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GENERATING THE GENERALIZED DISTRIBUTIONS

BY USING FRACTIONAL CALCULUS

MASOUD GANJI AND FATEMEH GHARARI

Abstract. In this paper, we generalized some statistical distribu-
tions by using fractional calculus. The domain of parameter space
for these distributions was expanded and their PDFs also presented
as a product of fractional derivation of Dirac delta function of shape
parameter order.
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1. Introduction

Fractional calculus deals with the study of fractional order integral
and derivatives and their diverse applications ([4], [5], [6], [7], [8]). Frac-
tional calculus has widespread applications in different fields of science
and engineering. The applications of fractional calculus in statistics will
be ideal.
In this work, we follow our previous works, [1], [2] and [3], about applica-
tions of fractional calculus in statistics and present another application
of fractional calculus in statistics. We know from a classic view point,
continuous statistical distributions are not defined for improper values
of parameter space, since, in such a case, nonintegrable functions will
appear in the PDF formula. The Laplace and Fourier transforms of
the PDF, which are the moment generating function and characteristic
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function, respectively, are given by divergent integrals. However, the
introduction of the generalized continuous random variable (GCRV ) al-
low us to analytic continuation for the parameter. This approach is
equivalent to generalized function approach. In this case, divergent in-
tegrals are called finite in partly integrals. Also, we must keep in mind
that in applications the ordinary formulas of the PDF in its classical
sense hold only for proper ordinary values of the parameter space and in
generalized functions sense, for extended values of the parameter space.
Therefore, formulation of an applicable problem and interpretation of
its obtained results must be performed using the meaning of generalized
functions.

We generalize some statistical distributions by having, generalized
fractional integral and derivative operators which are fractional integral
and derivatives of generalized functions, .
Generalized functions are defined as a linear functional on a space X of
conveniently chosen test functions. For every locally integrable function
f ∈ L1

loc(R), there exists a distribution Ff : X → C defined by

(1.1) Ff (ϕ) = 〈f, ϕ〉 =

∫ ∞
−∞

f(x)ϕ(x)dx

where ϕ ∈ X is test function from a suitable space X of test func-
tions. A distribution that corresponds to functions via equation (1.1)
are called regular distributions. Examples for regular distributions are
the convolution kernels Kα

± ∈ L1
loc(R) defined as

(1.2) Kα
± = H(±x)

±xα−1

Γ(α)

for α > 0 and H(x) is a Heaviside unit step function. Distributions
that are not regular are sometimes called singular. An example for
a singular distribution is the Dirac delta function which is defined as
δ : X → C by

(1.3)

∫
δ(x)ϕ(x)dx = ϕ(0)

for every test function ϕ ∈ X. The test function space X is usually
chosen as a subspace of C∞(R), the space of infinitely differentiable
functions [4].
In the present work, like to our recent work, [3], we suppose that X is
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a positive continuous random variable and α is the parameter of distri-
bution. The new random variable is represented as the function Φα(x)

and defined by Φα(x) =
Xα−1

+

Γ(α) . The function Φα(x) can be extended

to all complex values of α as a pseudo function and is a distribution
whose support is [0,∞) except for the case α = 0,−1, ... . The general-
ized functions in mathematical analysis are not really functions in the
classical sense, for such reason we call our proposed random variable a
generalized continuous random variable (GCRV ). In the special case,
when α = 2, it becomes ordinary continuous random variable X.
The expectation of this generalized random variable coincides with
Riemann-Liouville left fractional integral of the PDF, at the origin, for
α > 0 and Marchaud fractional derivative of the PDF, at the origin, for
−1 < α < 0, i.e.

E[Φα(X)] =

 (Iα−f)(0), α > 0

(Dα
−f)(0), −1 < α < 0

(1.4)

where

(1.5) (Iα−f)(x) =
1

Γ(α)

∫ ∞
0

tα−1f(x+ t)dt

is the Riemann-Liouville left fractional integral, while

(1.6) (Dα
−f)(x) =

1

Γ(−α)

∫ ∞
0

t−α−1{f(x+ t)− f(x)}dt

is the Marchaud fractional derivative [3].

