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ON WELL-POSEDNESS OF GENERALIZED

EQUILIBRIUM PROBLEMS INVOLVING α-MONOTONE

BIFUNCTION

AYED E. HASHOOSH AND MOHSEN ALIMOHAMMADY

Abstract. The aim of this paper is to establish some uniqueness
and well-posedness results for a general inequality of equilibrium
problems type involving α-monotone bifunction, whose solution is
sought in a subset K of a Banach space X. Some metric character-
izations and sufficient conditions for these types of well-posedness
are obtained. Moreover, we prove that the well-posedness of gen-
eralized equilibrium problems is equivalent to the existence and
uniqueness of its solution.
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1. Introduction

Well-posedness plays a crucial role in the stability analysis and numer-
ical methods for optimization theory and nonlinear operator equations.
The concept of well-posedness of unconstrained and constrained scalar
optimization problems was first introduced and studied by Levitin and
Polyak [17] and by Tykhonov [29], respectively, which has been known
as the Levitin-Polyak and Tykhonov well-posedness, respectively.

There are many papers in the literature that deal with a generaliza-
tion of Tykhonov well-posedness relating with optimization problems
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with more than one solution. This requires the existence and the con-
vergence of some subsequences of every minimizing sequence towards a
solution. For more details, we refer readers to (see [9, 2, 14, 33, 34]).
Moreover, we notice that several problems of well-posedness have been
generalized to nonconvex variational inequalities, saddle point prob-
lems, fixed-point problems, mathematical programming, Nash equilib-
rium problems, optimization problems with variational inequalities con-
strains, optimization problems with Nash equilibrium constrains (see
[2, 5, 7, 8, 19, 18, 22, 23, 24, 25, 6]). Fang et al. [11] investigated the
well-posedness of equilibrium problems; Kimura et al.[15] studied the
parametric well-posedness for vector equilibrium problems; Bianchi et
al. [3] introduced and studied two types of well-posedness for vector
equilibrium problems; SJ and MH [?] investigated the Levitin-Polyak
well-posedness of vector equilibrium problems with variable domination
structures; Salamon [28] analyzed the Hadamard well-posedness of para-
metric vector equilibrium problems; Peng et al. [26] investigated several
types of Levitin-Polyak well-posedness of generalized vector equilibrium
problems. Long et al. [20] and Zaslavski [30] introduced the notions of
generalized Levitin-Polyak well-posedness for explicit constrained EPs
and generic well-posedness for EPs, respectively. Most of these works
considered the perturbation of the parameters in the vector-valued case.

The main purpose aim of this work is to give a new contribution in
this area. In particular, we establish some concepts of well-posedness by
parametric for a class of generalized equilibrium problems with pertur-
bations which includes in special case the classical equilibrium problems.
Under suitable conditions, we further prove that the well-posedness
of generalized equilibrium problems is equivalent to the existence and
uniqueness of its solution. The distinguishing feature of our work lies in
”ask F not to be monotone (as in most papers dealing with equilibrium
problems in well-posed), but to be α-monotone ( which is rather a weak
condition compared to monotonicity)”.

In order to achieve the above aim, the study is divided into the fol-
lowing sections. In Section 2, we recall necessary denitions and refer
to some results. In Section 3, we establish and generalize the concepts
of well-posedness for equilibrium problems to generalized equilibrium
problems (EPΨ). We also derive some metric characterizations of well-
posedness. In Section 4, we present a new concepts of well-posedness
for optimization problems with constraints described by parametric gen-
eralized equilibrium problems. Additionally, Under suitable conditions,
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we prove that the well-posedness of generalized of equilibrium problems
is equivalent to the existence and uniqueness of its solution.

2. Preliminaries

In this paper, unless stated otherwise we assume that E and X are two
Banach spaces and K is a nonempty convex, closed subset of a Banach
space X and X∗ is topological dual space of X, while ‖ . ‖ denote the
norm in X∗.

For the convenience of the reader, we recall some definitions and re-
sults that need to be imposed in order to prove our main results. We
recalled the following generalized equilibrium problem [13] (for short,
(EPΨ)), in fact to find a x ∈ K such that

(2.1) F (x, y) + Ψ(x, y) ≥ 0 ∀y ∈ K.

in which F,Ψ : K ×K → R are two bifunctions and F is a generalized
equilibrium function with F (x, x) = 0 ∀x ∈ K.

In what follows, we introduce the formulation of optimization prob-
lems with equilibrium constraint.

Let h : T×K → R and F : T×K×K → R be two functions, in which
T ⊂ E is a nonempty set. The optimization problem with generalized
equilibrium constraint (denoted by (OPGPEC)) is formulated as follows:

minh(t, u) s.t. (t, u) ∈ T ×K and u ∈ S(t),

where S(t) is the solution set of the parametric generalized equilibrium
problem (EPΨ(t)) defined by, u ∈ S(t) if and only if

(2.2) F (t, u, v) + Ψ(u, v) ≥ 0, ∀v ∈ K.

Instead of writing {(EPΨ(t)) : t ∈ T} for the family of generalized
equilibrium problems i.e., the parametric problem, we will simply write
(EPΨ) in the sequel.

