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AN EFFICIENT TECHNIQUE FOR SOLVING LINEAR

AND NONLINEAR WAVE EQUATIONS WITHIN

LOCAL FRACTIONAL OPERATORS

HASSAN KAMIL JASSIM

Abstract. In this paper, we utilize reduced differential transform
method (RDTM) to obtain approximate solutions for linear and
nonlinear wave equations within local fractional differential oper-
ators. The operators are taken in the local fractional sense. The
efficiency of the considered method is illustrated by some examples.
This method reduces significantly the numerical computations com-
pare with local fractional variational iteration method. The results
reveal that the suggested algorithm is very effective and simple and
can be applied for other linear and nonlinear problems in sciences
and engineering.
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1. Introduction

There are many physical applications in science and engineering can
be represented by models using the differential equations, which are very
helpful for many physical problems. These equations are represented
by linear and nonlinear partial differential equations and solving such
differential equations is very important. Our concern in this work is
to consider the linear and nonlinear wave equation with local fractional
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differential operator as the following:

L(2ϑ)
κκ ϕ(η, κ)− L(2ϑ)

ηη ϕ(η, κ) + Λ(ϕ) = ψ(η, κ), 0 < α ≤ 1,(1.1)

L(2ϑ)
κκ ϕ(η, κ)− L(2ϑ)

ηη ϕ(η, κ) + Υ(ϕ) = ψ(η, κ), 0 < α ≤ 1,(1.2)

with the initial conditions

(1.3) ϕ(η, 0) = ω(η),
∂ϑϕ(η, 0)

∂κϑ
= ρ(η),

where Λ(ϕ) and Υ(ϕ)are linear and nonlinear functions respectively,
ψ(η, κ) is source term of nondifferentiable function, and ω(η) and ρ(η)
are given functions.
There are many analytical and numerical methods used to solve local
fractional partial differential equations such as, local fractional function
decomposition method [1, 2, 3], local fractional Adomian decomposi-
tion method [3, 4], local fractional series expansion method [5, 6], local
fractional Laplace transform method [7, 8], local fractional Fourier se-
ries method [9], local fractional homotopy perturbation method [10],
local fractional varitional iteration method [11, 12, 13], local fractional
differential transform method [14, 15], local fractional Laplace decompo-
sition method [16], local fractional Laplace variational iteration method
[17, 18, 19].The local fractional reduced differential transform technique
is an iterative procedure for obtaining Taylor series solution of partial
differential equations. This method reduces the size of computational
work and easily applicable to many physical problems. Our aim is to
extend the applications of the proposed method to obtain the analytical
approximate solutions to wave equations with local fractional deriva-
tive operators. The paper has been organized as follows. In Section 2,
we give analysis of the method used. In Section 3, we consider several
illustrative examples. Finally, in Section 4, we present our conclusions.

2. Analysis of the Method

As in [20], the basic definition of reduced differential transform with
local fractional operator is proposrd as follows:

Definition 2.1. If ϕ(η, κ) is a local fractional analytical function in the
domain of interest, then the local fractional spectrum function

(2.1) Φξ(η) =
1

Γ(1 + ξϑ)

[
∂ξϑϕ(η, κ)

∂κξϑ

]
κ=κ0

,
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is reduce differential transformed of the function ϕ(η, κ) via local frac-
tional operator, where ξ = 0, 1, . . . , n and 0 < ϑ ≤ 1.

Definition 2.2. The inverse reduced differential transform of Φξ(η) via
local fractional operator is defined as follows:

(2.2) ϕ(η, κ) =
∞∑
ξ=0

Φξ(η)(κ− κ0)ξϑ.

From (2.1) and (2.2) we get

(2.3) ϕ(η, κ) =
∞∑
ξ=0

(κ− κ0)ξϑ

Γ(1 + ξϑ)

[
∂ξϑϕ(η, κ)

∂κξϑ

]
κ=κ0

.

From (2.3), it is obvious that the local fractional reduced differential
transform is derived from the local fractional Taylor theorems.