Some distributions like Weibull, Gamma and Beta type I distribu-
tions have been generalized in [3]. Here, we generalize some distribu-
tions like Burr, Beta type II and Beta type III distributions. Like our
previous work, by this generalized random variable, we more expand the
domain of shape parameter space. For example, the domain of shape
parameter which has been already expanded for Burr distribution from
(0,∞)×(0,∞) to (−1,∞)×(0,∞) and for Beta type II and type III dis-
tributions from (0,∞)×(0,∞) to (−1,∞)×(−1,∞). In case of negative
values of the shape parameter space, the relationship between fractional
derivatives and statistics theory can be obtained, this means we can
write the PDF of distributions like Gamma, Weibull, Beta as a product
of fractional derivatives of Dirac delta function. Another property of the
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GCRV is

(1.7) Φα(x− a) ∗ Φβ(x) = Φα+β(x− a),

where α > −1 and β > −1 such that α + β > −1 and we used the star
notation for the convolution operation.
The proof is easy for α > 0 and β > 0, as instance, see [8]. Other values
of α and β can be proved by using analytic continuation. Also, we have

(1.8) (Iα0 Φβ(t))(x) = Φβ+α(x), α > 0, β > −1

and

(1.9) (Dα
0 Φβ(t))(x) = Φβ−α(x), α ≥ 0, β > −1.

that is, integrals and derivatives of order α > 0 of the GCRV is the
GCRV.

2. Preliminaries

In this section, we introduce notations, definitions and preliminary
facts which are used throughout this paper. We need some basic defini-
tions and properties of the fractional calculus theory and the generalized
functions theory which are used further in this paper. As mentioned in
references [5] and [6], the definitions 1 and 2 of fractional calculus are
as following:

Definition 1. For a function f defined on an interval [a, b], the
Riemann-Liouville (R-L) integrals Iαa+f and Iαb−f of order α ∈ C ,
(R(α) > 0) are defined by

(2.1) (Iαa+f)(t) =
1

Γ(α)

∫ t

a
(t− ξ)α−1f(ξ)dξ

and

(2.2) (Iαb−f)(t) =
1

Γ(α)

∫ b

t
(ξ − t)α−1f(ξ)dξ

respectively. Also, the left and right R-L fractional derivations Dα
a+f

and Dα
b−f of order α ∈ C , (R(α) > 0) are defined by

(2.3) (Dα
a+f)(t) = (

d

dt
)n(In−αa+ f)(t),

and

(2.4) (Dα
b−f)(t) = (

−d
dt

)n(In−αa+ f)(t).
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respectively.
Definition 2. Let f be a generalized function f ∈ C∞0 (R)′, (namely

the dual space of the vector space C∞0 (R)) with suppf ⊂ R+. Then its
fractional integral is the distribution Iα0+f defined as:

(2.5) 〈Iα0+f, ϕ〉 = 〈Iαf, ϕ〉 = 〈Kα
+ ∗ f, ϕ〉

for R(α) > 0 [4]. Also, the fractional derivative of order α with lower
limit 0 is the distribution Dα{f(z)}defined as:

(2.6) 〈Dα
0+f, ϕ〉 = 〈Dαf, ϕ〉 = 〈K−α+ ∗ f, ϕ〉

where α ∈ C and

Kα
+(x) =


H(x)x

α−1

Γ(α) , R(α) > 0

dn

dxn [H(x)x
α+n−1

Γ(α+n) ], R(α) + n > 0;n ∈ N
(2.7)

is the kernel distribution. For α = 0 one can finds K0
+(x) = ( d

dx)H(x) =

δ(x) and D0
0+ = I as the identity operator. For the α = −n; n ∈ N, we

have

(2.8) K−n+ (x) = δ(n)(x)

where δ(n) is the nth derivative of the δ distribution. The kernel distri-
bution in equation (2.7) is given by:

(2.9) Kα
+(x) =

d

dx
[H(x)

x−α

Γ(1− α)
] =

d

dx
K1−α

+ (x)

for 0 < α < 1.

