) \in \mathbb{M}_{m \times n}(R)$ be a matrix with $\mu(\langle A \rangle_r) = 1$ (or $\mu(\langle A \rangle_c) = 1$). Since $R \subseteq F$, $\mathbb{M}_{m \times n}(R) \subseteq \mathbb{M}_{m \times n}(F)$, and we can view A as a matrix in $\mathbb{M}_{m \times n}(F)$. Thus the dimension of row space (or the dimension of row space) of A is 1. So $\operatorname{rank}_F(A) = \operatorname{rk}(A) = 1$. Hence we have the following Proposition.

Proposition 2.4. Let R be an integral domain and $A \in \mathbb{M}_{m \times n}(R)$. Let $\mu(\langle A \rangle_r) = 1$ or $\mu(\langle A \rangle_c) = 1$. Then rk(A) = 1.

One of the interesting question is " If A is a matrix of rank 1 over a UFD, whether $\mu(\langle A \rangle_c)$ or $\mu(\langle A \rangle_r)$ is 1?." Here we give some example which shows that it is not true in general (Example 2.6). Further we use the following Lemma.

Lemma 2.5. Let (R, P) be a local integral domain and I be a finitely generated ideal of R. If $I < (y_1, ..., y_n) > is$ a nonzero cyclic R-module, then I is a principal ideal of R.

Proof. Let $I = \langle a_1, ..., a_m \rangle$ and $I \langle (y_1, ..., y_n) \rangle = \langle (b_1, ..., b_n) \rangle$, for some $b_i \in R, 1 \leq i \leq n$. Then $a_i(y_1, ..., y_n) = s_i(b_1, ..., b_n)$, for some $s_i \in R, 1 \leq i \leq n$. Hence for all $1 \leq i \leq m$ and $1 \leq j \leq n$ we have

On the other hand, $(b_1, ..., b_n) = \sum_{i=1}^m r_i a_i(y_1, ..., y_n)$, for some $r_i \in R$. Thus $b_j = \sum_{i=1}^m r_i a_i y_j$, $1 \leq j \leq n$. So by (2.3), $b_j = \sum_{i=1}^m r_i a_i y_j = \sum_{i=1}^m r_i s_i b_j$. Since R is an integral domain and $(b_1, ..., b_n) \neq 0$, hence $\sum_{i=1}^m r_i s_i = 1$. Thus there exists some $1 \leq k \leq m$, such that $s_k \notin P$. So s_k is a unit element of R. Thus $(b_1, ..., b_n) = s_k^{-1} a_k(y_1, ..., y_n)$. Let $i, 1 \leq i \leq m$ be arbitrary and fixed. By (2.3), we have $a_i y_j = s_i b_j =$ $s_i s_k^{-1} a_k y_j$. Since $(y_1, ..., y_n) \neq 0$, then $a_i \in \langle a_k \rangle$. Therefore I is a principal ideal.

Example 2.6. Let (R, P) be a local UFD and $p, q \in R$ be two irreducible elements of R which are not associates and $a \in R$. Let $A = \begin{pmatrix} p & pa \\ q & qa \end{pmatrix}$. Thus $\langle A \rangle_c = \langle (p,q)^t \rangle$, whence $\langle A \rangle_r = \langle p,q \rangle \langle (1,a) \rangle$ is not cyclic. Because if $\langle A \rangle_r$ be a cyclic R-module, then by Lemma 2.5, $\langle p,q \rangle$ is a principal ideal. Let $\langle p,q \rangle = \langle x \rangle$, for some element $x \in R$. Thus there exist some $r, s \in R$ such that p = rx and q = sx. Since p,q are two irreducible elements of R, hence r,s are unit elements or x is unit. If x is a unit element, then $\langle p,q \rangle = R$, a contradiction, because $p,q \in P$. Therefore r,s are unit elements of R. So $q = sx = sr^{-1}p$ and $p = rx = rs^{-1}q$. This means that p,q are associates, a contradiction. Thus $\langle A \rangle_r = \langle p,q \rangle \langle (1,a) \rangle$ is not cyclic. Similarly we have $A = \begin{pmatrix} p & q \\ pa & qa \end{pmatrix}$ is a matrix of rank one such that $\langle A \rangle_r = \langle (p,q) \rangle$ is a cyclic R-module but $\langle A \rangle_c = \langle (p,q)^t \rangle$ is not a cyclic module.

