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UNIFORMITIES ON OCP-POLYGROUPS

MANORANJAN SINGHA, KOUSIK DAS AND BIJAN DAVVAZ

Abstract. A topological polygroup where every open subset is a
complete part is called OCP-polygroup. Different uniform struc-
tures are built on OCP-polygroups as well as on their quotients
and studied some related results including Roelcke uniformity.
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1. Introduction

During last three decades the theory of hypergroups introduced by
Marty [26] has drawn much attention of fellow mathematicians especially
those who have beautiful algebraic mind. Later it was studied by Dresher
and Ore [15], Koskas [25], Corsini[10], Corsini and Leoreanu [11], Mit-
tas [30], Vougiouklis [36], Davvaz[12], Freni[16], Tallini [35], and many
others. In [20], Hoskova-Mayerova studied various kinds of continuity
of hyperoperations, namely pseudocontinuous, strongly pseudocontinu-
ous and continuous hyperoperations. Application of hypergroups have
mainly appeared in special subclasses. For example, polygroups which
are certain subclasses of hypergroups are studied in [23] by Ioulidis and
are used to study color algebra [6, 7, 8, 9]. Quasi-canonical hypergroups
(called “polygroups” by Comer) were introduced in [5], as a generaliza-
tion of canonical hypergroups, introduced in [30]. There exists a rich
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bibliography: publications appeared within 2013 can be found in “Poly-
group Theory and Related Systems” by Davvaz [12]. This book contains
the principle definitions endowed with examples and the basic results of
the theory. Also see [1, 3, 13, 24, 28, 29]. Till now, only a few pa-
pers treated the notion of topological hyperstructures, for example see
[2, 17, 18, 20, 32, 33, 34]. Heidari et al.[17, 18] introduced the concepts of
topological hypergroups and topological polygroups. In [33], Shadkami
et al. presented some facts about complete parts in polygroups and they
used these facts to obtain some new results in topological polygroups and
they introduced the concept of cp-resolvable topological polygroups. In
[34], Shadkami et al. considered a topological polygroup and established
various relations between complete parts and open sets and they inves-
tigated the properties of big subsets in a topological polygroup. In [32],
Singha et al. introduced topological complete hypergroup, topological
regular hypergroup and investigated some of their properties.

Now, this paper extends the theory of hypergroups by putting up
different uniform structures along with Roelcke uniformity on a special
class of topological polygroups as well as on their quotients.

2. Topological and Hyperalgebraic warmup

Let H be a nonempty set. A function ◦ : H × H → P∗(H), where
P∗(H) is the family of nonempty subsets of H, is called a hyperoper-
ation and the ordered couple (H, ◦), as in general case, is called a hy-
pergroupoid. If A and B are two nonempty subsets of a hypergroupoid
(H, ◦) and x ∈ H, then

A ◦B =
⋃
a∈A
b∈B

a ◦ b, x ◦A = {x} ◦A and A ◦ x = A ◦ {x}.

A hypergroupoid (H, ◦) is called a semihypergroup if for every x, y, z ∈
H, x◦(y◦z) = (x◦y)◦z and it is called a quasihypergroup if reproduction
axiom holds, that is for every x ∈ H, we have x ◦ H = H = H ◦ x.
The couple (H, ◦) is called a hypergroup if it is a semihypergroup and
a quasihypergroup. A nonempty subset K of a hypergroup (H, ◦) is
called a subhypergroup if K is itself a hypergroup. In other words, a
nonempty subset K of a hypergroup (H, ◦) is a subhypergroup if (1) for
all a, b ∈ K ⇒ a ◦ b ⊆ K and (2) for all a in K, a ◦K = K = K ◦ a.

For n > 1, βn is a relation on a semihypergroup H defined as follows:

aβnb⇔ ∃ (x1, x2, ..., xn) ∈ Hn such that {a, b} ⊆
n∏

i=1
xi,
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and let β =
∞⋃
i=1

βi, where β1 = {(x, x) : x ∈ H} is the diagonal rela-

tion on H. Clearly, this relation is reflexive and symmetric. Koskas
[25] introduced β∗−the transitive closure of β which coincides [16] with
β on hypergroups. The relation β∗ is called the fundamental relation
on H and H/β∗ is called the fundamental group. Let (H, ◦) be a semi-
hypergroup and A be a nonempty subset of H. Then, A is said to be
a complete part of H if for any nonzero natural number n and for all
a1, a2, ..., an of H, the following implication holds:

A ∩
n∏

i=1
ai 6= φ ⇒

n∏
i=1

ai ⊆ A.

Let (H1, ◦) and (H2, ∗) be two hypergroups. A map f : H1 → H2 is
called

(1) a homomorphism if for all x, y ofH, we have f(x◦y) ⊆ f(x)∗f(y);
(2) a good homomorphism if for all x, y of H, we have f(x ◦ y) =

f(x) ∗ f(y).

A polygroup [6, 12], which is a very special kind of hypergroup, is a
system P = 〈P, ◦, e,−1 〉, where e ∈ P , −1 is a unitary operation on P ,
◦ : P × P → P∗(P ) and the following axioms hold for all x, y, z ∈ P :

(1) (x ◦ y) ◦ z = x ◦ (y ◦ z);
(2) e ◦ x = x ◦ e = {x};
(3) x ∈ y ◦ z implies y ∈ x ◦ z−1 and z ∈ y−1 ◦ x.

The following elementary facts about polygroups follow easily from the
axioms:

e ∈ x ◦ x−1 ∩ x−1 ◦ x, e−1 = e, (x−1)−1 = x, and (x ◦ y)−1 = y−1 ◦ x−1.

Let A be a nonempty subset of P . Then, A−1 = {x−1 : x ∈ A}. A
nonempty subset K of a polygroup P is a subpolygroup of P if

(1) a, b ∈ K implies a ◦ b ⊆ K,
(2) a ∈ K implies a−1 ∈ K.

