ON THE MATRIX OF RANK ONE OVER A UFD

SOMAYEH HADJIREZAEI AND SOMAYEH KARIMZADEH

Abstract

In this paper we characterize all matrices of rank one over a unique factorization domain (UFD). Also we find the R module generated by the rows and the R-module generated by the columns of a matrix of rank one and assert some properties of them.

Key Words: unique factorization domain, rank of a matrix, irreducible element. 2010 Mathematics Subject Classification: Primary: 15A23; Secondary: 15B33, 16 U 10.

1. Introduction

Let R denotes a commutative ring with identity and A be an $m \times n$ matrix over R. Each of the m rows of A can be regarded as an element of R^{n} and each of the n columns of A can be regarded as an element of R^{m}. The i-th row of A will be denoted by $\operatorname{Row}_{i}(A)$ and the j th column of A will be denoted by $\operatorname{Col}_{j}(A)$. Thus if $A=\left(a_{i j}\right)_{m \times n}$, then $\operatorname{Row}_{i}(A)=\left(a_{i 1}, \ldots, a_{i n}\right)$ and $\operatorname{Col}_{j}(A)=\left(a_{1 j}, \ldots, a_{m j}\right)^{t}$. The R submodule of R^{n} generated by $\operatorname{Row}_{1}(A), \ldots, \operatorname{Row}_{m}(A)$ is denoted by $<$ $A>_{r}$ and the R-submodule of R^{m} generated by $\operatorname{Col}_{1}(A), \ldots, \operatorname{Col}_{n}(A)$ is denoted by $\langle A\rangle_{c}$. The set of all $m \times n$ matrices with entries from R will be denoted by $\mathbb{M}_{m \times n}(R)$. For each $t=1, \ldots, r=\min \{m, n\}, I_{t}(A)$ will denote the ideal in R generated by all $t \times t$ minors of A. Thus we have the following ascending chain of ideals in R :

$$
I_{r}(A) \subseteq I_{r-1}(A) \subseteq \ldots \subseteq I_{2}(A) \subseteq I_{1}(A) \subseteq R
$$

[^0]It will be notationally convenient to extend the definition of $I_{t}(A)$ to all values of $t \in \mathbb{Z}$ as follows: $I_{t}(A)=0$, if $t>\min \{m, n\}$ and $I_{t}(A)=R$, if $t \leq 0$. Then we have $I_{t}(A) \subseteq I_{t-1}(A)$, for all $t \in \mathbb{Z}$.
The rank of A, denoted by $\operatorname{rk}(A)$, is the following integer: $\operatorname{rk}(A)=\max \{t \mid$ $\left.A n n_{R}\left(I_{t}(A)\right)=0\right\}$ ([1]). Suppose F is a field and $A \in \mathbb{M}_{m \times n}(F)$. In most elementary textbooks in linear algebra, the classical rank of A, denoted by $\operatorname{rank}_{F}(A)$ is defined to be the maximum number of linearly independent rows (or columns) of A. It is well known that $\operatorname{rank}_{F}(A)$ is the largest integer t such that A contains a $t \times t$ submatrix whose determinant is nonzero. (See [2, Chapter 3, Theorem 3.22]). Since F is a field, $A n n_{F}\left(I_{t}(A)\right)=0$ if and only if $I_{t}(A) \neq 0$. Thus $\operatorname{rk}(A)$ is the largest integer t such that A contains a $t \times t$ submatrix whose determinant is nonzero. In other words, $\operatorname{rk}(A)=\operatorname{rank}_{F}(A)$.
We can carry this discussion one step further. Suppose that R is an integral domain with quotient field F. Let $A \in \mathbb{M}_{m \times n}(R)$. Since $R \subseteq F$, $\mathbb{M}_{m \times n}(R) \subseteq \mathbb{M}_{m \times n}(F)$, and we can view A as a matrix in $\mathbb{M}_{m \times n}(F)$. Since R is an integral domain, $\operatorname{Ann}_{R}\left(I_{t}(A)\right)=0$ if and only if $I_{t}(A) \neq 0$. Thus, $\operatorname{rk}(A)=\max \{t \mid A$ has a nonzero $t \times t$ minor $\}$. Now this number $\max \{t \mid A$ has a nonzero $t \times t$ minor $\}$ is the same whether we view A as a matrix in $\mathbb{M}_{m \times n}(R)$ or $\mathbb{M}_{m \times n}(F)$. Hence, $\operatorname{rk}(A)$ is just the classical rank of A when A is viewed as a matrix in $\mathbb{M}_{m \times n}(F)$. So $\operatorname{rk}(A)=\operatorname{rank}_{F}(A)$, in this case.