Whenever κ0 = 0, then (2.1) and (2.2) become

(2.4) Φξ(η) =
1

Γ(1 + ξϑ)

[
∂ξϑϕ(η, κ)

∂κξϑ

]
κ=0

,

(2.5) ϕ(η, κ) =

∞∑
ξ=0

Φξ(η)κξϑ.

The following theorems that can be deduced from (2.1) and (2.2) are
presented below:

Theorem 2.3. If ϕ(η, κ) = ψ(η, κ) + θ(η, κ) then

(2.6) Φξ(η) = Ψξ(η) + Θξ(η).

Theorem 2.4. If ϕ(η, κ) = ψ(η, κ)θ(η, κ) then

(2.7) Φξ(η) =

ξ∑
l=0

Ψl(η)Θξ−l(η).

Theorem 2.5. If ϕ(η, κ) = aψ(η, κ) , where a is a constant, then

(2.8) Φξ(η) = aΨξ(η).

Theorem 2.6. .If ϕ(η, κ) =
∂nϑψ(η, κ)

∂κnϑ
then

(2.9) Φξ(η) =
Γ(1 + (ξ + n)ϑ)

Γ(1 + ξϑ)
Ψξ+n(η).
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Theorem 2.7. If ϕ(η, κ) =
ηnϑ

Γ(1 + nϑ)

κmϑ

Γ(1 +mϑ)
then

(2.10) Φξ(η) =
ηnϑ

Γ(1 + nϑ)

δϑ(ξ −m)

Γ(1 +mϑ)
,

where the local fractional Dirac-delta function is given by

δϑ(ξ −m) =

{
1, ξ = m,
0, ξ 6= m.

Theorem 2.8. .If ϕ(η, κ) =
∂nϑψ(η, κ)

∂ηnϑ
then

(2.11) Φξ(η) =
∂nϑΨξ(η)

∂ηnϑ
.

For illustration of the methodology of the presented method, we write
the partial differential equation within local fractional operator as:

Lϑ [ϕ(η, κ)] +Rϑ [ϕ(η, κ)] +Nϑ [ϕ(η, κ)] = ω(η, κ),(2.12)

ϕ(η, 0) = φ(η).

where Lϑ = ∂2ϑ

∂κ2ϑ
and Rϑ are linear local fractional operators, Nϑ is

a nonlinear local fractional operator and ω(η, κ) is an inhomogenuous
term.
By taking the local fractional reduce differential transform on both sides
of (2.12), we have

Γ(1 + (ξ + 2)ϑ)

Γ(1 + ξϑ)
Φξ+2(η) = Ωξ(η)−Rϑ [Φξ(η)] +Nϑ [Φξ(η)] ,(2.13)

Φ0(η) = φ(η).

where Φξ(η) and Ωξ(η) are reduce differential transformed with local
fractional operators of the functions ϕ(η, κ) and ω(η, κ) respectively.

3. Illustrative examples

In this section, to give a clear overview of the local fractional reduce
differential transform method for linear and nonlinear wave equations
within local fractional operator, we present the following examples.

Example 3.1. Let us consider the following linear wave equation within
local fractional operator:

(3.1)
∂2ϑϕ(η, κ)

∂κ2ϑ
− ∂2ϑϕ(η, κ)

∂η2ϑ
= 0, 0 < ϑ 6 1
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subject to the initial conditions given by

(3.2) ϕ(η, 0) = 0,
∂ϑϕ(η, 0)

∂κϑ
= Eϑ(ηϑ).

Implementing the RDTM via local fractional derivative to (3.1), we have
the following relation

(3.3)
Γ(1 + (ξ + 2)ϑ)

Γ(1 + ξϑ)
Φξ+2(η)−

∂2ϑΦξ(η)

∂η2ϑ
= 0,

which reduce to the following formula

(3.4) Φξ+2(η) =
Γ(1 + ξϑ)

Γ(1 + (ξ + 2)ϑ)

∂2ϑΦξ(η)

∂η2ϑ
,

where

(3.5) Φ0(η) = 0,Φ1(η) =
1

Γ(1 + ϑ)
Eϑ(ηϑ).