A subpolygroup K of a polygroup P is normal in P if a◦K = K◦a, for all
a ∈ P . Let 〈P1, ·, e1,

−1 〉 and < P2, ∗, e2,
−I 〉 be two polygroups. Then,

the product P1×P2 with respect to the hyperoperation hyperoperation
◦ defined by

(x1, y1) ◦ (x2, y2) = {(x, y) : x ∈ x1 · x2, y ∈ y1 ∗ y2},
is known as direct hyperproduct of P1 and P2, interestingly the di-
rect hyperproduct P1 × P2 is a polygroup [12]. Let 〈P1, ◦, e1,

−1 〉 and
〈P2, ∗, e2,

−I 〉 be two polygroups. A good homomorphism f : P1 → P2
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is said to be a strong homomorphism if f(e1) = e2 [12].
Now let us state some more definitions and results which will be used

as ready references.

Proposition 2.1. [18] Let 〈P1, ◦, e1,
−1 〉 and 〈P2, ∗, e2,

−I 〉 be two poly-
groups and f : P1 → P2 be a strong homomorphism. Then, f(x−1) =
[f(x)]−I , for all x ∈ P1.

Lemma 2.2. [20] Let (H, τ) be a topological space, then the family B
consisting of all SV = {U ∈ P∗(H) : U ⊆ V }, V ∈ τ is a base for a
topology on P∗(H). This topology is denoted by τ∗.

Definition 2.3. [17] Let (H, ◦) be a hypergroup and (H, τ) be a topolog-
ical space. Then, the system (H, ◦, τ) is called a topological hypergroup
if with respect to the product topology on H ×H and the topology τ∗

on P∗(H)

(1) the mapping (x, y) 7→ x ◦ y from H ×H → P∗(H) and
(2) the mapping (x, y) 7→ x/y from H ×H → P∗(H)

are continuous, where x/y := {z ∈ H : x ∈ z ◦ y}.

Definition 2.4. [18] Let P = 〈P, ◦, e,−1 〉 be a polygroup and (P, τ)
be a topological space. Then, the system P = 〈P, ◦, e,−1 , τ〉 is called a
topological polygroup if the mappings ◦ : P×P → P∗(P ) and −1 : P → P
are continuous.

An open subset U of a topological polygroup P is said to be symmetric
if U−1 = U .

Theorem 2.5. [18] Let P be a topological polygroup. Then, every sub-
polygroup K of P with the relative topology is a topological polygroup.

Let 〈P, ◦, e,−1 , τ〉 be a topological polygroup and K be a normal sub-
polygroup of P . Let π be the natural mapping x 7→ x◦K of P onto P/K.
Then, (P/K, τ) is a topological space, where τ is the quotient topology
induced by π. That is for every subset X of P , {x ◦ K : x ∈ X} is
an open subset of P/K if and only if π−1({x ◦K : x ∈ X}) is an open
subset of P . X/K denote the set {x ◦K : x ∈ X} for every subset X of
P .

Theorem 2.6. [18] Let K be a normal subpolygroup of topological poly-
group P and every open subset of P be a complete part. Then, 〈P/K,�,K,−I 〉
is a topological polygroup, where x ◦K � y ◦K = {z ◦K : z ∈ x ◦ y} and
(x ◦K)−I = x−1 ◦K.
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Let X be a nonempty set. Then, the set ∆X = {(x, x) ∈ X ×X : x ∈
X} denotes the diagonal of X.
Let X,Y, Z be nonempty sets. For M ⊆ X × Y , N ⊆ Y × Z, A ⊆ X
define

(1) M◦N = {(x, z) ∈ X×Z : there exists y ∈ Y such that (x, y) ∈M
and (y, z) ∈ N};

(2) M−1 = {(y, x) ∈ Y ×X : (x, y) ∈M};
(3) M [A] = {y ∈ Y : there exists x ∈ A such that (x, y) ∈M}.

If A = {a}, then write M [a] instead of M [{a}].
Now, recall the definition of uniformity on a set.

Definition 2.7. [31] Let X be a nonempty set and U ⊆ P(X × X),
U 6= φ, U is called a uniformity (or a uniform structure) on X if

(U1) ∆X ⊆M for all M ∈ U ;
(U2) M−1 ∈ U for all M ∈ U ;
(U3) If M ∈ U and N ∈ P(X ×X) such that M ⊆ N , then N ∈ U ;
(U4) M ∩N ∈ U for all M,N ∈ U ;
(U5) For all M ∈ U there exists N ∈ U such that N ◦N ⊆M .

Let X be a topological space and U be a uniformity on the underlying
set X. U is said to be a compatible uniformity on X if the topology
induced by U on X coincides with the underlying topology on X. The
definition of compatibility can also be reformulated as follows.

For every U ∈ U and x ∈ X, put U [x] = {y ∈ X : (x, y) ∈ U}. The
set U [x] is called the U -ball with center at x. The uniformity U on X
is compatible with X if U [x] is a neighborhood of x in X for all x ∈ X
and U ∈ U , and the family of all U -balls forms a neighborhood base for
the underlying topology on X.

Throughout this paper, “neighborhood” stands for “open neighbor-
hood”.

3. Uniform structures on a special kind of polygroups and
on their quotients

Let P be a topological polygroup and Ns(e) be the family of open
symmetric neighborhoods of e in P . For an element V ∈ Ns(e), define
three subsets Ol

V , O
r
V and OV of P × P as follows:

(3.1) Ol
V = {(x, y) ∈ P × P : x−1 ◦ y ⊆ V },

(3.2) Or
V = {(x, y) ∈ P × P : x ◦ y−1 ⊆ V },
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(3.3) OV = Ol
V ∩Or

V .

Denote the diagonal of P × P by ∆P . A subset B of P × P is called
symmetric if (y, x) ∈ B whenever (x, y) ∈ B. So we are getting

Lemma 3.1. The sets Ol
V , O

r
V and OV are open symmetric entourages

of the diagonal ∆P in P × P , for each V ∈ Ns(e).

To introduce three natural uniform structures on P , one more auxil-
iary fact need to be defined in the following way.