2. Matrix of Rank one

Let R be a commutative ring. Elements a, b of R are said to be associates if $a \mid b$ and $b \mid a$. A nonunit and nonzero element $p \in R$ is called an irreducible element, If $p=a b$ implies that either a or b is a unit element of R. Recall that an integral domain R is a unique factorization domain (UFD) provided every nonzero nonunit element of R can be written $a=p_{1} \ldots p_{n}$, with p_{1}, \ldots, p_{n} irreducible and if $a=q_{1} \ldots q_{m}$ (q_{i} irreducible) then $n=m$ and for some permutation σ of $\{1, \ldots, n\}$, p_{i} and q_{i} are associates for every i. Note that in a unique factorization domain (UFD), a greatest common divisor (GCD) of any collection of elements always exists. Also, for every a, b, c in a UFD, if $a \mid b c$ and a, b are relatively prime (i.e. $\operatorname{GCD}(a, b)=1$), then $a \mid c$.
In the next Theorem we characterize all $m \times n$ matrices of rank one over a unique factorization domain.

Theorem 2.1. Let R be a UFD and $0 \neq A=\left(a_{i j}\right) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one. Let $x_{j}=G C D\left(a_{1 j}, \ldots, a_{m j}\right), 1 \leq j \leq n$. If l-th column of A is nonzero, then

$$
A=\left(\begin{array}{ccccc}
\frac{a_{1 l}}{x_{l}} x_{1} & \ldots & a_{1 l} & \ldots & \frac{a_{1 l}}{x_{l}} x_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{a_{m l}}{x_{l}} x_{1} & \ldots & a_{m l} & \ldots & \frac{a_{m l}}{x_{l}} x_{n}
\end{array}\right) .
$$

Proof. Let $\left(a_{i j}\right) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one and l-th column of A be nonzero. We consider two cases.
Case 1: Suppose that $G C D\left(a_{1 l}, \ldots, a_{m l}\right)=1$. Assume that $a_{i_{1} l}, \ldots, a_{i_{t} l} \neq$ 0 , where $1 \leq i_{1}<\ldots<i_{t} \leq m$ and $a_{i l}=0$, for all $i \neq i_{k}, 1 \leq k \leq t$. Put $d_{k}=G C D\left(a_{i_{k} l}, a_{\left(i_{k}+1\right) l}\right), 1 \leq k \leq t$ and, for the moment, fix $j, 1 \leq$ $j \neq l \leq n$. Since $\operatorname{rk}(A)=1$, hence for $i=1, \ldots, t$ we have $a_{i_{k} l} a_{\left(i_{k}+1\right) j}=$ $a_{i_{k} j} a_{\left(i_{k}+1\right) l}$. Thus $\frac{a_{i_{k} l}}{d_{k}} a_{\left(i_{k}+1\right) j}=a_{i_{k} j} \frac{a_{\left(i_{k}+1\right) l}}{d_{k}}$ and so $\left.\frac{a_{i_{k} l}}{d_{k}} \right\rvert\, a_{i_{k} j}$ which implies that there exists $r_{k j} \in R$ such that $a_{i_{k} j}=\frac{a_{i_{k} l}}{d_{k}} r_{k j}$ and so $a_{\left(i_{k}+1\right) j}=$ $\frac{a_{\left(i_{k}+1\right)}}{d_{k}} r_{k j}, 1 \leq k \leq t$. Therefore $a_{i_{k} j}=\frac{a_{i_{k} l}}{d_{k}} r_{k j}=\frac{a_{i_{k} l}}{d_{k-1}} r_{(k-1) j}, 2 \leq k \leq t$ and $a_{i_{1} j}=\frac{a_{1 l}}{d_{1}} r_{1 j}$. Hence, $r_{k j} d_{k-1}=r_{(k-1) j} d_{k}$. Now, we show by induction that $\left.\frac{d_{k}}{G C D\left(d_{1}, \ldots, d_{k}\right)} \right\rvert\, r_{k j}$. For $k=2$, since $r_{2 j} d_{1}=r_{1 j} d_{2}$, hence $\left.\frac{d_{2}}{\operatorname{GCD}\left(d_{1}, d_{2}\right)} \right\rvert\, r_{2 j}$. Assume that $d_{k} s_{k}=r_{k j} G C D\left(d_{1}, \ldots, d_{k}\right)$, for some $s_{k} \in R$. We have $r_{(k+1) j} d_{k} s_{k}=r_{k j} d_{k+1} s_{k}$. Thus

$$
\begin{equation*}
r_{(k+1) j} G C D\left(d_{1}, \ldots, d_{k}\right)=d_{k+1} s_{k} . \tag{2.1}
\end{equation*}
$$

