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COMPUTER ALGEBRA AND THURSTON

GEOMETRIES

NEMAT ABAZARI AND MASOUD SAHRAEI

Abstract. The article illustrates the graphical study of geodesic
motion on H3, H2×R,Nil3 and Sol3 using the symbolic and graph-
ical computation of MATLAB platform.
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1. Introduction

Let (M, g) be a Riemannian manifold. If for any x, y ∈ M there does
exist an isometry π : M → M such that y = π(x), then the Riemann-
ian manifold is called homogeneous. In [5] W. P. Thurston formulated
a geometrization conjecture for three-manifolds which states that every
compact orientable three-manifold has a canonical decomposition into
pieces, each of which admits a canonical geometric structure from among
the 8 maximal simply connected homogeneous Riemannian 3-geometries

E3, S3,H3, S2 ×R,H2 ×R, S̃L2R,Nil3 and Sol3.
Obviously, the Poincar’e conjecture (a compact three-manifold with triv-
ial fundamental group is necessarily homeomorphic to the 3-sphere) is a
special case of the Thurston conjecture. In the past thirty years, many
mathematicians have contributed to the understanding of this problem,
maybe the most important attempts are due to R. Hamilton. In 2006 a
scoop went round the world claiming that a Russian mathematician, G.
I. Perelman could give a complete proof of the Thurston conjecture and
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so the Poincare conjecture, too. Followed by the complex and knotty
proof (usingmodern differential geometry of Ricci flows) the interest has
turned to homogeneous spaces.
In this paper we use MATLAB platform to calculate Christoffel symbols
and geodesic equations then plot the geodesic of H3,H2 × R,Nil3 and
Sol3.
MATLAB files are included in the end of paper.
The Christoffel symbols of first kind are defined by:

Γm
ij =

1

2
gkm

(
−∂gij
∂xk

+
∂gik
∂xj

+
∂gjk
∂xi

)
Also we know that in local coordinates the curve

γ(t) =
(
x1(t), . . . , xn(t)

)
Is a geodesic if and only if it satisfies in geodesic equation:

d2xk
dt2

+ Γk
ij

dxi
dt

dxj
dt

= 0

2. Thurston geometries

In this section, we investigate eight model of Thurston geometries and
by MATLAB calculate some of geometric quantities of them.

2.1. E3. Euclidean 3-space, E3 is the space R3 with the metric

ds2 = dx2 + dy2 + dz2.

This space is flat (i.e curvature is zero). As in E2 any isometry of E3

can be written as x → Ax + b but now A is a real orthogonal 3 × 3
matrix and bis a translation vector in R3.
The group of isometries (also called rigid motions of Euclidean space) is
the semidirect product

Isom(E3) = R3 ×O(3)

where R3 acts by translations and O(3) by rotations.

2.2. S3. The spherical geometry is the three-sphere and its isometry
group. S3 can be embedded in R4, in this case

S3 =
{
x ∈ R4 | ∥x∥ = 1

}
and thus the metric on S3 is the one induced from R4, that is,

ds2 = dx2 + dy2 + dz2 + dw2.
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In this metric the geodesics of S3 are exactly the great circles of S3.
We may also think of S3 as ordered pairs of complex numbers. In this
case,

S3 =
{
(z1, z2) ∈ C2 | |z1|2 + |z2|2 = 1

}
.

The isometry group of S3 is O(3), the group of orthogonal 3×3 matrices.
the dimension of the group of isometries in S3 is 6.

2.3. H3. Hyperbolic three-space can be defined as the upper half of Eu-
clidean three-space, R3

+ =
{
(x, y, z) ∈ R3 | Z > 0

}
with the metric

ds2 =
1

z2
(dx2 + dy2 + dz2).

The isometry group of H3 is generated by reflections, which are reflec-
tions across planes perpendicular to the xy-plane, and inversions in a
sphere with center on the xy-plane. The group of orientation preserv-
ing isometries of H3 can be identified with a Moebius transformation of
C ∪ {∞}.
Recall that a moebius transformation of C ∪ {∞} is a map of the form

z → az + b

cz + d

where a, b, c, d ∈ C and ad− bc ̸= 0.
In H3 we design function file H3 1 to compute Christoffel symbols. The
function file H3 1 has 3 arguments. The first two arguments are lower
indexes in Γm

ij and the third argument is upper index in Γm
ij For ex-

ample to compute Γ3
33 it is enough to call H3 1 with (3, 3, 3) or type

H3 1(3, 3, 3) in MATLAB, so we have:
≫ H3 1(3, 3, 3)
thechristoffel symbol gama 33∧3 is:
ans=
-1/z
and we will thave this equality:

Γm
ij = H3 1(i, j,m)
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By this process we have obtained Christoffel symbols. The nonzero
components are the following:

Γ3
11 =

1

z
, Γ1

13 = −1

z
, Γ3

22 =
1

z
,

Γ2
23 = −1

z
, Γ1

31 = −1

z
, Γ2

32 = −1

z
,

Γ3
33 = −1

z
.