Given two subsets A and B of P × P , the composition A ⊕ B of A
and B is defined by

A⊕B = {(x, z) ∈ P × P : (x, y) ∈ A and (y, z) ∈ B for some y ∈ P}.
For A ⊆ P×P and an integer n ≥ 1, define inductively a set nA ⊆ P×P
by letting 1A = A, 2A = A⊕ A and in general (n+ 1)A = nA⊕ A, for
each n ≥ 1.

Lemma 3.2. Suppose P be a topological polygroup, U and V are ele-
ments of Ns(e) in P , n ∈ N, V n ⊆ U . Then, nOl

V ⊆ Ol
U , nOr

V ⊆ Or
U

and nOV ⊆ OU .

Proof. For n = 1, the result holds trivially, so assume that n ≥ 2.
Let (x, y) ∈ nOl

V = Ol
V ⊕ Ol

V ⊕ · · · ⊕ Ol
V (n times), then there exist

elements z1, z2, · · · , zn−1 ∈ P such that (zi, zi+1) ∈ Ol
V for each i =

0, 1, 2, · · · , n − 1, where z0 = x and zn = y, Hence, z−1
i ◦ zi+1 ⊆ V if

0 ≤ i ≤ n, it follows that

x−1 ◦ y ⊆ Πn−1
i=0 (z−1

i ◦ zi+1) ⊆ V n ⊆ U,
⇒ (x, y) ∈ Ol

U .

So, nOl
V ⊆ Ol

U and the other parts. �

Definition 3.3. A topological polygroup is said to be an OCP-polygroup
if every open subset of it is a complete part.

Example 3.4. Let P be a polygroup and β∗ be the fundamental relation
on P . Then, τ = {

⋃
u∈U

β∗(u)|U ⊆ P} ∪ {φ} is a topology on P and

(P, ◦, e,−1 , τ) is an OCP-polygroup.

Example 3.5. Consider the set of integers Z and define the hyperopera-
tion ◦ on it as follows:

For every m ∈ Z, m ◦ 0 = m and if m,n ∈ Z \ {0}, then

m ◦ n =

{
2Z if m+ n ∈ 2Z;
(2Z)c otherwise.
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Also let τ = {φ, 2Z, (2Z)c,Z}. Then, τ is a topology on Z, and (Z, ◦, 0,−, τ)
is an OCP-polygroup, where the unitary operation − is the ordinary
negation.

Now define three natural uniformities on a given OCP-polygroup P .
Consider the following families:

(3.4) BlP = {Ol
V : V ∈ Ns(e)},

(3.5) BrP = {Or
V : V ∈ Ns(e)},

(3.6) BP = {OV : V ∈ Ns(e)},

where Ns(e) denotes the family of open symmetric neighborhoods con-
taining e in P . By Lemma 3.1, each of the families BlP ,BrP and BP
consists of open entourages of ∆P in P × P . Denote by DP the family
of symmetric subsets of P × P . Finally, put

(3.7) V lP = {D ∈ DP : Ol
V ⊆ D for some V ∈ Ns(e)},

(3.8) VrP = {D ∈ DP : Or
V ⊆ D for some V ∈ Ns(e)},

(3.9) VP = {D ∈ DP : OV ⊆ D for some V ∈ Ns(e)},

It is clear from the above definitions that V lP ⊆ VP and VrP ⊆ VP .
The next theorem explains the role of the above six families.

Theorem 3.6. For any OCP-polygroup P , the families V lP ,VrP and VP
are uniformities on the space P with respective bases BlP ,BrP and BP .
Each of the three uniformities is compatible with P .

Proof. Let’s verify the first claim of the theorem for the family V lP by
showing that it satisfies the following five conditions:

(U1) ∆P ⊆ O for each O ∈ V lP ;

(U2) If O ∈ V lP , then O−1 ∈ V lP ;

(U3) If O ∈ V lP and O ⊆W ∈ DP , then W ∈ V lP ;

(U4) If O1, O2 ∈ V lP , then O1 ∩O2 ∈ V lP ;

(U5) For every O ∈ V lP , there is W ∈ V lP such that 2W ⊆ O.

Clearly, (U1), (U2) follow from the Lemma 3.1.
To prove (U3), let O ∈ V lP and O ⊆ W ∈ DP , then there exists

V ∈ Ns(e) such that

Ol
V ⊆ O ⇒ Ol

V ⊆ O ⊆W ∈ DP ⇒ W ∈ V lP .
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To verify (U4), take O1, O2 ∈ V lP . Then, there exist V1, V2 ∈ Ns(e)

such that Ol
V1
⊆ O1 and Ol

V2
⊆ O2. Put V = V1 ∩ V2, then V ∈ Ns(e)

and Ol
V ∈ V lP . Now Ol

V ⊆ Ol
V1
∩Ol

V2
⊆ O1 ∩O2 and O1 ∩O2 ∈ DP . So

(U3) implies that O1 ∩O2 ∈ V lP .

To show (U5), let O ∈ V lP , then there exists U ∈ Ns(e) such that

Ol
U ⊆ O. Choose V ∈ Ns(e) satisfying V 2 = V ◦ V ⊆ U [18]. Then,

W = Ol
V ∈ V lP and Lemma 3.2 implies that 2W ⊆ Ol

U ⊆ O. Hence, V lP
is a uniformity on P . From (3.4), (3.7) it follows that BlP is a base for

the uniformity V lP . Similarly, the families VrP and VP are uniformities
on P with respect to the bases BrP and BP , respectively.

Now let us show that the above three uniformities are compatible with
P . To show it for the family V lP , let O ∈ V lP and x ∈ P . Then, there

exists V ∈ Ns(e) such that Ol
V ⊆ O. This implies that Ol

V [x] ⊆ O[x].