Now if f ∈ C∞0 (R)′ with suppf ⊂ R+, then

(2.10) Dα
0+f = Dα

0+(If) = (K−α+ ∗ K
0
+) ∗ f = δ(α)

∗ f

for all α ∈ C. Also, the differentiation rule

(2.11) Dα
0+K

β
+ = Kβ−α

+

holds for all β and α ∈ C. It contains

DKβ
+ = Kβ−1

+

for all β ∈ C as a special case [4].
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3. The generalized Burr distribution

In probability and statistics theory, the Burr distribution is a con-
tinuous probability distribution for a non-negative random variable. It
is also known as the Singh?Maddala distribution and is one of a num-
ber of different distributions which is sometimes called the generalized
log-logistic distribution. It is most commonly used to model household
income. The Burr distribution has probability density function

(3.1) fX(x) = αβ
xα−1

(1 + xα)β+1

and its cumulative distribution function is

(3.2) FX(x) = 1− (1 + xα)−β

such that x > 0, α > 0 and β > 0. The PDF of the Burr distribution
in terms of the GCRV can be written as

(3.3) fX(x) =
βΓ(α+ 1)DxΦα+1(x)

(1 + Γ(α+ 1)Φα+1(x))β+1
.

The PDF of this distribution by using equation (2.11) with β = 0 and
equation (2.7), can be generalized as following definition.

Definition 3. Suppose that X be a random variable of Burr distri-
bution as a two-parameter family of distribution functions, in which the
parameter α and β are the shape parameters. The PDF of distribution
of X can be defined as

f(x) =


βΓ(α+1)Kα

+(x)

(1+Γ(α+1)Kα+1
+ (x))β+1

, α > 0,

βΓ(α+1)δ(α)(x)

(1+Γ(α+1)Kα+1
+ (x))β+1

, −1 < α ≤ 0.

(3.4)

Now, we should show that
∫∞

0 fX(x)dx = 1 for −1 < α ≤ 0.

(3.5)

∫ ∞
0

fX(x)dx = βΓ(α+ 1)

∫ ∞
0

δ(α)(x)

(1 + Γ(α+ 1)Kα+1
+ (x))β+1

dx,

or by using equation (1.8), we rewrite the above equation as following

(3.6) = βΓ(α+ 1)

∫ ∞
0

δ(α)(x)

(1 + Γ(α+ 1)I1
0 (δ(α)(x)))β+1

dx,

now, by formal substitution ?u = 1 + Γ(α + 1)I1
0 (δ(α)(x)) which gives

the result.
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So, we succeed to represent the PDF of Burr distribution as a product
of fractional derivation of Dirac delta function of shape parameter order.
Morever, the parameter space extended from (0,∞)×(0,∞) to (−1,∞)×
(0,∞).

4. The generalized Beta II distribution

The random variable X is said to have a Beta II distribution with
parameters (α, β), α > 0 and β > 0 and denoted as X ∼ BII(a, b) if its
probability density function is given by

(4.1) fX(x) = B(a, b)−1xa−1(1 + x)−(a+b), x > 0.

The PDF of the Beta II distribution in terms of the GCRV can be
written as

(4.2) fX(x) =
DxΦa+1(x)

DyΦa+b+1(y)Γ(b)(a+ b)
, y = 1 + x

The PDF of this distribution by using equation (2.11) with β = 0 and
equation (2.7), can be generalized as following definition.

Definition 4. Suppose that X be a random variable of Beta II distri-
bution as a tow-parameter family of distribution functions, in which the
parameter a and b are the shape parameters. The PDF of distribution
can be defined as

f(x) =



Ka
+(x)

Γ(b)(a+b)Ka+b
+ (y)

, a > 0, b > 0,

δ(a)(x)

Γ(b)(a+b)Ka+b
+ (y)

, −1 < a ≤ 0, b > 0, a+ b > 0,

δ(a)(x)

Γ(b)(a+b)δ(a+b)(y)
, −1 < a ≤ 0, b > 0, −1 < a+ b ≤ 0.