Following (3.4) and (3.5), we obtain the following relations

Φ2(η) =
1

Γ(1 + 2ϑ)

∂2ϑΦ0(η)

∂η2ϑ
= 0,

Φ3(η) =
Γ(1 + ϑ)

Γ(1 + 3ϑ)

∂2ϑΦ1(η)

∂η2ϑ

=
Γ(1 + ϑ)

Γ(1 + 3ϑ)

1

Γ(1 + ϑ)
Eϑ(ηϑ)

=
1

Γ(1 + 3ϑ)
Eϑ(ηϑ),

Φ4(η) =
Γ(1 + 2ϑ)

Γ(1 + 4ϑ)

∂2ϑΦ2(η)

∂η2ϑ
= 0,

Φ5(η) =
Γ(1 + 3ϑ)

Γ(1 + 5ϑ)

∂2ϑΦ3(η)

∂η2ϑ

=
Γ(1 + 3ϑ)

Γ(1 + 5ϑ)

1

Γ(1 + 3ϑ)
Eϑ(ηϑ)

=
1

Γ(1 + 5ϑ)
Eϑ(ηϑ),

...
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Therefore, ϕ(η, κ) is evaluated as follows

ϕ(η, κ) =
∞∑
ξ=0

Φξ(η)κξϑ

= Eϑ(ηϑ)

[
κϑ

Γ(1 + ϑ)
+

κ3ϑ

Γ(1 + 3ϑ)
+

κ5ϑ

Γ(1 + 5ϑ)
+ · · ·

]
= Eϑ(ηϑ)sinhϑ(κϑ).(3.6)

Example 3.2. The following linear wave equation within local fractional
operator:

(3.7)
∂2ϑϕ(η, κ)

∂κ2ϑ
− η2ϑ

Γ(1 + 2ϑ)

∂2ϑϕ(η, κ)

∂η2ϑ
= 0, 0 < ϑ 6 1

is presented and its initial valuses are defined as follows:

(3.8) ϕ(η, 0) =
η2ϑ

Γ(1 + 2ϑ)
,
∂ϑϕ(η, 0)

∂κϑ
= 0.

By utilizing the local fractional reduce differential transform on both
sides of (3.7), we get

(3.9)
Γ(1 + (ξ + 2)ϑ)

Γ(1 + ξϑ)
Φξ+2(η)− η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦξ(η)

∂η2ϑ
= 0,

or equivalently

(3.10) Φξ+2(η) =
Γ(1 + ξϑ)

Γ(1 + (ξ + 2)ϑ)

η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦξ(η)

∂η2ϑ
,

where

(3.11) Φ0(η) =
η2ϑ

Γ(1 + 2ϑ)
,Φ1(η) = 0.
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Following (3.10) and (3.11), we obtain the following relations

Φ2(η) =
1

Γ(1 + 2ϑ)

η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ0(η)

∂η2ϑ
,

=
1

Γ(1 + 2ϑ)

η2ϑ

Γ(1 + 2ϑ)
,

Φ3(η) =
Γ(1 + ϑ)

Γ(1 + 3ϑ)

η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ1(η)

∂η2ϑ

= 0,

Φ4(η) =
Γ(1 + 2ϑ)

Γ(1 + 4ϑ)

η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ2(η)

∂η2ϑ
,

=
Γ(1 + 2ϑ)

Γ(1 + 4ϑ)

η2ϑ

Γ(1 + 2ϑ)

1

Γ(1 + 2ϑ)
,

=
1

Γ(1 + 4ϑ)

η2ϑ

Γ(1 + 2ϑ)
,

Φ5(η) =
Γ(1 + 3ϑ)

Γ(1 + 5ϑ)

η2ϑ

Γ(1 + 2ϑ)

∂2ϑΦ3(η)

∂η2ϑ

= 0,
...