Since V is a complete part, (3.1) implies that Ol
V [x] = x ◦ V , which is

open in P . Thus, x ∈ x ◦ V ⊆ O[x] and Hence, O[x] is a neighborhood
of x in P and the family {O[x] : O ∈ V lP } is a neighborhood base for P

at x. This shows that the uniformity V lP is compatible with P .
Similarly, the same can be shown for the family VrP .
Here, OV [x] = x ◦ V ∩ V ◦ x, for all V ∈ Ns(e) and x ∈ P . Since

x ◦ V ∩ V ◦ x is open in P , the uniformity VP is compatible with P . �

Let’s call V lP ,VrP and VP the left OCP-polygroup uniformity, right
OCP-polygroup uniformity and the two-sided OCP-polygroup uniformity
on P , respectively.

Let P be an OCP-polygroup and H be a subpolygroup of P . Then,
every open subset of H is a complete part (by Lemma 3.11[33]). So, one
can think of left uniformity V lP,H on the polygroup H, which consists

of the intersections V ∩ (H × H), with V ∈ V lP . Similarly, H inherits
from P the right and two-sided induced uniformities denoted by VrP,H
and VP,H , respectively.

Next result shows that these three induced uniformities coincide with
the actual uniformities on H.

Proposition 3.7. The equalities V lP,H = V lH , VrP,H = VrH and VP,H =
VH hold for each subpolygroup H of an OCP-polygroup P .

Proof. It is sufficient to verify the equality V lP,H = V lH , leaving others

for similar verification. Let V ∈ Ns(e) and put U = V ∩H. Then,
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Ol
V ∩ (H ×H) = {(x, y) ∈ H ×H : x−1 ◦ y ⊆ V }

= {(x, y) ∈ H ×H : x−1 ◦ y ⊆ U}
= Ol

U .

Since U is an open symmetric neighborhood of the identity e, it follows
that Ol

U ∈ V lH .

Finally, since the sets Ol
V form a base for the left OCP-polygroup

uniformity V lP on P , hence the uniformities V lH and V lP,H coincide. �

The following result shows the relation between V lP ,VrP and VP .

Theorem 3.8. For every OCP-polygroup P , the two-sided uniformity
VP is the coarsest uniformity on P finer than each of the uniformities
V lP and VrP .

Proof. OV = Ol
V ∩ Or

V , for each V ∈ Ns(e), then from (3.7), (3.8) and

(3.9) it follows that VP is finer than V lP and VrP .

Now, suppose that U is a uniformity on P finer than both V lP and
VrP . Let O ∈ VP , then there exists V ∈ Ns(e) such that OV ⊆ O. Since

U is finer than both V lP and VrP , it follows that there exist U1, U2 ∈ U
such that U1 ⊆ Ol

V and U2 ⊆ Or
V . Now U = U1 ∩ U2 ∈ U and U ⊆

Ol
V ∩Or

V = OV ⊆ O. Therefore, U is finer than VP and hence VP is the

coarsest uniformity finer than V lP and VrP . �

Definition 3.9. Let P be a topological polygroup. A subset A of P is
said to be invariant if x ◦A ◦ x−1 = A, for each x ∈ P .

Definition 3.10. A topological polygroup P is said to be balanced if it
has a local base at the identity consisting of invariant sets.

Next result characterizes balanced OCP-polygroups.

Lemma 3.11. An OCP-polygroup P is balanced if and only if for every
neighborhood U of the identity e in P , there exists a neighborhood V of
e such that x ◦ V ◦ x−1 ⊆ U , for each x ∈ P .

Proof. If P is balanced, then the result follows immediately.
For the converse, let U be a neighborhood of e in P . Then, by the

hypothesis there exists a neighborhood O of e such that x◦O◦x−1 ⊆ U ,
for each x ∈ P . Then, the set V =

⋃
x∈P

[x ◦ O ◦ x−1] is open in P and
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V ⊆ U . For y ∈ P , we obtain

y ◦ V ◦ y−1 =
⋃
x∈P

[y ◦ (x ◦O ◦ x−1) ◦ y−1]

=
⋃
x∈P

[(y ◦ x) ◦O ◦ (y ◦ x)−1]

=
⋃

t∈y◦x
x∈P

[t ◦O ◦ t−1] = V

This shows that V is invariant and so P has a base of open invariant
sets at e. �

Lemma 3.11 and Theorem 2.19 [18] induces

Corollary 3.12. Every compact OCP-polygroup is balanced.

The following theorem indicates a class of polygroups where the afore-
mentioned uniformities become identical.

Theorem 3.13. For an OCP-polygroup P , the uniformities V lP , VrP and
VP coincide if and only if the polygroup P is balanced. Therefore, the
three uniformities coincide for every compact OCP-polygroup.

Proof. First suppose that P is balanced. Let N be the family of open,
symmetric, invariant neighborhoods of the identity e in P . By the
assumptions, N is a local base for P at e. Therefore, the families
βl = {Ol

V : V ∈ N} and βr = {Or
V : V ∈ N} are bases for the

uniformities V lP and VrP , respectively. Since each V ∈ N is an invariant,
symmetric subset of P , it follows that

(x, y) ∈ Ol
V ⇒ x−1 ◦ y ⊆ V ⇒ y−1 ◦ x = (x−1 ◦ y)−1 ⊆ V −1 = V ⇒

x ◦ y−1 ⊆ x ◦ y−1 ◦ x ◦ x−1 ⊆ x ◦ V ◦ x−1 = V ⇒ (x, y) ∈ Or
V .

Therefore, Ol
V ⊆ Or

V . Similarly, one can show that Ol
V ⊇ Or

V . Hence,

Ol
V = Or

V for each V ∈ N . This shows that the uniformities V lP and

VrP have the same base βl = βr. Therefore, the uniformities V lP and VrP
coincide. Hence, the Theorem 3.8 implies that the two-sided uniformity
VP on P coincides with each of the uniformities V lP and VrP .

For the converse, suppose that V lP = VrP . Since BlP and BrP are bases

for V lP and VrP , respectively, for each U ∈ Ns(e) there exists V ∈ Ns(e)

such that Ol
V ⊆ Or

U . This shows x−1 ◦ y ⊆ V ⇒ x ◦ y−1 ⊆ U for
x, y ∈ P . In other words, x ◦ V ⊆ U ◦ x for each x ∈ P . This implies
x ◦ V ◦ x−1 ⊆ U ◦ x ◦ x−1 = U for each x ∈ P (by Proposition 2.1 [33]).
Therefore, P is balanced by Lemma 3.11.