So the geodesic equations of H3 are:

d2x(t)

dt2
+

2

z

dx(t)

dt

dz(t)

dt
= 0,

d2y(t)

dt2
− 2

z

dy(t)

dt

dz(t)

dt
= 0,

d2z(t)

dt2
+

1

z

dx(t)

dt

dx(t)

dt
+

1

z

dy(t)

dt

dy(t)

dt
− 1

z

dz(t)

dt

dz(t)

dt
= 0.

To solve the geodesic equations we use numerical solution of ODEs in
MATLAB. First we build the function file H3 G 1 containing the ge-
odesic equations and then we build the MATLAB script H3 G 2 with
ODE45 to solve the geodesic equations and plot the result.

2.4. S2 ×R. The space S2 ×R is precisely the product of the unit two-
sphere and the real line with the product metric.
The isometry group of S2 ×R is isomorphic to Isom(S2)× Isom(R).
We know Isom(S2) is generated by the identity, antipodalmap, rota-
tions, and reflections. Isom(R) consists only of identity, translations,
and reflections.
There are only a few ways elements of these two groups can be paired
to generatdiscret subgroup of (S2)× Isom(R).
Dimension of isometry group of S2 ×R is 4.

2.5. H2 ×R. The space H2 ×R is the product of hyperbolic two-space(
H2 = {z = x + iy ∈ C | y > 0}

)
and the real line. It has isometry

group Isom(H2 ×R) = Isom(H2)× Isom(R).
Let x1, x2 denote the coordinates in H2 and x3 the coordinate in R. The
metric in H2 ×R is

ds2 =
dx21 + dx22

F
+ dx23
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Figure 1. Geodesic of H3

where

F =

(
1− x21 − x22

2

)2

.

In H2 ×R we design function file H2Rchristo compute Christoffel sym-
bols. The function fileH2Rchris has 3 arguments.
For example to compute Γ2

22 it is enough to call H2Rchris with (2,2,2)
or type H2Rchris (2,2,2) in MATLAB , so we have:
≫ simplify(H2Rchris(2,2,2))
thechristoffel symbol gama 22∧2 is:
ans=

(2*x2)/(x1^2 + x2^2-1)

and we will have this equatlity:

Γm
ij = H2Rchris(i,j,m)
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By this process we have obtained Christoffelsymbols. The nonzero com-
ponents are the following:

Γ1
11 =

2x1
x21 + x22 − 1

, Γ1
12 =

2x2
x21 + x22 − 1

, Γ1
21 =

2x2
x21 + x22 − 1

,

Γ1
22 = − 2x1

x21 + x22 − 1
, Γ2

11 = − 2x2
x21 + x22 − 1

, Γ2
12 =

2x1
x21 + x22 − 1

,

Γ2
21 =

2x1
x21 + x22 − 1

, Γ2
22 =

2x2
x21 + x22 − 1

so the geodesic equations of H2 ×R are:

d2x1(t)

dt2
+

2x1
x21 + x22 − 1

dx1(t)

dt

dx1(t)

dt
+ 2

(
2x2

x21 + x22 − 1

)
dx1(t)

dt

dx2(t)

dt

− 2x1
x21 + x22 − 1

dx2(t)

dt

dx2(t)

dt
= 0

d2x2(t)

dt2
− 2x2

x21 + x22 − 1

dx1(t)

dt

dx1(t)

dt
+ 2

(
2x1

x21 + x22 − 1

)
dx1(t)

dt

dx2(t)

dt

+
2x2

x21 + x22 − 1

dx2(t)

dt

dx2(t)

dt
= 0

d2x3(t)

dt2
= 0.

To solve the geodesic equations we use numerical solution of ODEs in
MATLAB. First we build the function file H2R G 1 containing the ge-
odesic equations and then we build the MATLAB script H2R G 2 with
ODE45 to solve the geodesic equations and plot the result.
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Figure 2. Geodesic of H2 ×R

2.6. S̃L2R. The group SL2R is the group of real matrices with deter-

minant one, and is in fact a Lie group. The space S̃L2R is the universal

covering space of the Lie group SL2R.the space S̃L2R is a Lie group.

The metric on S̃L2R can be derived as follows:
The unit tangent bundle of H2 can be identified with PSL2R, which is
covered by SL2R. The metric on H2 can then be pulled back to induce

a metric on S̃L2R.