On the other hand, from $r_{(k+1) j} d_{k}=r_{k j} d_{k+1}$ we obtain $\left.\frac{d_{k+1}}{\operatorname{GCD}\left(d_{k}, d_{k+1}\right)} \right\rvert\,$ $r_{(k+1) j}$ and so there exists $s_{k}^{\prime} \in R$ such that

$$
\begin{equation*}
r_{(k+1) j} G C D\left(d_{k}, d_{k+1}\right)=d_{k+1} s_{k}^{\prime} . \tag{2.2}
\end{equation*}
$$

Combining (2.1) and (2.2) we have

$$
\begin{gathered}
d_{k+1} s_{k} G C D\left(d_{k}, d_{k+1}\right)=r_{(k+1) j} G C D\left(d_{1}, \ldots, d_{k}\right) G C D\left(d_{k}, d_{k+1}\right) \\
=d_{k+1} s_{k}^{\prime} G C D\left(d_{1}, \ldots, d_{k}\right) .
\end{gathered}
$$

Thus $s_{k} G C D\left(d_{k}, d_{k+1}\right)=s_{k}^{\prime} G C D\left(d_{1}, \ldots, d_{k}\right)$ and so $\left.\frac{G C D\left(d_{k}, d_{k+1}\right)}{G C D\left(d_{1}, \ldots, d_{k+1}\right)} \right\rvert\, s_{k}^{\prime}$. Now, by (2.2), we have $\left.\frac{d_{k+1} G C D\left(d_{k}, d_{k+1}\right)}{G C D\left(d_{1}, \ldots, d_{k+1}\right)} \right\rvert\, r_{(k+1) j} G C D\left(d_{k}, d_{k+1}\right)$ and hence
$\left.\frac{d_{k+1}}{G C D\left(d_{1}, \ldots, d_{k+1}\right)} \right\rvert\, r_{(k+1) j}$ which completes the induction. Therefore $d_{t}=$
$\left.\frac{d_{t}}{\left(d_{1}, \ldots . d_{t}\right)} \right\rvert\, r_{t j}$. Since $r_{t j} d_{t-1}=r_{(t-1) j} d_{t}$, hence $d_{t-1} \mid r_{(t-1) j}$. Continuing this process, we have $d_{k} \mid r_{k j}, 1 \leq k \leq t$. As a consequence, $a_{i_{k} j}=\frac{a_{i_{k} l}}{d_{k}} r_{k j}=a_{i_{k} l} l r_{k j}, 1 \leq k \leq t$. Also for $i \neq i_{k}, 1 \leq k \leq t$, we have $a_{i 1}=0$. Since $\operatorname{rk}(A)=1$, hence $a_{i 2} a_{11}=a_{12} a_{i 1}=0$. So $a_{i 2}=0$. Thus for all $1 \leq i \leq m$, we have $a_{i j}=\frac{a_{i l}}{x_{l}} x_{j}$.
Case 2: Suppose that $\operatorname{GCD}\left(a_{1 l}, \ldots, a_{m l}\right)=x_{l}$ is not a unit element of R. For the moment, fix $j, 1 \leq j \neq l \leq n$. By the same argument and notation as in case 1 , we have $\left.\frac{d_{t}}{G C D\left(d_{1}, \ldots, d_{t}\right)} \right\rvert\, r_{t j}$. Thus $\left.\frac{d_{t}}{x_{l}} \right\rvert\, r_{t j}$ and therefore there exists $r_{t j}^{\prime} \in R$ such that $r_{t j}=\frac{d_{t}}{x_{l}} r_{t j}^{\prime}$. Thus $a_{t j}=\frac{a_{t l}}{x_{l}} r_{t j}^{\prime}$. On the other hand, $r_{(t-1) j} d_{t}=r_{t j} d_{t-1}$. Hence $r_{(t-1) j} d_{t}=\frac{d_{t}}{x_{l}} r_{t j}^{\prime} d_{t-1}$ and so $r_{(t-1) j}=r_{t j}^{\prime} \frac{d_{t-1}}{x_{l}}$. Therefore $a_{(t-1) j}=\frac{a_{(t-1) 1}}{d_{(t-1) j}} r_{(t-1) j}=\frac{a_{(t-1) l}}{x_{l}} r_{t j}^{\prime}$. Continuing this process we obtain $r_{k j}=r_{t j}^{\prime} \frac{d_{k}}{x_{l}}$ and so $a_{i_{k} j}=\frac{a_{i_{k} l}}{x_{l}} r_{t j}^{\prime}$, $1 \leq k \leq t, 1 \leq j \neq l \leq n$. Thus in fact, $r_{t j}^{\prime}=G C D\left(a_{1 j}, \ldots, a_{m j}\right)=x_{j}$. Hence