The last assertion follows from Corollary 3.12. �
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Consider the additive abelian topological group R of reals, then the
three natural uniformities of R coincide. Denote each of them by U .

Definition 3.14. Let P be an OCP-polygroup. A real valued function
f on P is called left uniformly continuous if f is a uniformly continuous
mapping of (P,V lP ) to (R,U), i.e., for every ε > 0, there exists O ∈ V lP
such that |f(y)− f(x)| < ε whenever (x, y) ∈ O.

Similarly, f is called right uniformly continuous if f is a uniformly
continuous mapping of (P,VrP ) to (R,U). If f is both left and right
uniformly continuous on P , then it is called uniformly continuous on P

The next lemma is immediate after the above definition.

Lemma 3.15. A real valued function f on an OCP-polygroup is left
uniformly continuous if and only if, for every ε > 0, there exists a neigh-
borhood V of the identity in P such that |f(t)−f(x)| < ε for all t ∈ x◦V
and x ∈ P . Similarly, f is right uniformly continuous if and only if,
for every ε > 0, there exists a neighborhood W of the identity in P such
that |f(t)− f(x)| < ε for all t ∈W ◦ x and x ∈ P .

Proof. The proofs are straightforward from the fact that (x, y) ∈ Ol
V ⇔

y ∈ x ◦ V and (x, y) ∈ Or
W ⇔ y ∈W ◦ x, since V,W are complete parts

of P . �

An immediate application of this lemma is

Proposition 3.16. Every continuous real-valued function on a compact
OCP-polygroup is uniformly continuous.

Proof. Let P be a compact OCP-polygroup and f : P → R be a contin-
uous function. Since the left and right uniformities on P coincide (by
Theorem 3.13), it is sufficient to prove that f is left uniformly continu-
ous on P . Let ε > 0 be arbitrary real number. For each x ∈ P , choose
a neighborhood Ux of the identity e in P so that |f(y) − f(x)| < ε/2,
whenever y ∈ x ◦ Ux. Then, there exists a neighborhood Vx of e such
that Vx ◦Vx ⊆ Ux [18]. Now {x◦Vx}x∈P is an open cover of the compact

polygroup P , there exist x1, x2, · · · , xn ∈ P such that P =
n⋃

i=1
xi ◦ Vxi .

Put V =
n⋂

i=1
Vxi .

Let y ∈ P , then y ∈ xk ◦ Vxk
for some k ∈ {1, 2, · · · , n}. This implies

that |f(y) − f(xk)| < ε/2. Now if x ∈ y ◦ V , then x ∈ (xk ◦ Vxk
) ◦ V =

xk◦(Vxk
◦V ) ⊆ xk◦(Vxk

◦Vxk
) ⊆ xk◦Uxk

and hence |f(x)−f(xk)| < ε/2.
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Thus, |f(x) − f(y)| ≤ |f(x) − f(xk)| + |f(y) − f(xk)| < ε/2 + ε/2 = ε,
whenever x ∈ y ◦ V . This shows that f is left uniformly continuous on
P (by Lemma 3.15). �

Definition 3.17. Let f : P → H be a mapping of OCP-polygroups
P and H. f is said to be left uniformly continuous if f is uniformly
continuous as a mapping of the uniform space (P,V lP ) to (H,V lH). i.e.,

for every Ol
U ∈ V lH there exists Ol

V ∈ V lP such that (f(x), f(y)) ∈ Ol
U

whenever (x, y) ∈ Ol
V .

Similarly, f is said to be right uniformly continuous if f is uniformly
continuous as a mapping of the uniform space (P,VrP ) to (H,VrH). If f
is both left and right uniformly continuous, then it is called a uniformly
continuous mapping.

Proposition 3.18. Let 〈P1, ◦, e1,
−1 , τ1〉 and 〈P2, ∗, e2,

−I , τ2〉 be two
OCP-polygroups and f : P1 → P2 be a continuous strong homomor-
phism. Then, f is uniformly continuous.

Proof. It is sufficient to prove that f is left uniformly continuous, then
the right uniform continuity follows by similar arguments. Let Ol

U ∈
V lP2

, where U is an open symmetric neighborhood of the identity e2 in
P2. Since f is continuous and f(e1) = e2, there exists a symmetric
neighborhood V of e1 in P1 such that f(V ) ⊆ U . Let (x, y) ∈ Ol

V , i.e.,
x−1◦y ⊆ V . Then, Proposition 2.1 implies [f(x)]−I ∗f(y) = f(x−1◦y) ⊆
f(V ) ⊆ U and hence (f(x), f(y)) ∈ Ol

U . This completes the proof. �

Proposition 3.19. Let 〈P1, ·, e1,
−1 , τ1〉 and 〈P2, ∗, e2,

−I , τ2〉 be two topo-
logical polygroups. Then, the maps

(1) ((x1, y1), (x2, y2)) 7→ (x1, y1)◦ (x2, y2) from (P1×P2)× (P1×P2)
to P∗(P1 × P2);

(2) (x, y) 7→ (x−1, y−I) from (P1 × P2) to (P1 × P2);

are continuous with respect to the product topology τ on P1×P2 induced
from τ1, τ2.

Proof. (1) Let W ∈ τ and (x1, y1)◦(x2, y2) ⊆W . i.e., (x1·x2)×(y1∗y2) ⊆
W . Since W ∈ τ , there exist U ∈ τ1 and V ∈ τ2 such that U × V = W
and x1 · x2 ⊆ U , y1 ∗ y2 ⊆ V . Now x1 · x2 ⊆ U implies there exist
U1, U2 ∈ τ1 containing x1, x2, respectively such that U1 · U2 ⊆ U and
y1 ∗ y2 ⊆ V implies there exist V1, V2 ∈ τ2 containing y1, y2, respectively
such that V1∗V2 ⊆ V . Hence, U1×V1 and U2×V2 belong to τ containing
(x1, y1) and (x2, y2), respectively such that (U1 × V1) ◦ (U2 × V2) =
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(U1 · U2) × (V1 ∗ V2) ⊆ U × V = W . This shows the continuity of the
hyperproduct ◦.