In order to highlight the generality of the problem (EPΨ) we recall
below some special cases, as below:

(i) If Ψ ≡ 0 then problem (2.2) is reduces to the parametric equilib-
rium problem (for short, EP(t)), in fact finding x ∈ K such that
F (t, x, y) ≥ 0 ∀y ∈ K (see [1, 11]).
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(ii) If Ψ ≡ 0 and F (t, x, y) = −h(t, x, x−y) ∀y ∈ K then problem (2.2)
is reduces to the parametric quasivariational inequality (for short,
QVI (t)) see [31].

(iii) If Ψ(x, y) ≡ Ψ(x) − Ψ(y)∀y ∈ K and F (t, x, y) = 〈F (x), y − x〉
then problem (2.2) is reduces to the mixed variational inequalities
(for short, (MVI))see [10].

In recent years, some of authors have proposed many essential gen-
eralizations of monotonicity. We shall use a kind of generalized mono-
tonicity, so called α- monotone bifunction.

Definition 2.1. [13] Let α : K ×K → R be a real-valued function. A
bifunction F : K ×K → R is called α- monotone if

(2.3) F (x, y) + F (y, x) + α(x, y) ≤ 0 ∀x, y ∈ K.

Definition 2.2. [34] A real-valued function G, defined on a convex
subset K of X, is said to be hemicontinuous, if

(2.4) lim
t→0+

G(tx+ (1− t)y) = G(y) ∀x, y ∈ K.

Throughout this paper, we assume that for every r ∈ [0, 1]

(2.5) lim
r→0

α(x, xr)

r
= 0

(2.6) α(x, y) ≤ lim
r→0

r − 1

r

[
ψ(x, x) + α(x, x)

]
Definition 2.3. Let X be a Banach space. A mapping Λ : X → R is
said to be

(i) lower semicontinuous (for short, (l.s.c)) at x0 ∈ X, if

(2.7) Λ(x0) ≤ lim inf
n

Λ(xn)

(ii) upper semicontinuous (for short ,(u.s.c)) at x0 ∈ X, if

(2.8) Λ(x0) ≥ lim sup
n

Λ(xn)

for any sequence xn of X such that xn → x0

Let us recall that the concepts of noncompactness measure and Haus-
dorff metric.
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Definition 2.4. [16] Let M, N be nonempty subsets of E. The Hausdorff
metric H(·, ·) between N and M is defined by

H(N,M) = max{e(N,M), e(M,N)},
where e(N,M) = sup

a∈N
d(a,M) with d(a,M) = inf

b∈M
‖a− b‖.

Definition 2.5. [16] Assume that A is a nonempty subset of X. The
measure of noncompactness β of the set A is defined by

β(A) = inf{ε > 0 : A ⊂
n
∪
j=1

Aj , diamAj < ε, j = 1, ..., n},

where diam means the diameter of a set.
We close this section with theorem that will play a key role in the

proof of our main results.

Theorem 2.6. [13] Suppose that F : K ×K → R, is α-monotone bi-
function, hemicontinuous in the first argument and convex in the second
argument. Let Ψ, α : K × K → R be convex in the second argument,
then generalized equilibrium problem (EPΨ) is equivalent to the follow-
ing problem:
Find x ∈ K such that

(2.9) F (y, x) + α(x, y) ≤ Ψ(x, y) ∀y ∈ K.

3. Well-posed of (EPΨ) with metric characterizations

In this section we establish some concepts of well-posed for generalized
equilibrium problem (EPΨ). To start our analysis, through the results
of this section, we give some conditions under which the equilibrium
problem is strongly well-posed in the generalized sense.

Definition 3.1. A sequence {(tn, xn)} ⊂ T ×K is said to be an approx-
imating sequence for (EPΨ) if there exists a nonnegative sequence {εn}
with εn → 0 as n→∞ such that

(3.1) F (t, xn, y) + Ψ(xn, y) ≥ −εn‖y − xn‖ ∀n ∈ N, y ∈ K.

Definition 3.2. The problem (EPΨ) is said to be strongly (resp., weakly)
well-posed ( resp., strongly (resp., weakly) well-posed in the generalized
sense) if (EPΨ) has a unique solution x, and for every sequence {xn} with
xn → x, every approximating sequence for (EPΨ) converges strongly
(resp., weakly) to the unique solution (resp., if (EPΨ) has a nonempty
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solution set S(t), and every approximate solution sequence has a subse-
quence which strongly (resp., weakly) converges to some point of S(t)).

In what follows, we shall establish some characterizations of well-
posedness for (EPΨ). For any ε > 0 we define two sets:

Γ(ε) :=
{

(t, x) ∈ K : F (t, x, y) + Ψ(x, y) ≥ −ε‖y − x‖ ∀y ∈ K
}
.

and

Λ(ε) :=
{

(t, x) ∈ K : F (t, y, x) + α(x, y) ≤ Ψ(x, y) + ε‖y − x‖ ∀y ∈ K
}
.

Lemma 3.3. Let K be a nonempty convex, closed subset of a Banach
space X. Suppose that F : T ×K ×K → R and Ψ, α : K ×K → R be
three functions. Let the following conditions hold:

(i) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(ii) F (t, ·, ·) is α-monotone bifunction and hemicontinuous ∀t ∈ T ,

(iii) F (t, x, ·) is convex ∀t ∈ T, x ∈ K,
(iv) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K.