$$
A=\left(\begin{array}{ccccc}
\frac{a_{1 l}}{x_{l}} x_{1} & \ldots & a_{1 l} & \ldots & \frac{a_{1 l}}{x_{l}} x_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{a_{m l}}{x_{l}} x_{1} & \ldots & a_{m l} & \ldots & \frac{a_{m l}}{x_{l}} x_{n}
\end{array}\right)
$$

Corollary 2.2. Let R be UFD and $A=\left(a_{i j}\right) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one with nonzero column l. Let $x_{j}=G C D\left(a_{1 j}, \ldots, a_{m j}\right), 1 \leq$ $j \leq n$, I be the ideal of R generated by x_{1}, \ldots, x_{n} and J be the ideal of R generated by $\frac{a_{1 l}}{x_{l}}, \ldots, \frac{a_{m l}}{x_{l}}$. Then
(1) $<A>_{c}=I<\left(\frac{a_{1 l}}{x_{l}}, \ldots, \frac{a_{m l}}{x_{l}}\right)^{t}>$;
$(2)<A>_{r}=J<\left(x_{1}, \ldots, x_{n}\right)>$.
Proof. By Theorem 2.1, it is obvious.
Let $\mu(M)$ denotes the minimal number of generators of M. It is well known that if A is a matrix over a field F, then $\operatorname{rk}(A)=s$ if and only if the dimension of column space of A (equal to the dimension of row space of A) is s. Let R be a principal ideal domain (PID) and $A \in \mathbb{M}_{m \times n}(R)$. Then $<A>_{c}$ is a submodule of R^{m}. Since R is a PID and R^{m} is a free R-module, then $<A>_{c}$ is a free R - module. In fact $<A>_{c}$ is
free of $\operatorname{rank} s$ if and only if $\operatorname{rk}(A)=s$. (See Proposition 2.3, from $[3$, Proposition 7-2-11]).

Proposition 2.3. If A is an $n \times m$ matrix of rank $r>0$ over a principal ideal domain R, then A is equivalent to a matrix of the form $\left(\begin{array}{cc}L_{r} & \boldsymbol{O} \\ \boldsymbol{O} & 0\end{array}\right)$, where L_{r} is an $r \times r$ diagonal matrix with nonzero diagonal entries d_{1}, \ldots, d_{r} such that $d_{1}|\ldots| d_{r}$. The ideals $\left(d_{1}\right), \ldots,\left(d_{r}\right)$ in R are uniquely determined by the equivalence class of A.

Thus if R is either a field or a PID and A is a matrix over R, then $\operatorname{rk}(A)=s$ if and only if $\mu\left(<A>_{r}\right)=\mu\left(<A>_{c}\right)=s$.
Now, let R be an integral domain with quotient field F and $A=\left(a_{i j}\right) \in$ $\mathbb{M}_{m \times n}(R)$ be a matrix with $\mu\left(<A>_{r}\right)=1$ (or $\mu\left(<A>_{c}\right)=1$). Since $R \subseteq F, \mathbb{M}_{m \times n}(R) \subseteq \mathbb{M}_{m \times n}(F)$, and we can view A as a matrix in $\mathbb{M}_{m \times n}(F)$. Thus the dimension of row space (or the dimension of row space) of A is 1 . $\operatorname{So~}_{\operatorname{rank}}^{F}(A)=\operatorname{rk}(A)=1$. Hence we have the following Proposition.