(2) The continuity of the map (x, y) 7→ (x−1, y−I) on P1 × P2 follows
from the continuity of the maps x 7→ x−1 on P1 and x 7→ x−I on P2. �

Corollary 3.20. Let 〈P1, ·, e1,
−1 , τ1〉 and 〈P2, ∗, e2,

−I , τ2〉 be two OCP-
polygroups. Then, their direct hyperproduct P1×P2 is an OCP-polygroup.

Proof. The direct hyperproduct P1×P2 is a topological polygroup after
the Proposition 3.19.

To show the open subsets of P1 × P2 are complete parts, let W ∈ τ
and for n ∈ N, Πn

i=1(xi, yi) ∩W 6= φ, where xi ∈ P1, yi ∈ P2 and τ is
the product topology induced from τ1, τ2. Then, there exist U ∈ τ1,
V ∈ τ2 such that W = U × V . Now Πn

i=1(xi, yi) = Πn
i=1xi × Πn

i=1yi
implies that Πn

i=1xi ∩ U 6= φ and Πn
i=1yi ∩ V 6= φ. Since U and V

are complete parts, Πn
i=1xi ⊆ U and Πn

i=1yi ⊆ V . This shows that
Πn

i=1(xi, yi) = Πn
i=1xi × Πn

i=1yi ⊆ U × V = W . Hence, W is a complete
part and P1 × P2 is an OCP-polygroup. �

Recall the fact that if (X,U) and (Y,V) are uniform spaces, then
the product of (X,U) and (Y,V) is a uniform space (Z,W) with the
underlying set Z = X × Y and the uniformity W on Z whose base
consists of the sets

(3.10) WU,V = {((x, y), (x′, y′)) ∈ Z × Z : (x, x′) ∈ U, (y, y′) ∈ V }

where U ∈ U and V ∈ V. The uniformity W is called the product of U
and V and is written as W = U × V.

Proposition 3.21. Let 〈P, ◦, eP ,−1 , τP 〉 and 〈H, ∗, eH ,−I , τH〉 be two
OCP-polygroups. Then, the left(right, two-sided) OCP-polygroup uni-
formity of the product polygroup P ×H coincides with the product of the
left(right, two-sided) OCP-polygroup uniformities of P and H.

Proof. Let’s prove the proposition only for left OCP-polygroup unifor-
mity, leaving others for similar verification. Let Z = P ×H, the sets of
the form U × V form a base of the neighborhoods at the identity ele-
ment (eP , eH) of Z, where U ∈ Ns(eP ) and V ∈ Ns(eH). Now a basic en-
tourage of the diagonal in Z×Z has the form Ol

U,V = {((x, y), (x1, y1)) ∈
Z×Z : x−1 ·x1 ⊆ U, y−1 ∗y1 ⊆ V }, where U ∈ Ns(eP ) and V ∈ Ns(eH).
This shows that the set Ol

U,V coincides with the set WU∗,V ∗ defined in

(3.10), where U∗ = Ol
U ∈ V lP and V ∗ = Ol

V ∈ V lH .
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Since the sets U∗ and V ∗ with U ∈ Ns(eP ) and V ∈ Ns(eH), form
a base for the uniformities V lP and V lH respectively, the corresponding

sets WU∗,V ∗ form a base for the product uniformity W = V lP × V lH on

Z. Therefore, Ol
U,V = WU∗,V ∗ implies that the uniformities V lZ and W

coincide. �

Besides the above mentioned three uniformities, every OCP-polygroup
admits a fourth uniformity which is called Roelcke uniformity. Let’s be-
gin with a lemma which will be used in the sequel.

Lemma 3.22. In a topological polygroup P , the map f : P × P × P →
P∗(P ) defined by f(x, y, z) = x ◦ y ◦ z for all x, y, z ∈ P , is continuous.

Proof. Let x, y, z ∈ P and U be an open set containing x ◦ y ◦ z. Now,
x ◦ y ◦ z =

⋃
v∈y◦z

x ◦ v ⊆ U , i.e., x ◦ v ⊆ U for every v ∈ y ◦ z. By

the continuity of the map (x, y) 7→ x ◦ y, there exist open sets Ux, Uv

containing x, v respectively such that Ux ◦ Uv ⊆ U . Take W =
⋃

v∈y◦z
Uv,

then W is an open set containing y ◦ z. Again, by the continuity of
the map (x, y) 7→ x ◦ y, there exist open sets Uy, Uz containing y, z
respectively such that Uy ◦ Uz ⊆ W . Now, Ux ◦ Uv ⊆ U for each v ∈
y ◦ z implies Ux ◦ (

⋃
v∈y◦z

Uv) ⊆ U , i.e., Ux ◦W ⊆ U . This implies that

Ux ◦ Uy ◦ Uz ⊆ U , which proves the result. �

Let Ns(e) be the family of open symmetric neighborhoods of the iden-
tity e in an OCP-polygroup P . For an element V ∈ Ns(e), let

(3.11) Ot
V = {(x, y) ∈ P × P : y ∈ V ◦ x ◦ V }.

Here Ot
V is an open symmetric entourage of the diagonal in P ×P . Now

define two families BtP and VtP as follows:

(3.12) BtP = {Ot
V : V ∈ Ns(e)},

(3.13) VtP = {D ∈ DP : Ot
V ⊆ D for some V ∈ Ns(e)},

where DP is the family of symmetric subsets of P × P .

Theorem 3.23. For any OCP-polygroup P , the family VtP is a unifor-
mity compatible with P and BtP is a base for VtP . Moreover, VtP is the

finest uniformity on P coarser than each of the uniformities V lP and VrP .
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Proof. Let’s first verify that VtP is a uniformity on P . Here (U1) and
(U2) holds trivially. To verify (U3), let O ∈ VtP and O ⊆ W ∈ DP .
Then, there exists V ∈ Ns(e) such that Ot

V ⊆ O and this implies that
Ot

V ⊆ O ⊆ W and hence W ∈ VtP . To verify (U4), let O1, O2 ∈ Ot
V .