Then, Γ(ε) = Λ(ε) for all ε > 0.

Proof. Suppose that (t, x) ∈ Γ(ε). There exists (t, x) ∈ T ×K such that

(3.2) F (t, x, y) + Ψ(x, y) ≥ −ε‖y − x‖ ∀y ∈ K.

Since F (t, ·, ·) is α-monotone bifunction

F (t, y, x) + α(x, y) ≤ −F (t, x, y) ∀x, y ∈ K,

so

F (t, y, x) + α(x, y) ≤ −F (t, x, y)
≤ Ψ(x, y) + ε‖y − x‖(3.3)

Therefore, (t, x) ∈ Λ(ε). Conversely, assume that (t, x) ∈ Λ(ε) and fix
y ∈ K.

Letting xλ = x− λ(x− y), λ ∈]0, 1[ then xλ ∈ K, since K is a convex.
Then

F (t, xλ, x) + α(x, xλ)−Ψ(x, xλ) ≤ ε‖xλ − x‖
= λε‖y − x‖.(3.4)

Taking into account F (t, x, ·) is convex

0 = F (t, xλ, xλ) ≤ F (t, xλ, x)− λ
[
F (t, xλ, x)− F (t, xλ, y)

]
,
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so,

(3.5) λ

[
F (t, xλ, x)− F (t, xλ, y)

]
≤ F (t, xλ, x).

Since Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K.

(3.6) α(x, xλ) ≤ α(x, x)− λ
[
α(x, x)− α(x, y)

]

(3.7) Ψ(x, xλ) ≤ Ψ(x, x)− λ
[
Ψ(x, x)−Ψ(x, y)

]
Then, from (3.4),(3.5),(3.6) and (3.7),

λ
[
F (t, xλ, x)− F (t, xλ, y) + α(x, x)− α(x, y) + Ψ(x, x)−Ψ(x, y)

]
≤ F (t, xλ, x) + α(x, x)− α(x, xλ) + Ψ(x, x)−Ψ(x, xλ)

≤ λε‖y − x‖ − 2α(x, xλ) + α(x, x) + Ψ(x, x).

Since F (t, ·, ·) is hemicontinuous,

λ
[
− F (t, x, y)−Ψ(x, y)− ε‖y − x‖

]
≤ −2α(x, xλ) + λα(x, y)

+(1− λ)
[
Ψ(x, x) + α(x, x)

]
,

so

F (t, x, y) + Ψ(x, y) + ε‖y − x‖ ≥ 2α(x, xλ)

λ
− α(x, y)

+
(λ− 1)

λ

[
Ψ(x, x) + α(x, x)

]
.

From (2.5) and (2.6),

(3.8) F (t, x, y) + Ψ(x, y) ≥ −ε‖y − x‖ ∀y ∈ K.

Hence, (t, x) ∈ Γ(ε). Therefore, Γ(ε) = Λ(ε) for all ε > 0. �

Lemma 3.4. Let K be a nonempty convex, closed subset of a Banach
space X. Suppose that F : T ×K×K → R and Ψ, α : K×K → R satisfy
in the following conditions:

(i) F (·, y, ·) and α(·, y) are l.s.c ∀y ∈ K,
(ii) Ψ(·, y) is u.s.c ∀y ∈ K.

Then Λ(ε) is closed in T ×K for any ε > 0.
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Proof. Assume that {(tn, xn)} ⊂ Λ(ε) is a sequence in which (tn, xn)→
(t, x) in T ×K. Then

F (tn, y, xn) + α(xn, y) ≤ Ψ(xn, y) + ε‖y − xn‖ ∀y ∈ K.

Since α(·, y), F (·, y, ·) are l.s.c and Ψ(·, y) is u.s.c, then

F (t, y, x) + α(x, y) ≤ lim inf
n

[
F (tn, y, xn) + α(xn, y)

]
≤ lim sup

n

[
Ψ(xn, y) + ε‖y − xn‖

]
≤ Ψ(x, y) + ε‖y − x‖.

which implies that (t, x) ∈ Λ(ε). Therefore, Λ(ε) is closed in T ×K for
all ε > 0. �

Theorem 3.5. Assume that K is a nonempty convex, closed subset of
a Banach space X. Let F : T ×K ×K → R and Ψ, α : K ×K → R be
three functions. If (EPΨ) is strongly well-posed, then

(3.9) Γ(ε) 6= ∅ ∀ε > 0, lim
ε→0

diam(Γ(ε)) = 0.

Moreover, if the following assumptions hold:

(i) F (·, x, ·) is l.s.c ∀x ∈ K,
(ii) F (t, x, ·) is convex ∀(t, x) ∈ T ×K,

(iii) F (t, ·, ·) is α-monotone bifunction, hemicontinuous, ∀t ∈ T,
(iv) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(v) α(·, y) and Ψ(·, y) are u.s.c ∀y ∈ K,

(vi) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K.
Then the converse holds.