Now, we show that if $\langle A \rangle_c \ (\langle A \rangle_r)$ is a cyclic module, then $\langle A \rangle_r \ (\langle A \rangle_c)$ is always in the form of above.

Proposition 2.7. Let (R, P) be a local UFD and $A = (a_{ij}) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one with nonzero column l. Then

- (1) If $\langle A \rangle_c$ is a nonzero cyclic R-module, then $\langle A \rangle_r = \langle a_{1k}, ..., a_{mk} \rangle \langle (r_1, ..., 1, ..., r_n) \rangle$, for some $1 \leq k \leq n$ and $r_i \in R$ (1 is in k-th place).
- (2) If $\langle A \rangle_r$ is a nonzero cyclic R-module, then $\langle A \rangle_c = \langle x_1, ..., x_n \rangle \langle (s_1, ..., 1, ..., s_m)^t \rangle$, for some $s_i \in R$ (1 is in *l-th place*).

Proof. Let $\langle A \rangle_c$ be a cyclic *R*-module. By Corollary 2.2 and Lemma 2.5, $\langle x_1, ..., x_n \rangle$ is a principal ideal. Since *R* is a local ring, hence there exists some nonzero element x_k , $1 \leq k \leq n$ such that $\langle x_1, ..., x_n \rangle = \langle x_k \rangle$. Thus $x_i = r_i x_k$, $1 \leq i \leq n$. Since $\langle A \rangle_c$ is nonzero and $\langle x_1, ..., x_n \rangle = \langle x_k \rangle$, hence *k*-th column of *A* is nonzero, so by Corollary 2.2, we have $\langle A \rangle_r = \langle \frac{a_{1k}}{x_k}, ..., \frac{a_{mk}}{x_k} \rangle \langle (x_1, ..., x_n) \rangle = x_k \langle \frac{a_{1k}}{x_k}, ..., \frac{a_{mk}}{x_k} \rangle \langle (x_1, ..., x_n) \rangle = x_k$ a cyclic *R*-module. So by Corollary 2.2 and

matrix of rank one over a UFD

Lemma 2.5, $\langle \frac{a_{1l}}{x_l}, ..., \frac{a_{ml}}{x_l} \rangle$ is a principal ideal. Since R is a local ring, hence there exists some nonzero element a_{kl} , $1 \le k \le m$ such that $\langle \frac{a_{1l}}{x_l}, ..., \frac{a_{ml}}{x_l} \rangle = \langle \frac{a_{kl}}{x_l} \rangle$. Thus $\frac{a_{il}}{x_l} = s_i \frac{a_{kl}}{x_l}$, $1 \le i \le m$. Therefore $a_{il} = s_i a_{kl}$. So $x_l = GCD(a_{1l}, ..., a_{ml}) = a_{kl}$. Hence by Corollary 2.2, $\langle A \rangle_c = \langle x_1, ..., x_n \rangle \langle (\frac{a_{1l}}{x_l}, ..., \frac{a_{ml}}{x_l})^t \rangle = \langle x_1, ..., x_n \rangle \langle (s_1, ..., 1, ..., s_m)^t \rangle$.

Proposition 2.8. Let R be a UFD and $A \in \mathbb{M}_{n \times n}(R)$ be a matrix of rank one. Then $A^k = (\operatorname{tr} A)^{k-1}A$, for every $k \in \mathbb{N}$.