Then, there exist V1, V2 ∈ Ns(e) such that Ot
V1
⊆ O1 and Ot

V2
⊆ O2. Put

V = V1 ∩ V2, then V ∈ Ns(e) and Ot
V ∈ VtP . Now Ot

V ⊆ Ot
V1
∩ Ot

V2
⊆

O1 ∩ O2 and O1 ∩ O2 ∈ DP . So by (U3), O1 ∩ O2 ∈ VtP . To verify
(U5), let O ∈ VtP . Then, there exists U ∈ Ns(e) such that Ot

U ⊆ O.
Now choose V ∈ Ns(e) such that V 2 = V ◦ V ⊆ U and put W = Ot

V .
We show 2W ⊆ O. Let (x, z), (z, y) ∈ W . Then, z ∈ V ◦ x ◦ V and
y ∈ V ◦ z ◦V . Hence, y ∈ V ◦ (V ◦x◦V )◦V = V 2 ◦x◦V 2 ⊆ U ◦x◦U ⇒
(x, y) ∈ Ot

U ⊆ O ⇒ 2W ⊆ O.
Therefore, VtP is a uniformity on P .

To show the uniformity VtP is compatible with P , let O ∈ VtP and
x ∈ P . Then, there exists V ∈ Ns(e) such that Ot

V ⊆ O. Now, Ot
V [x] ⊆

O[x]. From (3.11) it follows that Ot
V [x] = V ◦ x ◦ V , which is open in P

and x ∈ V ◦x◦V ⊆ O[x]. Hence, O[x] is a neighborhood of x in P . Now
suppose U be an open set and x ∈ U . Then, by the continuity of the
map f : P × P × P → P∗(P ), defined by f(x, y, z) = x ◦ y ◦ z (Lemma
3.22), there exists an open symmetric neighborhood V of the identity e
in P such that f(V × {x} × V ) ⊆ U , i.e., V ◦ x ◦ V ⊆ U . Therefore,
Ot

V [x] ⊆ U and hence the family {O[x] : O ∈ VtP } is a neighborhood base
for P at the point x. This shows that the uniformity VtP is compatible
with P .

Since Ol
V ⊆ Ot

V and Or
V ⊆ Ot

V for each V ∈ Ns(e), it follows that

VtP is coarser than V lP and VrP . Now suppose that U is a uniformity

on P such that U ⊂ V lP and U ⊂ VrP . Let O be an arbitrary element
of U . Then, there exists O1 ∈ U such that O1 + O1 ⊆ O. Since U is
coarser than V lP and VrP , there exists V ∈ Ns(e) such that Ol

V ⊆ O1

and Or
V ⊆ O1. Let x ∈ P and v, w ∈ V . Then, for each y ∈ v ◦ x and

for each p ∈ x ◦ w, (y, x) ∈ Or
V and (x, p) ∈ Ol

V and it follows that

(y, p) ∈ Or
V + Ol

V ⊆ O1 + O1 ⊆ O. But here y ∈ v ◦ x ⇒ x ∈ v−1 ◦ y,
which implies p ∈ v−1 ◦ y ◦ w ⊆ V ◦ y ◦ V , i.e., (y, p) ∈ Ot

V . Hence, VtP
is finer than U . �

Theorem 3.24. For an OCP-polygroup P the following conditions are
equivalent.

(a) V lP = VrP ;
(b) VtP = VP ;
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(c) VtP = V lP = VrP = VP ;
(d) P is balanced.

Proof. Clearly (c) implies (d).The Roelcke uniformity VtP on P is coarser

than each of the uniformities V lP and VrP (Theorem 3.23), also the

two-sided uniformity VP is finer than each of the uniformities V lP and
VrP (Theorem 3.8). Therefore, (b) implies (a). Theorem 3.13 implies
(a)⇔(d). Thus, it remains to show that (d)⇒(c). Suppose that P is bal-
anced. Then, V lP = VrP = VP (by Theorem 3.13). So, it is only required
to verify the equality VtP = VrP . Since VtP is coarser than VrP , it suffices to
show that VrP ⊆ VtP . Let O ∈ VrP . Then, one can choose without loss of
generality that O = Or

V , for some V ∈ Ns(e). Since P is balanced, it has
a local base consisting of open symmetric invariant neighborhoods of e.
Hence, there exists an invariant set U ∈ Ns(e) such that U ◦U ⊆ V . Now
if (x, y) ∈ Ot

U , then y ∈ U ◦x◦U ⊆ U ◦x◦U ◦x−1 ◦x = U ◦U ◦x ⊆ V ◦x,
i.e., (x, y) ∈ Or

V . This implies Ot
V ⊆ Or

V and hence VrP ⊆ VtP . �

Now, let’s turn our investigation towards uniform structures for quo-
tient spaces of OCP-polygroups by its subpolygroups and for quotient
polygroups.

Let P be a topological polygroup and K be a subpolygroup of it.
Then, (P/K, τ) is a topological space, where P/K = {x ◦ K : x ∈ P}
and τ is the quotient topology induced by π.

Theorem 3.25. Let 〈P, ◦, e,−1 , τ〉 be an OCP-polygroup and K be a
subpolygroup of it. Let π be the natural mapping x 7→ x ◦K of P onto
P/K. Then,

(1) π is continuous;
(2) the quotient topology τ is the finest topology on P/K with respect

to which π is continuous.

Furthermore, if K is a normal subpolygroup of P , then

(3) π is a strong homomorphism.

Proof. (1) π is continuous by the definition of quotient topology.
(2) Let τ ′ be any other topology on P/K with respect to which π is

continuous. Let O ∈ τ . Then, there exists some open subset V of P
such that O = V/K ([18]). Here, π−1(O) = π−1(V/K) = K ◦ V , which
is open in P (by Lemma 2.13 [18]). But by the definition of quotient
topology, all such O’s are open in quotient topology. This shows that
the quotient topology τ is finer than τ ′.