Proof. Assume that (EPΨ) is strongly well-posed. Then,
(EPΨ) admit a unique solution (t, x) ∈ T ×K, i.e.,

F (t, x, y) + Ψ(x, y) ≥ 0 ∀y ∈ K.
Clearly, Γ(ε) 6= ∅ for any ε > 0. By contradiction, assume that
lim
εn→0

diam(Γ(εn)) > p > 0, for some sequence {εn} > 0. We could

find two sequences {(tn, xn)} and {(tn, yn)} satisfying (tn, xn) ∈ Γ(ε),
(tn, yn) ∈ Γ(ε), and

(3.10) ‖(tn, xn)− (tn, yn)‖ > p ∀n ∈ N.
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Since {(tn, xn)} and {(tn, yn)} are approximating sequence for (EPΨ).
By the well-posedness of (EPΨ), they have to converge strongly to the
unique solution of (EPΨ) a contradiction to 3.10.

Conversely, suppose that condition 3.9 holds. Let {(tn, xn)} be an
approximating sequence for (EPΨ). Then, there exists a nonnegative
sequence {εn} with εn → 0 as n→∞ in which

(3.11) F (tn, xn, y) + Ψ(xn, y) ≥ −εn‖y − xn‖ ∀n ∈ N, y ∈ K.
This yields that {(tn, xn)} ∈ Γ(εn). It follows from 3.9 that {(tn, xn)} is
a Cauchy sequence and so it converges strongly to a point (t, x) ∈ T×K.
It follows from 3.11, α-monotonicity and since α(·, y) , F (·, y, ·) are l.s.c
and Ψ(·, y) is u.s.c, that

0 = lim inf
n

εn‖y − xn‖

≥ lim inf
n

[
− F (tn, xn, y)−Ψ(xn, y)

]
≥ lim inf

n

[
F (tn, y, xn) + α(xn, y)−Ψ(xn, y)

]
≥ F (t, y, x) + α(x, y)−Ψ(x, y).

This fact together with Theorem 2.6, (t, x) solves (EPΨ). The unique-
ness follows immediately from 3.9. �

Remark 3.6. Not that the diameter of Γ does not tend to zero, if (EPΨ)
has more than one solutions. In the next result we consider the Kura-
towski non compactness measure of approximating solution set instead
of the diameter.

Theorem 3.7. Assume that T and K are nonempty, closed and convex
subsets of real Banach spaces E and X respectively. If (EPΨ) is strongly
well-posed in the generalized sense, then

(3.12) Γ(ε) 6= ∅ ∀ε > 0, lim
ε→0

β(Γ(ε)) = 0.

Moreover, if the following assumptions hold:

(1) F (·, x, ·) is l.s.c ∀x ∈ K,
(2) F (t, x, ·) is convex ∀(t, x) ∈ T ×K,
(3) F (t, ·, ·) is α-monotone bifunction, hemicontinuous, ∀t ∈ T,
(4) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(5) α(·, y) and Ψ(·, y) are u.s.c ∀y ∈ K,
(6) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K.
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Then the converse holds.

Proof. Let (EPΨ) be strongly well-posed in the generalized sense. Then
the solution set S of (EPΨ) is a nonempty. This indicates that, for any
ε > 0, Γ(ε) 6= ∅ since S ⊂ Γ(ε). Moreover, we claim here that the
solution set S of (EPΨ) is compact. Indeed, for any sequence {(tn, xn)}
in S, {(tn, xn)} is an approximating sequence for (EPΨ). Thus there
exists a converging subsequence to some point of S. This implies that S
is compact. Now, we show that lim

ε→0
(βΓ(ε))→ 0. It follows from S ⊂ Γ(ε)

that
H(Γ(ε), S) = max{(eΓ(ε), S), (eΓ(S, (ε))}.

Since the solution set S is compact, one can have

β(Γ(ε)) ≤ 2H(Γ(ε), S) + β(S) = 2e(Γ(ε), S),

where β(S) = 0, since S is compact. To prove lim
ε→0

β(Γ(ε)) = 0. It is

sufficient to show that e(Γ(ε), S) → 0 as ε → 0. If not, there exists a
constant c > 0 and εn → 0, and {(tn, xn)} ⊂ Γ(εn) in which

(3.13) (tn, xn) 6∈ S +B c
2
(0), ∀n ∈ N.

where B c
2
(0) is an open ball with center 0 and radius c

2 . However,

{(tn, xn)} ⊂ Γ(εn), is an approximating sequence for (EPΨ). It follows
the generalized well-posedness of (EPΨ) that there exists a subsequence
converges to some point of (t, x) ∈ S, which contradicts 3.13.

Conversely, suppose that 3.12 holds. By Lemma 3.3 and Lemma 3.4,
Γ(ε) is nonempty and closed for all ε > 0. By the Kuratowski theorem
[16], we can obtain

(3.14) H(Γ(ε), S)→ 0 as ε→ 0,

where S =
⋂
ε>0

Γ(ε) is a nonempty and compact. Let {(tn, xn)} ⊂ K

be any approximate solution sequence for (EPΨ). Then there exists a
nonnegative sequence {εn} with εn → 0 as n→∞ such that

F (tn, xn, y) + Ψ(xn, y) ≥ −εn‖y − xn‖ ∀n ∈ N, y ∈ K.
This means that (tn, xn) ∈ Γ(εn). This together with 3.12 indicates

that

d((tn, xn), S) ≤ e(Γ(ε), S)→ 0.