2.7. Nil3. Nil3 is the three dimensional group of all real 3× 3 uppertri-
angular matrices of the form 1 x z

0 1 y
0 0 1


Nil3 Is defined as R3 with the group operation

(x, y, z) ∗ (x̄, ȳ, z̄) =
(
x+ x̄, y + ȳ, z + z̄ +

xȳ

2
− x̄y

2

)
The identity of the group is (0,0,0) and the inverse of (x, y, z) is given by
(−x,−y,−z). It is connected and nilpotent Lie group. This geometry
is called Nil because the Lie group is nilpotent.
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The following metric is left invariant

ḡ = dx2 + dy2 +

(
dz +

1

2
(ydx− xdy)

)2

The resulting Riemannian manifold (Nil3, ḡ) is the model space of nil
geometry in the sense of Thurston.
In Nil3 we design function file Nil3 1 to compute Christoffel symbols.
The function file Nil3 1 has 3 arguments.
For example to compute Γ1

23 it is enough to call Nil3 1 with (2,3,1) or
type Nil3 1(2, 3, 1) in MATLAB, so we have:

>>Nil3_1 (2,3,1)

thechristoffel symbol (gama_23^1) is:

ans

1/2

and we will have this equality:

Γm
ij = Nil3 1(i, j,m)

By this process we have obtained Christoffelsymbols. The nonzero com-
ponents are the following:

Γ1
23 =

1

2
, Γ1

32 =
1

2
, Γ2

13 = −1

2
,

Γ2
31 = −1

2
, Γ3

12 =
1

2
, Γ3

21 = −1

2

So the geodesic equations of Nil3 are:

d2x(t)

dt2
+

dy(t)

dt

dz(t)

dt
= 0,

d2y(t)

dt2
− dx(t)

dt

dz(t)

dt
= 0

d2z(t)

dt2
= 0.

To solve the geodesic equations we use numerical solution of ODEs in
MATLAB. First we build the function file Nil3 G 1 containing the ge-
odesic equations and then we build the MATLAB script Nil3 G 2 with
ODE45 to solve the geodesic equations and plot the result.
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Figure 3. Geodesic of Nil3

2.8. Sol3. The space Sol3 is a connected 3-dimensional manifold whose
one of the eight models of geometry of Thurston. This group is called
Sol because it is a solvable group.
The space Sol3 can be viewed as R3 with the metric

ds2 = e2zdx2 + e−2zdy2 + dz2

Where (x,y,z) are usual coordinates of R3. The space sol3 with the group
operation

(x, y, z) ∗ (x́, ý, ź) = (x́+ e−zx́, y + ez ý, z + ź)

It is a solvable but not nilpotent Lie group and the metric ds2 is left
invariant.
The isometry group of sol3 has dimension 3.
In [11] calculate some geometric quantities like Christoffel symbols, Rie-
mannian curvature Tensor, Ricci tensor, Scalar curvature , Einstein ten-
sor and geodesic in sol3 space by building MATLAB files.
By function file MZsol1 , MZsol7 and MZsol8 the Christoffel symbols ,
geodesic equations and geodesic obtained as follows:



50 Nemat Abazari and Masoud Sahraei

Christoffel symbols:

Γ1
13 = 1, Γ1

31 = 1, Γ2
23 = −1,

Γ2
32 = −1, Γ3

11 = −e2z, Γ3
22 = e−2z.

Geodesic equations:

d2x(t)

dt
+ 2

dx(t)

dt

dz(t)

dt
= 0

d2y(t)

dt
− 2

dy(t)

dt

dz(t)

dt
= 0

d2z(t)

dt
− e2z(t)

dx(t)

dt

dx(t)

dt
+ e−2z(t)dy(t)

dt

dy(t)

dt
= 0.

Geodesic:
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Figure 4. Geodesic of sol3

3. Appendix (M-Files)

H3 1:
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functionGAMA_nm_k =H3_1(n,m,k)

%compute the christoffel symbol of H3 space

syms x y z;

g=[1/z^2 0 0;0 1/z^2 0;0 0 1/z^2];

G=inv(g);X=[x y z];

GAMA_nm_k=0;

for s=1:3

ZR=1/2*G(s,k)*(diff(g(m,s),X(n))+diff(g(s,n),X(m))

-diff(g(n,m),X(s)));