(3) Now, suppose K be a normal subpolygroup. Then, the quotient
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space P/K is a topological polygroup with respect to the operations
defined in the Theorem 2.6. Here, f(e) = e ◦ K = K, the identity in
P/K. Also, for x, y ∈ P , π(x◦y) = {z ◦K : z ∈ x◦y} = x◦K�y ◦K =
π(x)� π(y). Hence, π is a strong homomorphism. �

Theorem 3.26. Let K be a subpolygroup of an OCP-polygroup P and
π : P → P/K be the natural mapping. Then, the family BrP/K = {Er

V :

V ∈ Ns(e)} is a base for a right uniformity ErP/K of the quotient space

P/K, where Er
V = {(π(x), π(y)) : y ∈ V ◦ x} and ErP/K is compatible

with P/K.
Moreover, if for every U ∈ N (e) there exists W ∈ N (e) such that

K ◦W ⊆ U ◦ K, then the family BlP/K = {El
V : V ∈ Ns(e)} is a base

for a left uniformity E lP/K on P/K compatible with P/K, where El
V =

{(π(x), π(y)) : y ∈ x ◦ V } and N (e) is the family of all neighborhoods of
the identity e.

Proof. Let’s prove the results for the family E lP/K , leaving the other for

similar verification.
The family BlP/K is a base for E lP/K , so it suffices to check (U1), (U2),

(U4) and (U5) for the family BlP/K instead of the family E lP/K . Since the

map π : P → P/K is open ([18]), El
V are open symmetric entourages

of the diagonal in the space P/K × P/K. So (U1), (U2) holds. (U4) is
evident. To prove (U5), let V ∈ Ns(e). Then, there exists O ∈ Ns(e)
such that O ◦ O ⊆ V (Theorem 3.6 [18]). Also, by the given condition
there exists W ∈ Ns(e) satisfying W ⊆ O and K ◦W ⊆ O ◦K. We show
2El

W ⊆ El
V .

Suppose that x, y, y1, z ∈ P such that y ∈ x◦W , z ∈ y1◦W and π(y) =
π(y1), i.e., (π(x), π(y)), (π(y1), π(z)) ∈ El

W . Then, (π(x), π(z)) ∈ 2El
W .

We claim that(π(x), π(z)) ∈ El
V . For, π(y) = π(y1)⇒ y ◦K = y1 ◦K ⇒

y1 ∈ y ◦ K ⊆ x ◦ W ◦ K. Then, z ∈ y1 ◦ W ⊆ x ◦ W ◦ K ◦ W ⊆
x◦W ◦O ◦K ⊆ x◦O ◦O ◦K ⊆ x◦V ◦K. This implies that π(z) = π(p)
for some p ∈ x ◦ V . This shows that 2El

W ⊆ {(π(x), π(p)) : x ∈ P,

p ∈ x ◦ V } = El
V .

Finally, to show the uniformity E lP/K is compatible with P/K, let

x ◦ K ∈ P/K. Then, x ◦ K = π(x) ∈ π(x ◦ V ) ⊆ El
V [π(x)], where

V ∈ Ns(e). Since the map π is open of P onto P/K ([18]), El
V [π(x)] is a

neighborhood of x◦K in P/K. For the converse, let O be a neighborhood
of x ◦K in P/K. Then, there exists V ∈ Ns(e) such that π(x ◦ V ) ⊆ O.
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Also by the given condition choose W ∈ Ns(e) such that K ◦W ⊆ V ◦K.
So, it follows that x ◦K = π(x) ∈ El

W [π(x)] ⊆ π(x ◦ V ) ⊆ O. For, let

π(y) ∈ El
W [π(x)], for some y ∈ P . Then, y ∈ x ◦W ⊆ x ◦ K ◦W ⊆

x ◦ V ◦K, this implies π(y) ∈ π(π−1{p ◦K : p ∈ x ◦ V }) = {p ◦K : p ∈
x ◦ V } = π(x ◦ V ). Therefore, the quotient topology on P/K is coarser
than the topology on P/K induced by the uniformity E lP/K . And (2) of

Theorem 3.25 shows that the two topologies on P/K coincide. �

We conclude with the following

Theorem 3.27. Let K be a normal subpolygroup of an OCP-polygroup
P and P/K be the topological quotient polygroup with respect to the op-
erations defined as on Theorem 2.6. Then, the right uniformity VrP/K of

the topological polygroup P/K coincides with the right uniformity ErP/K

on P/K when in the latter case P/K is considered as the quotient space
of P . Also, the same is true for the uniformities V lP/K and E lP/K on

P/K.

Proof. Let π : P → P/K be the quotient map. Take an arbitrary
element U ∈ Ns(e), where Ns(e) is the family of all open symmetric
neighborhoods of e. Since the map π is an open strong homomorphism,
π(U) = V is an open symmetric neighborhood of K in P/K. So, it is
sufficient to verify that Er

U = Or
V , where Er

U is defined as in Theorem
3.26 and Or

V = {(s, t) ∈ P/K × P/K : s � t−I ⊆ V }. Let x, y ∈
P and y ∈ U ◦ x, i.e., x ◦ y−1 ⊆ U . Then, Proposition 2.1 implies
π(x)� [π(y)]−I = π(x ◦ y−1) ⊆ π(U) = V . This implies that Er

U ⊆ Or
V .

For the converse, let (z, t) ∈ P/K and (z, t) ∈ Or
V . Then, there exist

x, y ∈ P such that π(x) = z and π(y) = t and (π(x), π(y)) ∈ Or
V ,

which implies that π(y) ∈ V � π(x). We claim that y ∈ U ◦ x. For,
suppose y /∈ U ◦ x, then π(y) /∈ π(U ◦ x) = π(U) � π(x) = V � π(x),
a contradiction. Therefore, (π(x), π(y)) ∈ Er

U , i.e., Or
V ⊆ Er

U . In the

same way the result can be verified for the families V lP/K and E lP/K . �
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