Since S is compact, it follows that there exists (t̄n, x̄n) ∈ S in which

‖(tn, xn)− (t̄n, x̄n)‖ = d((tn, xn), S)→ 0.
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Again, by the compactness of the solution set S, the sequence (t̄n, x̄n) has
a subsequence {( ¯tnk

, ¯xnk
)} converging strongly to {(t̄n, x̄n)} ∈ S. There-

fore, the corresponding {(tnk
, xnk

)} subsequence of {(tn, xn)} converges
strongly to {(t̄n, x̄n)}. Hence (EPΨ) is well-posed in the generalized
sense.

�

4. Well-posedness for optimization problems with
generalized parametric equilibrium constraints

In this section, let us introduce the formulation of optimization prob-
lems with equilibrium constraint. The optimization problem with gen-
eralized equilibrium constraint (denoted by (OPGPEC)) is formulated
as follows:

minh(t, u) s.t. (t, u) ∈ T ×K,
where u ∈ S(t), T is a nonempty closed subset of a parametric normed
space, h : T ×K → R, F : T ×K ×K → R, and S(t) is the solution set
of the parametric generalized equilibrium problem (EPΨ(t)) , defined
by, u ∈ S(t) if and only if

F (t, u, v) + Ψ(u, v) ≥ 0, v ∈ K.

Definition 4.1. A sequence {(tn, un)} ⊂ T ×K is said to be an approx-
imating sequence for (OPGPEC) if

(i) there exists a nonnegative sequence {εn} with εn → 0 as n → ∞
such that

F (tn, un, v) + Ψ(un, v) ≥ −εn‖v − un‖ ∀n ∈ N, v ∈ K.

(ii)

lim sup
n

h(tn, un) ≤ inf
r∈T,v∈S(r)

h(r, v).

Definition 4.2. (OPGPEC) is said to be strongly (resp., weakly) well-
posed ( resp., strongly (resp., weakly) well-posed in the generalized
sense) if (OPGPEC) has a unique solution x and for every approxi-
mating sequence for (OPGPEC) converges strongly (resp., weakly) to
the unique solution (resp., if S 6= ∅ and every approximate solution se-
quence has a subsequence which strongly (resp., weakly) converges to
some point of S).
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The set of approximating solutions of (OPGPEC) is defined by

η(ε, δ) :=

{
(t, u) ∈ T ×K : h(t, u) ≤ inf

r∈T,v∈S(r)
h(r, v) + δ and

F (t, u, v) + Ψ(u, v) ≥ −εn‖v − u‖ ∀v ∈ K

Theorem 4.3. Assume that K is a nonempty convex, closed subset of
a Banach space X. Let F : T × K × K → R, h : T × K → R and
Ψ, α : K × K → R be four functions. If (OPGPEC) is strongly well-
posed, then

(4.1) η(ε, δ) 6= ∅ ∀ε, δ > 0, diam η(ε, δ)→ 0,

where (ε, δ)→ (0, 0). Moreover, if the following assumptions hold:

(i) F (·, x, ·) is l.s.c ∀x ∈ K,
(ii) F (t, x, ·) is convex ∀(t, x) ∈ T ×K,

(iii) F (t, ·, ·) is α-monotone bifunction, hemicontinuous, ∀t ∈ T,
(iv) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(v) α(·, y) and Ψ(·, y) are u.s.c ∀y ∈ K,

(vi) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K,
(vii) h is l.s.c.

Then the converse holds.

Proof. Assume that (OPGPEC) is strongly well-posed. Then (OPGPEC)
admits a unique solution (t, x) ∈ T ×K, i.e.,{

h(t, x) = inf
r∈T,y∈S(r)

h(r, y) and

F (t, x, y) + Ψ(x, y) ≥ 0 ∀y ∈ K.

Obviosly, η(ε, δ) 6= ∅ for any ε, δ > 0, since (t, x) ∈ η(ε, δ) for any
ε, δ > 0. If diam η(ε, δ) 9 0 as ε→ 0, δ → 0 then there exists a constant
p > 0 and a nonnegative sequences {εn} and {δn} with εn → 0, δn → 0
as n→ 0 and (tn, xn), (tn, yn) ∈ η(εn, δn) in which

(4.2) ‖(tn, xn)− (tn, yn)‖ > p ∀n ∈ N.

Since (tn, xn), (tn, yn) ∈ η(εn, δn) ∀n ∈ N, so both {(tn, xn)} and {(tn, yn)}
are approximating sequence for (OPGPEC). By the well-posedness of
(OPGPEC), they have to converge strongly to the unique solution of
(OPGPEC) a contradiction to 4.2.