GAMA_nm_k=ZR+GAMA_nm_k;

end

zr1=’ the christoffel symbol’;

zr2=’ gama _’;zr3=’ is :’;

disp([zr1 zr2 num2str(n) num2str(m) ’^’ num2str(k) zr3]);

sum(GAMA_nm_k);

end

-------------------------------------------------------

H3 G 1:

functiondy =H3_G_1(t,y)

dy=zeros(6,1);

dy(1)=y(2);

dy(2)=-(-2/y(5))*(y(2))*(y(6));

dy(3)=y(4);

dy(4)=-(-2/y(5))*(y(4))*(y(6));

dy(5)=y(6);

dy(6)=-(1/y(5))*(y(2)^2)-(1/y(5))*(y(4)^2)+(1/y(5))*(y(6)^2);

end

-------------------------------------------------------

H3 G 2:

clearall;clc;

tspan = [-1 1];

y0 = [-2;2;-2;2;-1;2];

[t, y] = ode45(@H3_G_1, tspan, y0)

plot3(y(:,1),y(:,3),y(:,5),’linewidth’,3,’color’,’c’);

axis equal;

xlabel(’X’);ylabel(’Y’);zlabel(’Z’);

gridon;box on;
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-------------------------------------------------------

H2Rchris:

functionL_nm_k =H2Rchris(n,m,k)

syms x1 x2 x3;

g=[((1-x1^2-x2^2)/2)^2 0 0;0 ((1-x1^2-x2^2)/2)^2 0;0 0 1];

G=inv(g);X=[x1 x2 x3];L_nm_k=0;

for s=1:3

W=1/2*G(s,k)*(diff(g(m,s),X(n))+diff(g(s,n),X(m))

-diff(g(n,m),X(s)));

L_nm_k=W+L_nm_k;

end

M1=’ the christoffel symbol’;

M2=’gama _’;M3=’ is :’;

disp([M1’(’M2 num2str(n)num2str(m)’^’num2str(k)’)’ M3]);

sum(L_nm_k);

end

--------------------------------------------------------

H2R G 1:

functiondy =H2R_G_1(t,y)

dy=zeros(6,1);

dy(1)=y(2);

dy(2)=-((2*y(1))/(y(1)^2 + y(2)^2 - 1))*(y(2)^2) -

2*((2*y(2))/(y(1)^2+ y(2)^2 - 1))*(y(2))*(y(4))

- (-(2*y(1))/(y(1)^2+ y(2)^2 - 1))*(y(4)^2);

dy(3)=y(4);

dy(4)=-(-(2*y(2))/(y(1)^2 + y(2)^2 - 1))*(y(2)^2)

- 2*((2*y(1))/(y(1)^2+ y(2)^2 - 1))*(y(2))*(y(4))

- ((2*y(2))/(y(1)^2+ y(2)^2 - 1))*(y(4)^2);

dy(5)=y(6);

dy(6)=0 ;

end

-------------------------------------------------------
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H2R G 2:

clearall;clc;

tspan = [-4 4];

y0 = [-2;2;-2;2;-2;2];

[t, y] = ode45(@Nil3_G_1, tspan, y0)

plot3(y(:,1),y(:,3),y(:,5),’linewidth’,3,’color’,’r’);

axis equal;

xlabel(’X’);ylabel(’Y’);zlabel(’Z’);

gridon;box on;

-------------------------------------------------------

Nil3 1:

functiongama_nm_k =Nil3_1(ms1,ms2,ms3)

syms x y z ;

g=[1 (1/y)*x 0;0 1 0;2*(1/2)*y -2*(1/2)*x 1];

G=[1 0 0;0 1 0;1/(2*(1/2)*y) 1/(-2*(1/2)*x) 1];X=[x y z];

gama_nm_k=0;

for s=1:3

zr=1/2*G(s,ms3)*(diff(g(ms2,s),X(ms1))

+diff(g(s,ms1),X(ms2))-diff(g(ms1,ms2),X(s)));

gama_nm_k=zr+gama_nm_k;

end

word1=’ the christoffel symbol’;

word2=’gama _’;word3=’ is :’;

disp([word1 ’(’ word2 num2str(ms1) num2str(ms2)

’^’ num2str(ms3) ’)’ word3]);

sum(gama_nm_k);

end

--------------------------------------------------------

Nil3 G 1:

functiondy =Nil3_G_1(t,y)

dy=zeros(6,1);

dy(1)=y(2);

dy(2)=-(y(4))*(y(6));

dy(3)=y(4);

dy(4)=-(-1)*(y(2))*(y(6));

dy(5)=y(6);
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dy(6)=0 ;

end

-------------------------------------------------------------

Nil3 G 2:

clearall;clc;

tspan = [-4 4];

y0 = [-2;2;-2;2;-2;2];

[t, y] = ode45(@Nil3_G_1, tspan, y0)

plot3(y(:,1),y(:,3),y(:,5),’linewidth’,3,’color’,’r’);

axis equal;

xlabel(’X’);ylabel(’Y’);zlabel(’Z’);

gridon;box on;

--------------------------------------------------------------
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