Proposition 2.4. Let R be an integral domain and $A \in \mathbb{M}_{m \times n}(R)$. Let $\mu\left(<A>_{r}\right)=1$ or $\mu\left(<A>_{c}\right)=1$. Then $r k(A)=1$.

One of the interesting question is " If A is a matrix of rank 1 over a UFD, whether $\mu\left(<A>_{c}\right)$ or $\mu\left(<A>_{r}\right)$ is 1?." Here we give some example which shows that it is not true in general (Example 2.6). Further we use the following Lemma.

Lemma 2.5. Let (R, P) be a local integral domain and I be a finitely generated ideal of R. If $I<\left(y_{1}, \ldots, y_{n}\right)>$ is a nonzero cyclic R-module, then I is a principal ideal of R.

Proof. Let $I=<a_{1}, \ldots, a_{m}>$ and $I<\left(y_{1}, \ldots, y_{n}\right)>=<\left(b_{1}, \ldots, b_{n}\right)>$, for some $b_{i} \in R, 1 \leq i \leq n$. Then $a_{i}\left(y_{1}, \ldots, y_{n}\right)=s_{i}\left(b_{1}, \ldots, b_{n}\right)$, for some $s_{i} \in R, 1 \leq i \leq n$. Hence for all $1 \leq i \leq m$ and $1 \leq j \leq n$ we have

$$
\begin{equation*}
a_{i} y_{j}=s_{i} b_{j} . \tag{2.3}
\end{equation*}
$$

On the other hand, $\left(b_{1}, \ldots, b_{n}\right)=\sum_{i=1}^{m} r_{i} a_{i}\left(y_{1}, \ldots, y_{n}\right)$, for some $r_{i} \in R$. Thus $b_{j}=\sum_{i=1}^{m} r_{i} a_{i} y_{j}, 1 \leq j \leq n$. So by (2.3), $b_{j}=\sum_{i=1}^{m} r_{i} a_{i} y_{j}=$ $\sum_{i=1}^{m} r_{i} s_{i} b_{j}$. Since R is an integral domain and $\left(b_{1}, \ldots, b_{n}\right) \neq 0$, hence $\sum_{i=1}^{m} r_{i} s_{i}=1$. Thus there exists some $1 \leq k \leq m$, such that $s_{k} \notin P$. So s_{k} is a unit element of R. Thus $\left(b_{1}, \ldots, b_{n}\right)=s_{k}^{-1} a_{k}\left(y_{1}, \ldots, y_{n}\right)$. Let $i, 1 \leq i \leq m$ be arbitrary and fixed. By (2.3), we have $a_{i} y_{j}=s_{i} b_{j}=$
$s_{i} s_{k}^{-1} a_{k} y_{j}$. Since $\left(y_{1}, \ldots, y_{n}\right) \neq 0$, then $a_{i} \in<a_{k}>$. Therefore I is a principal ideal.
Example 2.6. Let (R, P) be a local UFD and $p, q \in R$ be two irreducible elements of R which are not associates and $a \in R$. Let $A=\left(\begin{array}{cc}p & p a \\ q & q a\end{array}\right)$. Thus $<A>_{c}=<(p, q)^{t}>$, whence $<A>_{r}=<p, q><(1, a)>$ is not cyclic. Because if $<A>_{r}$ be a cyclic R-module, then by Lemma 2.5, $\langle p, q\rangle$ is a principal ideal. Let $\langle p, q\rangle=\langle x\rangle$, for some element $x \in R$. Thus there exist some $r, s \in R$ such that $p=r x$ and $q=s x$. Since p, q are two irreducible elements of R, hence r, s are unit elements or x is unit. If x is a unit element, then $\langle p, q\rangle=R$, a contradiction, because $p, q \in P$. Therefore r, s are unit elements of R. So $q=s x=s r^{-1} p$ and $p=r x=r s^{-1} q$. This means that p, q are associates, a contradiction. Thus $<A>_{r}=<p, q><(1, a)>$ is not cyclic. Similarly we have $A=\left(\begin{array}{cc}p & q \\ p a & q a\end{array}\right)$ is a matrix of rank one such that $\left\langle A>_{r}=<(p, q)>\right.$ is a cyclic R-module but $\left\langle A>_{c}=<(p, q)^{t}\right\rangle$ is not a cyclic module.