Conversely, suppose that condition 4.1 holds. Let {(tn, xn)} be an ap-
proximating sequence for (OPGPEC). Then, there exists a nonnegative
sequence {εn} with εn → 0 as n→∞ in which
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{
lim sup

n
h(tn, xn) ≤ inf

r∈T,y∈S(r)
h(r, y) and

F (tn, xn, y) + Ψ(xn, y) ≥ −εn‖y − xn‖ ∀n ∈ N, y ∈ K.
(4.3)

This yields that (tn, xn) ∈ η(εn, δn). It follows from 4.1, that {(tn, xn)}
is a Cauchy sequence and so it converges strongly to a point (t, x) ∈
T ×K. It follows from 4.3 and assumptions (i), (iii) and (v) that

0 = lim inf
n

εn‖y − xn‖

≥ lim inf
n

[
− F (tn, xn, y)−Ψ(xn, y)

]
≥ lim inf

n

[
F (tn, y, xn) + α(xn, y)−Ψ(xn, y)

]
≥ F (t, y, x) + α(x, y)−Ψ(x, y).

Also, one can note from 4.3 and assumption (vii) that

inf
r∈T,y∈S(r)

h(r, y) ≥ lim sup
n

h(tn, xn)

≥ lim inf
n

h(tn, xn)

≥ h(t, x),

So, by Theorem 2.6 (t, x) solves (OPGPEC). The uniqueness follows
immediately from 4.1. Therefore, we complete the proof. �

By a similar proof as that of Theorem 3.7, we can obtain the following
result for the well-posedness of (OPGPEC).

Theorem 4.4. Assume that T and K are nonempty, closed and convex
subsets of real Banach spaces E and X respectively. If (OPGPEC) is
strongly well-posed in the generalized sense, then

(4.4) η(ε, δ) 6= ∅ ∀ε, δ > 0, lim
(ε,δ)→(0,0)

β(η(ε, δ)) = 0.

Moreover, if the following assumptions hold:

(i) F (·, x, ·) is l.s.c ∀x ∈ K,
(ii) F (t, x, ·) is convex ∀(t, x) ∈ T ×K,

(iii) F (t, ·, ·) is α-monotone bifunction, hemicontinuous, ∀t ∈ T,
(iv) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(v) α(·, y) and Ψ(·, y) are u.s.c ∀y ∈ K,

(vi) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K,
(vii) h is l.s.c.

Then the converse holds.
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To investigate the uniqueness of solutions to (OPGPEC), we show
that under suitable conditions, in the next result the well-posedness of
(OPGPEC) is equivalent to the existence and uniqueness of solutions.

Theorem 4.5. Let T and K be nonempty, closed and convex subsets
of finite dimensional Banach spaces E and X respectively. Let F : T ×
K ×K → R, Ψ, α : K ×K → R and h : T ×K → R be four functions.
Suppose that

(i) F (·, x, ·) is l.s.c and convex ∀x ∈ K,
(ii) F (t, ·, ·) is α-monotone bifunction, hemicontinuous, ∀t ∈ T,

(iii) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(iv) α(·, y) and Ψ(·, y) are u.s.c ∀y ∈ K,
(v) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K,

(vi) h is convex and l.s.c.

Then, (OPGPEC) is strongly well-posed if and only if it has a unique
solution.

Proof. The necessity is obvious. For the sufficiency, suppose that
(OPGPEC) has a unique solution (t∗, x∗). It follows that{

h(t∗, x∗) = inf
(r,y)∈T×K,y∈S(r)

h(r, y),

F (t∗, x∗, y) + Ψ(x∗, y) ≥ 0 ∀y ∈ K
(4.5)

Let {(tn, xn)} ⊂ T ×K be an approximating sequence for (OPGPEC).
Then there exists εn > 0 with εn → 0 such that{

h(tn, xn) = inf
(r,y)∈T×K,y∈S(r)

h(r, y),

F (tn, xn, y) + Ψ(xn, y) ≥ −εn‖y − xn‖ ∀y ∈ K,∀n ∈ N.
(4.6)

We claim that {(tn, xn)} is bounded. If not without loss of generality,
one can assume that ‖(tn, xn)‖ → +∞. Let rn = 1

‖(tn,xn)−(t∗,x∗)‖ and

(un, vn) = rn(tn, xn)+(1−rn)(t∗, x∗) = (rntn+(1−rn)t∗, rnxn+(1−rn)x∗).

without loss of generality, one can assume that rn ∈]0, 1[ and (un, vn)→
(u, v) with (u, v) 6= (t∗, x∗) since E × X is finite-dimensional. Taking
into account the closedness and convexity of T and K, one has (un, vn) ∈
T ×K. Thus, by assupmtion (vi), 4.5 and 4.6, for any (u, v) ∈ T ×K,
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we have

h(t∗, x∗) = lim sup
n

rnh(tn, xn) + lim sup
n

(1− rn)h(t∗, x∗)

≥ lim sup
n

[
rnh(tn, xn) + (1− rn)h(t∗, x∗)

]
≥ lim sup

n
h(un, vn)

≥ lim inf
n

h(un, vn)

≥ h(u, v).

(4.7)

Moreover, it follows from conditions (i), (ii), 4.5 and 4.6 that

0 = lim inf
n

rnεn‖y − xn‖
≥ lim inf

n
− rn

[
F (tn, xn, y) + Ψ(xn, y)

]
− (1− rn)[F (t∗, x∗, y) + Ψ(x∗, y)

]
≥ lim inf

n

[
− rnF (tn, xn, y)− (1− rn)F (t∗, x∗, y)−Ψ(x∗ + rn(xn − x∗), y)

]
≥ lim inf

n

[
− F (un, vn, y)−Ψ(vn, y)

]
≥ lim inf

n

[
F (un, y, vn) + α(vn, y)−Ψ(vn, y)

]
≥ F (u, y, v) + α(v, y)−Ψ(v, y).