Therefore, ϕ(η, κ) is evaluated as follows

ϕ(η, κ) =
∞∑
ξ=0

Φξ(η)κξϑ

=
η2ϑ

Γ(1 + 2ϑ)

[
1 +

κ2ϑ

Γ(1 + 2ϑ)
+

κ4ϑ

Γ(1 + 4ϑ)
+

κ6ϑ

Γ(1 + 6ϑ)
+ · · ·

]
=

η2ϑ

Γ(1 + 2ϑ)
coshϑ(κϑ).(3.12)

Example 3.3. Consider the following nonlinear wave equation within
local fractional derivative operator:
(3.13)
∂2ϑϕ(η, κ)

∂κ2ϑ
−ϕ(η, κ)

∂2ϑϕ(η, κ)

∂η2ϑ
+ϕ2(η, κ) = 1− η2ϑ

Γ(1 + 2ϑ)
− κ2ϑ

Γ(1 + 2ϑ)
,
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with the initial conditions

(3.14) ϕ(η, 0) =
η2ϑ

Γ(1 + 2ϑ)
,
∂ϑϕ(η, 0)

∂κϑ
= 0.

By applying the local fractional reduce differential transform on both
sides of (3.13), we have

(3.15)

Γ(1+(ξ+2)ϑ)
Γ(1+ξϑ) Φξ+2(η)−

∑ξ
l=0 Φl(η) ∂2ϑ

∂η2ϑ
Φξ−l(η)

= δϑ(ξ)− η2ϑ

Γ(1+2ϑ)
δϑ(ξ)

Γ(1+ϑ) −
δϑ(ξ−2)
Γ(1+2ϑ) ,

which reduces to

(3.16)

Φξ+2(η) = Γ(1+ξϑ)
Γ(1+(ξ+2)ϑ)

[∑ξ
l=0 Φl(η) ∂2ϑ

∂η2ϑ
Φξ−l(η) + δϑ(ξ)

− η2ϑ

Γ(1+2ϑ)δϑ(ξ)− δϑ(ξ−2)
Γ(1+2ϑ) ,

where

(3.17) Φ0(η) =
η2ϑ

Γ(1 + 2ϑ)
,Φ1(η) = 0.
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By iterative calculations on (3.16) and (3.17) we obtain

Φ2(η) =
1

Γ(1 + 2ϑ)

[
Φ0(η)

∂2ϑ

∂η2ϑ
Φ0(η) + 1− η2ϑ

Γ(1 + 2ϑ)

]
=

1

Γ(1 + 2ϑ)

[
η2ϑ

Γ(1 + 2ϑ)
+ 1− η2ϑ

Γ(1 + 2ϑ)

]
=

1

Γ(1 + 2ϑ)
,

Φ3(η) =
Γ(1 + ϑ)

Γ(1 + 3ϑ)

[
Φ0(η)

∂2ϑ

∂η2ϑ
Φ1(η) + Φ1(η)

∂2ϑ

∂η2ϑ
Φ0(η)

]
= 0,

Φ4(η) =
Γ(1 + 2ϑ)

Γ(1 + 4ϑ)

[
Φ0(η)

∂2ϑ

∂η2ϑ
Φ2(η) + Φ1(η)

∂2ϑ

∂η2ϑ
Φ1(η) + Φ2(η)

∂2ϑ

∂η2ϑ
Φ0(η)

]
=

Γ(1 + 2ϑ)

Γ(1 + 4ϑ)

[
1

Γ(1 + 2ϑ)
− 1

Γ(1 + 2ϑ)

]
= 0,

...

Hence, the approximate solution ϕ(η, κ) is evaluted as follows

ϕ(η, κ) =
∞∑
ξ=0

Φξ(η)κξϑ

=
η2ϑ

Γ(1 + 2ϑ)
+

κ2ϑ

Γ(1 + 2ϑ)
.(3.18)

4. Conclusions

The local fractional wave equations have been analyzed using the re-
duced differential transform method within local fractional differential
operators. All the examples show that the local fractional reduced differ-
ential transform method is a powerful mathematical tool to solve linear
and nonlinear wave equations. It is also a promising method to solve
other nonlinear equations. The local fractional RDTM introduces a sig-
nificant improvement in the fields over existing techniques because it
takes less calculations and the number of iteration is less compared by
the other methods.
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