Now, we show that if $\langle A\rangle_{c}\left(<A>_{r}\right)$ is a cyclic module, then $<A>_{r}\left(<A>_{c}\right)$ is always in the form of above.
Proposition 2.7. Let (R, P) be a local UFD and $A=\left(a_{i j}\right) \in \mathbb{M}_{m \times n}(R)$ be a matrix of rank one with nonzero column l. Then
(1) If $<A>_{c}$ is a nonzero cyclic R-module, then $<A>_{r}=<$ $a_{1 k}, \ldots, a_{m k}><\left(r_{1}, \ldots, 1, \ldots, r_{n}\right)>$, for some $1 \leq k \leq n$ and $r_{i} \in R(1$ is in k-th place).
(2) If $<A>_{r}$ is a nonzero cyclic R-module, then $<A>_{c}=<$ $x_{1}, \ldots, x_{n}><\left(s_{1}, \ldots, 1, \ldots, s_{m}\right)^{t}>$, for some $s_{i} \in R(1$ is in l-th place).
Proof. Let $\langle A\rangle_{c}$ be a cyclic R-module. By Corollary 2.2 and Lemma $2.5,<x_{1}, \ldots, x_{n}>$ is a principal ideal. Since R is a local ring, hence there exists some nonzero element $x_{k}, 1 \leq k \leq n$ such that $\left.<x_{1}, \ldots, x_{n}\right\rangle=<$ $x_{k}>$. Thus $x_{i}=r_{i} x_{k}, 1 \leq i \leq n$. Since $<A>_{c}$ is nonzero and $\left.\left.<x_{1}, \ldots, x_{n}\right\rangle=<x_{k}\right\rangle$, hence k-th column of A is nonzero, so by Corollary 2.2 , we have $<A>_{r}=<\frac{a_{1 k}}{x_{k}}, \ldots, \frac{a_{m k}}{x_{k}}><\left(x_{1}, \ldots, x_{n}\right)>=x_{k}<$ $\frac{a_{1 k}}{x_{k}}, \ldots, \frac{a_{m k}}{x_{k}}><\left(x_{1}, \ldots, x_{n}\right)>=<a_{1 k}, \ldots, a_{m k}><\left(r_{1}, \ldots, 1, \ldots, r_{n}\right)>$.
Now, let $<A>_{r}$ be a cyclic R-module. So by Corollary 2.2 and

Lemma 2.5, $<\frac{a_{1 l}}{x_{l}}, \ldots, \frac{a_{m l}}{x_{l}}>$ is a principal ideal. Since R is a local ring, hence there exists some nonzero element $a_{k l}, 1 \leq k \leq m$ such that $<\frac{a_{1 l}}{x_{l}}, \ldots, \frac{a_{m l}}{x_{l}}>=<\frac{a_{k l}}{x_{l}}>$. Thus $\frac{a_{i l}}{x_{l}}=s_{i} \frac{a_{k l}}{x_{l}}, 1 \leq i \leq m$. Therefore $a_{i l}=s_{i} a_{k l}$. So $x_{l}=\operatorname{GCD}\left(a_{1 l}, \ldots, a_{m l}\right)=a_{k l}$. Hence by Corollary 2.2, $<A>_{c}=<x_{1}, \ldots, x_{n}><\left(\frac{a_{1 l}}{x_{l}}, \ldots, \frac{a_{m l}}{x_{l}}\right)^{t}>=<x_{1}, \ldots, x_{n}><$ $\left(s_{1}, \ldots, 1, \ldots, s_{m}\right)^{t}>$.

Proposition 2.8. Let R be a UFD and $A \in \mathbb{M}_{n \times n}(R)$ be a matrix of rank one. Then $A^{k}=(\operatorname{tr} A)^{k-1} A$, for every $k \in \mathbb{N}$.
Proof. Let A be a nonzero matrix of rank one, then by Theorem 2.1, there exists some $1 \leq l \leq n$ such that

$$
A=\left(\begin{array}{ccccc}
\frac{a_{1 l}}{x_{l}} x_{1} & \ldots & a_{1 l} & \ldots & \frac{a_{1 l}}{x_{l}} x_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\frac{a_{n l}}{x_{l}} x_{1} & \ldots & a_{n l} & \ldots & \frac{a_{n l}}{x_{l}} x_{n}
\end{array}\right) .
$$