(4.8)

Applying Theorem 2.6 implies that

F (u, v, y) + Ψ(v, y) ≥ 0,∀y ∈ K.

Hence, from 4.7 and 4.8, (u, v) solves (OPGPEC), which is a contra-
diction. So {(tn, xn)} is bounded. Let {(tni , xni)} be any subsequence
of {(tn, xn)} in which (tni , xni)→ (t0, x0) as i→∞. It follows that

0 = lim inf
i

εni‖y − xni‖
≥ lim inf

i

[
− F (tni , xni , y)−Ψ(xni , y)

]
≥ lim inf

i

[
F (tni , y, xni) + α(xni , y)−Ψ(xni , y)

]
≥ F (t0, y, x0) + α(x0, y)−Ψ(x0, y).

(4.9)

∀y ∈ K. Applying Theorem 2.6 implies that

(4.10) F (t0, x0, y) + Ψ(x0, y) ≥ 0,∀y ∈ K.

It follows from 4.6 and lower semicontinuity of h that

inf
(r,v)∈T×K,v∈S(r)

h(r, v) ≥ lim sup
i

h(tni , uni)

≥ lim inf
i

h(tni , uni)

≥ h(t0, u0).

(4.11)
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From 4.10 and 4.11, (t0, u0) solves (OPGPEC). Taking into account
the uniqueness of the solution, we have (t0, u0) = (t∗, u∗). Hence, (tn, un)
converges to (t∗, u∗). Therefore, (OPGPEC) is stronge well-posed. �

Theorem 4.6. Let T and K be nonempty, closed and convex subsets
of finite dimensional Banach spaces E and X respectively. Let , F :
T × K × K → R , Ψ, α : K × K → R and h : T × K → R be four
functions. If there exists some δ > 0 such that η(δ, δ) is nonempty and
bounded and suppose that the following assumptions hold:

(i) F (·, x, ·) is l.s.c and convex ∀x ∈ K,
(ii) F (t, ·, ·) is α-monotone bifunction, hemicontinuous, ∀t ∈ T,

(iii) F (t, x, x) = 0 , ∀t ∈ T, x ∈ K,
(iv) α(·, y) and Ψ(·, y) are u.s.c ∀y ∈ K,
(v) Ψ(x, ·) and α(x, ·) are convex ∀x ∈ K,

(vi) h is convex and l.s.c.

Then, (OPGPEC) is strongly well-posed in the generalized sense.

Proof. Let {(tn, xn)} ⊂ T × K be an approximating sequence for
(OPGPEC). Then there exists a nonnegative sequence {εn} with εn →
0 as n→ 0 such that{

h(tn, xn) = inf
(r,y)∈T×K,y∈S(r)

h(r, y),

F (tn, xn, y) + Ψ(xn, y) ≥ −ε‖y − xn‖ ∀y ∈ K,∀n ∈ N.
(4.12)

Since η(δ, δ) is a nonempty and bounded. Then there exists n0 such that
(tn, xn) ∈ η(δ, δ) for all n ≥ n0. Taking into account the boundedness of
η(δ, δ), there exists some subsequence {(tni , xni)} of {(tn, xn)} in which
(tni , xni)→ (t0, x0) as i→∞. Consequently, As proved in Theorem 4.5,
(t0, x0) solves (OPGPEC). Then, (OPGPEC) is strongly well-posed
in the generalized sense. �

Acknowledgments

We thank the referee for valuable comments and remarks.

References

[1] L. Q. Anh, P. Q. Khanh, and D. T. M. Van, Well-posedness under relaxed semi-
continuity for bilevel equilibrium and optimization problems with equilibrium con-
straints, Journal of Optimization Theory and Applications, 153 (2012) 42–59.

[2] E. Bednarczuk and J. P. Penot, Metrically well-set minimization problems, Appl.
Math. Optim. 26 (1992) 273–285.



Well-posedness of generalized equilibrium problems 167

[3] M.Bianchi, G.Kassay and R.Pini, Well-posedness for vector equilibrium problems
Math. Methods Oper. Res. 70 (2009) 171–182.

[4] M.Bianchi, R.Pini, Sensitivity for parametric vector equilibria, Optimization 55
(2006) 221–230.

[5] J. W. Chen, Y. J. Cho and X. Q. Ou, Levitin-polyakwell-posedness for set-valued
optimization problems with constraints, Filomat, 28 (2014) 1345–1352.

[6] J. W. Chen, Y. J. Cho and Z. P. Wang, The existence of solutions and well-
posedness for bilevel mixed equilibrium problems in Banach spaces Taiwan. J.
Math., 17 (2013) 725–748.

[7] J. W. Chen, Z. P. Wang and L. Y. Yuan, Existence of solutions and α-well-
posedness for a system of constrained set-valued variational inequalities, Numer.
Algebra Control Optim., 3 (2013) 567–581.