Proof. Let A be a nonzero matrix of rank one, then by Theorem 2.1, there exists some $1 \le l \le n$ such that

$$\mathbf{A} = \begin{pmatrix} \frac{a_{1l}}{x_l} x_1 & \dots & a_{1l} & \dots & \frac{a_{1l}}{x_l} x_n \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ \frac{a_{nl}}{x_l} x_1 & \dots & a_{nl} & \dots & \frac{a_{nl}}{x_l} x_n \end{pmatrix}$$

We have

ł

$$A^{2} = \begin{pmatrix} \sum_{i=1}^{n} \frac{a_{1l}}{x_{l}} x_{i} \frac{a_{il}}{x_{l}} x_{1} & \dots & \sum_{i=1}^{n} \frac{a_{1l}}{x_{l}} x_{i} a_{il} & \dots & \sum_{i=1}^{n} \frac{a_{1l}}{x_{l}} x_{i} \frac{a_{il}}{x_{l}} x_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} \frac{a_{nl}}{x_{l}} x_{i} \frac{a_{il}}{x_{l}} x_{1} & \dots & \sum_{i=1}^{n} \frac{a_{nl}}{x_{l}} x_{i} a_{il} & \dots & \sum_{i=1}^{n} \frac{a_{nl}}{x_{l}} x_{i} \frac{a_{il}}{x_{l}} x_{n} \end{pmatrix} = \\ \begin{pmatrix} \sum_{i=1}^{n} \frac{a_{il}}{x_{l}} x_{i} \frac{a_{1l}}{x_{l}} x_{1} & \dots & \sum_{i=1}^{n} \frac{a_{il}}{x_{l}} x_{i} a_{il} & \dots & \sum_{i=1}^{n} \frac{a_{il}}{x_{l}} x_{i} \frac{a_{nl}}{x_{l}} x_{n} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \sum_{i=1}^{n} \frac{a_{il}}{x_{l}} x_{i} \frac{a_{nl}}{x_{l}} x_{1} & \dots & \sum_{i=1}^{n} \frac{a_{il}}{x_{l}} x_{i} a_{nl} & \dots & \sum_{i=1}^{n} \frac{a_{il}}{x_{l}} x_{i} \frac{a_{nl}}{x_{l}} x_{n} \end{pmatrix} = (\operatorname{tr} A)A \\ \text{Hence } A^{k} = (\operatorname{tr} A)^{k-1}A, \text{ for every } k \in \mathbb{N}.$$

Corollary 2.9. Let R be a UFD and $A \in M_{n \times n}(R)$ be a matrix of rank one. Then $tr(A^k) = (tr A)^k$.

Proof. By Proposition 2.8, $A^k = (\operatorname{tr} A)^{k-1}A$. Thus $\operatorname{tr}(A^k) = (\operatorname{tr} A)^k = (\operatorname{tr} A)^{k-1} \operatorname{tr} A = (\operatorname{tr} A)^k$.

Corollary 2.10. Let R be a UFD and $0 \neq A \in M_{n \times n}(R)$ be a matrix of rank one. Then

(1) A is nilpotent if and only if $\operatorname{tr} A = 0$.

(2) A is idempotent if and only if $\operatorname{tr} A = 1$.

Proof. By Proposition 2.8, $A^k = (\operatorname{tr} A)^{k-1}A$, for every $k \in \mathbb{N}$. Thus, since R is an integral domain, hence $A^k = (\operatorname{tr} A)^{k-1}A = 0$ if and only if $\operatorname{tr} A = 0$ and $A^2 = A$ if and only if $\operatorname{tr} A = 1$.

References

- W. C. Brown, *Matrices Over Commutative Rings*, Pure Appl. Math., vol. 169, Marcel Dekker Inc., New York, 1993.
- [2] W. C. Brown, Matrices and Vector Spaces, Marcel Dekker, New York, 1991.
- [3] T. W. Hungerford, Algebra, Springer-Verlag, 1980.
- [4] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.

Somayeh Hadjirezaei

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran

Email: s.hajirezaei@vru.ac.ir

Somayeh Karimzadeh

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran Email: karimzadeh@vru.ac.ir