(4.3)

Now, we are showing that
∫∞

0 fX(x)dx = 1 for −1 < a ≤ 0, b > 0 and

a+b > 0. For this purpose, by the substitution u = (1+x)−1 the integral

(4.4)

∫ ∞
0

xa−1(1 + x)−(a+b)dx

transforms to

(4.5)

∫ 1

0
xb−1(1− x)a−1dx
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then for this distribution, the form
∫∞

0 fX(x)dx in terms of the GCRV
will be as following

(4.6)

∫ ∞
0

fX(x)dx = Γ(a+ b)

∫ 1

0
δ(a)(y)

xb−1

Γ(b)
dx,

Now, by using the equation (1.7) with a = 0 and t = 0, we have
(4.7)

= Γ(a+ b)

∫ 1

0

xb−1

Γ(b)
.
(1− x)a−1

Γ(a)
dx, = Γ(a+ b).Γ−1(a+ b),

which proves the result. This result is obtained with a similar way as in
the case −1 < a ≤ 0, b > 0 and −1 < a+ b ≤ 0.

So, we represent the PDF of Beta II distribution as a product of
fractional derivation of Dirac delta function of shape parameter or-
der. Moreover , the parameter space extended from (0,∞) × (0,∞)
to (−1,∞)× (−1,∞).

5. The generalized Beta III distribution

The random variable X is said to have a Beta III distribution with
parameters (a, b), a > 0 and b > 0 and denoted as X ∼ BIII(a, b) if its
probability density function is given by

(5.1) fX(x) = 2aB(a, b)−1xa−1(1− x)b−1(1 + x)−(a+b), 0 < x < 1.

The PDF of the Beta III distribution in terms of the GCRV can be
written as

(5.2) fX(x) =
2aDxΦa+1(x)DyΦb+1(y)

(a+ b)DzΦa+b+1(z)
, y = 1− x, z = 1 + x.

The PDF of this distribution by using equation (2.11) with β = 0 and
equation (2.7), can be generalized as following definition.

Definition 5. Suppose that X be a random variable of Beta III dis-
tribution as a two-parameter family of distribution functions, in which



Generating the generalized distributions 149

the parameter a and b are the shape parameters. The PDF of distribu-
tion can be defined as

f(x) =



2aKa
+(x)Kb

+(y)

(a+b)Ka+b
+ (z)

, a > 0, b > 0,

2aδ(a)(x)Kb
+(y)

(a+b)Ka+b
+ (z)

, −1 < a ≤ 0, b > 0, a+ b > 0,

2aδ(a)(x)Kb
+(y)

(a+b)δ(a+b)(z)
, −1 < a ≤ 0, b > 0, −1 < a+ b ≤ 0,

2aKa
+(x)δ(b)(y)

(a+b)Ka+b
+ (z)

, a > 0, a+ b > 0, −1 < b ≤ 0,

2aKa
+(x)δ(b)(y)

(a+b)δ(a+b)(z)
, a > 0, −1 < a+ b ≤ 0, −1 < b ≤ 0.

Now, we are showing that for −1 < α ≤ 0, b > 0 and a + b > 0
we have

∫∞
0 fX(x)dx = 1. For this purpose, frist by the substitution,

u = (1− x)(1 + x)−1 the integral

(5.3)

∫ 1

0
2axa−1(1− x)b−1(1 + x)−(a+b)dx

transforms to

(5.4)

∫ 1

0
xb−1(1− x)a−1dx

then for this distribution, the integral
∫∞

0 fX(x)dx in terms of theGCRV
will be as following

(5.5)

∫ ∞
0

fX(x)dx = Γ(a+ b)

∫ 1

0
δ(a)(y)

xb−1

Γ(b)
dx,

now, by using the equation (1.7) with a = 0 and t = 0 we have
(5.6)

= Γ(a+ b)

∫ 1

0

xb−1

Γ(b)
.
(1− x)a−1

Γ(a)
dx, = Γ(a+ b).Γ−1(a+ b),

which is the result. This result obtained with a similar way as in the
other cases.

So, we represent the PDF of Beta III distribution as a product of frac-
tional derivation of Dirac delta function of shape parameter order. Also,
the parameter space extended from (0,∞)×(0,∞) to (−1,∞)×(−1,∞).
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6. Conclusion

In this paper, by rewriting some distributions like the Burr, Beta
type II and Beta type III distributions in terms of the GCRV, we gen-
eralized them, i.e. the domain of parameter space for these distribu-
tions expanded and their PDFs also presented as a product of fractional
derivation of Dirac delta function of shape parameter order.
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