[8] J. W. Chen, Z. P. Wang and Y. J. Cho, Levitin-Polyak well-posedness by perturba-
tions for systems of set-valued vector quasi-equilibrium problems, Math. Methods
Oper. Res., 77 (2013), 33–64.

[9] A. L. Dontchev and T. Zolezzi Well-Posed Optimization Problems. Springer-
Verlag. Berlin (1993).

[10] Y. P. Fang, N. J. Huang, and J. C. Yao, Well-posedness of mixed variational
inequalities, inclusionproblems and fixed point problems, Journal of Global Opti-
mization, 41 (2008)117–133.

[11] Y. P Fang, R. Hu, and N. J. Huang, Well-posedness for equilibrium problems and
for optimization problems with equilibrium constraints. Comput. Math. Appl. 55
(2008) 89–100.

[12] N. Hadjisavvas and H. Khatibzadeh, Maximal monotonicity of bifunctions, opti-
mization 59, (2010) 147–160.

[13] A.E.Hashoosh, M.Alimohammady and M.K.Kalleji, Existence Results for Some
Equilibrium Problems Involving α-Monotone Bifunction, International Journal of
Mathematics and Mathematical Sciences, 2016 (2016) 1–5.

[14] X. X. Huang, Extended and strongly extended well-posedness of set-valued opti-
mization problems, Math. Methods Oper. Res. 53 (2001)101–116.

[15] K. Kimura, Y. C., Liou, S. Y. Wu, and J. C. Yao, Well-posedness for parametric
vector equilibrium with applications J. Ind. Manag. Optim. 4 (2008) 313–327.

[16] K. Kuratowski, Topology, vols. 1–2, Academic Press, New York, NY, (1968).
[17] E.S.Levitin and B.T.Polyak, Convergence of minimizing sequences in conditional

extremum problems Soviet Math. Dokl. 7 (1966) 764–767.
[18] M.B.Lignola and J.Morgan, Well-posedness for optimization problems with con-

straints defined by variational inequalities having a unique solution, J. Global
Optim. 16 (2000) 57–67.

[19] M.B. Lignola, Well-posedness and L-well-posedness for quasivariational inequal-
ities, J. Optim. Theory Appl. 128 (2006) 119–138.

[20] X. Long, N. Huang and K. Teo, Levitin-Polyak well-posedness for equilibrium
problems with functional constraintsJ. Inequal. Appl. 2008 Article ID 657329
(2008) 1–14.

[21] N.K.Mahato and C.Nahak, Equilibrium problems with generalized relaxed mono-
tonicities in Banach spaces, Opsearch, 51 (2014) 257–269.



168 A. E. Hashoosh and M. Alimohammady

[22] M. Margiocco, F. Patrone and L. Pusillo, A new approach to Tikhonov well-
posedness for Nash equilibria, Optimization 40 (1997) 385–400.

[23] M. Margiocco, F. Patrone and L. Pusillo, On the Tikhonov well-posedness of
concave games and Cournot oligopoly games, J. Optim. Theory Appl. 112 (2002)
361–379.

[24] M. Margiocco, F. Patrone, L. Pusillo, Metric characterizations of Tikhonov well-
posedness in value, J. Optim. Theory Appl. 100 (1999) 377–387.

[25] J. Morgan, Approximations and well-posedness in multicriteria games, Ann.
Oper. Res. 137 (2005) 257–268.

[26] J. Peng, Y. Wang and S. Wu, Levitin-Polyak well-posedness of generalized vector
equilibrium problems, Taiwan. J. Math. 15 (2011) 2311–2330.

[27] J. Salamon, Closedness and Hadamard well-posedness of the solution map for
parametric vector equilibrium problems J. Glob. Optim. 47 (2010) 173–183.

[28] L. SJ L. MH, Levitin-Polyak well-posedness of vector equilibrium problems Math.
Methods Oper. Res. 69 (2009) 125–140.

[29] A.N.Tykhonov, On the stability of the functional optimization problem USSR J.
Comput. Math. Math. Phys. 6 (1966) 631–634.

[30] A. Zaslavski, Generic well-posedness for a class of equilibrium problems J. In-
equal. Appl. 2008, Article ID 581917 (2008) 1–9.

[31] K. Zhang , Z. Quan HE, and D. Peng GAO, Extended well- posedness for quasi-
variational inequality, 10 1–10 (2009).

[32] Y. Zhanga and T. Chen, A note on well-posedness of Nash-type games problems
with set payoff , J. Nonlinear Sci. Appl. 9 (2016) 486–492 .

[33] T. Zolezzi, Extended well-posedness of optimization problems, J. Optim. Theory
Appl. 91 (1996) 257–266.

[34] T.Zolezzi, Well-posedness criteria in optimization with application to the calculus
of variations, Nonlinear Anal. TMA 25 (1995) 437–453.

Ayed E. Hashoosh
Department of Mathematics, University of Mazandaran, Babolsar, Iran
Email: ayed197991@yahoo.com

Mohsen Alimohammady
Department of Mathematics, University of Mazandaran, Babolsar, Iran
Email: amohsen@umz.ac.ir


	1. Introduction
	2. Preliminaries
	3. Well-posed of (EP) with metric characterizations
	4. Well-posedness for optimization problems with generalized parametric equilibrium constraints
	References