We have

$$
\begin{aligned}
& A^{2}=\left(\begin{array}{ccccccc}
\sum_{i=1}^{n} \frac{a_{1 l}}{x_{l}} x_{i} \frac{a_{i l}}{x_{l}} x_{1} & \ldots & \sum_{i=1}^{n} \frac{a_{1 l}}{x_{l}} x_{i} a_{i l} & \ldots & \sum_{i=1}^{n} \frac{a_{1 l}}{x_{l}} x_{i} \frac{a_{i l}}{x_{l}} x_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\sum_{i=1}^{n} \frac{a_{n l}}{x_{l}} x_{i} \frac{a_{i l}}{x_{l}} x_{1} & \ldots & \sum_{i=1}^{n} \frac{a_{n l}}{x_{l}} x_{i} a_{i l} & \ldots & \sum_{i=1}^{n} \frac{a_{n l}}{x_{l}} x_{i} \frac{a_{i l}}{x_{l}} x_{n}
\end{array}\right)= \\
& \left(\begin{array}{cccccc}
\sum_{i=1}^{n} \frac{a_{i l}}{x_{l}} x_{i} \frac{a_{1 l}}{x_{l}} x_{1} & \ldots & \sum_{i=1}^{n} \frac{a_{i l}}{x_{l}} x_{i} a_{1 l} & \ldots & \sum_{i=1}^{n} \frac{a_{i l}}{x_{l}} x_{i} \frac{a_{n l}}{x_{l}} x_{n} \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
\sum_{i=1}^{n} \frac{a_{i l}}{x_{l}} x_{i} \frac{a_{n l}}{x_{l}} x_{1} & \ldots & \sum_{i=1}^{n} \frac{a_{i l}}{x_{l}} x_{i} a_{n l} & \cdots & \sum_{i=1}^{n} \frac{a_{i l}}{x_{l}} x_{i} \frac{a_{n l}}{x_{l}} x_{n}
\end{array}\right)=(\operatorname{tr} A) A .
\end{aligned}
$$

Hence $A^{k}=(\operatorname{tr} A)^{k-1} A$, for every $k \in \mathbb{N}$.
Corollary 2.9. Let R be a UFD and $A \in \mathbb{M}_{n \times n}(R)$ be a matrix of rank one. Then $\operatorname{tr}\left(A^{k}\right)=(\operatorname{tr} A)^{k}$.
Proof. By Proposition 2.8, $A^{k}=(\operatorname{tr} A)^{k-1} A$. Thus $\operatorname{tr}\left(A^{k}\right)=(\operatorname{tr} A)^{k}=$ $(\operatorname{tr} A)^{k-1} \operatorname{tr} A=(\operatorname{tr} A)^{k}$.
Corollary 2.10. Let R be a UFD and $0 \neq A \in \mathbb{M}_{n \times n}(R)$ be a matrix of rank one. Then
(1) A is nilpotent if and only if $\operatorname{tr} A=0$.
(2) A is idempotent if and only if $\operatorname{tr} A=1$.

Proof. By Proposition 2.8, $A^{k}=(\operatorname{tr} A)^{k-1} A$, for every $k \in \mathbb{N}$. Thus, since R is an integral domain, hence $A^{k}=(\operatorname{tr} A)^{k-1} A=0$ if and only if $\operatorname{tr} A=0$ and $A^{2}=A$ if and only if $\operatorname{tr} A=1$.

References

[1] W. C. Brown, Matrices Over Commutative Rings, Pure Appl. Math., vol. 169, Marcel Dekker Inc., New York, 1993.
[2] W. C. Brown, Matrices and Vector Spaces, Marcel Dekker, New York, 1991.
[3] T. W. Hungerford, Algebra, Springer-Verlag, 1980.
[4] R. Y. Sharp, Steps in Commutative Algebra, Cambridge University Press, 1990.

Somayeh Hadjirezaei

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran
Email: s.hajirezaei@vru.ac.ir

Somayeh Karimzadeh

Department of Mathematics, Vali-e-Asr University of Rafsanjan, P.O.Box 7718897111, Rafsanjan, Iran
Email: karimzadeh@vru.ac.ir

[^0]: Received: 22 December 2015, Accepted: 20 May 2016. Communicated by Ahmad Yousefian Darani;
 *Address correspondence to Somayeh Hadjirezaei; E-mail: s.hajirezaei@vru.ac.ir
 (c) 2016 University of Mohaghegh Ardabili.

