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SOME CHARACTERIZATIONS OF SURJECTIVE

OPERATORS ON BANACH LATTICES

AKBAR BAHRAMNEZHAD AND KAZEM HAGHNEJAD AZAR

Abstract. The concepts of compact and weakly compact opera-
tors on Banach spaces are considered and investigated in several
papers. In this paper, taking idea from this notations, we consider
the concept surjective compact and weakly compact operators on
Banach lattices. In particular, we characterize Banach lattices on
which operators must be surjective.
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1. Introduction

An operator T from a Banach space X into a Banach space Y is
compact (resp. weakly compact) if T (BX) is compact (resp. weakly
compact) where BX is the closed unit ball of X. There exists compact
operator T from a Banach space X into a Banach space Y which is not
surjective. Indeed the operator T : `1 → `∞ defined by T (α1, α2, ...) =
(Σ∞n=1αn,Σ

∞
n=1αn, ...) is a compact operator which is not surjective. An

operator T from a Banach space X into a Banach space Y is weakly
compact if X or Y is reflexive but the converse is false in general. In
fact each continuous operator from `∞ into c0 is weakly compact but
`∞ and c0 are not reflexive. Let E be an infinite-dimensional AL-space,
F a Banach lattice. If each operator T : E → F is weakly compact,
then by [3, Corollary 2.6], F is reflexive. We show that, if an operator T
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from a Banach space X into a Banach space Y is compact (resp. weakly
compact) and surjective, then Y must be finite-dimensional (resp. Y
must be reflexive). We also show that if E and F are Banach lattices
such that F is not reflexive and If a positive Dunford-Pettis operator
T : E → F is surjective, then the norm of E′ is not order continuous
[Theorem 2.16]. In the final subsection we investigate surjective L- and
M-weakly compact operators. Let E and F be Banach lattices such
that the norm of E′ is order continuous and F be infinite-dimensional.
If T : E → F is a regular surjective L-weakly compact operator, then
E′ is not discrete [Proposition 2.22]. Finally we prove that if F is an
infinite-dimensional discrete Banach lattice with an order continuous
norm and if T is a regular M -weakly compact operator from a Banach
lattice E (which is arbitrary) into F , then T is not surjective [Corollary
2.24].

1.1. Some basic definitions. A vector lattice E is an order vector
space in which sup(x, y) exists for every x, y ∈ E. Let E be a vector
lattice, for each x, y ∈ E with x ≤ y, the set [x, y] = {z ∈ E : x ≤ z ≤ y}
is called an order interval. A subset of E is said to be order bounded
(resp. b-order bounded) if it is included in some order interval (resp.
order bonded in second order dual of E). A subset F of a vector lattice
E is said to be sublattice if for every pair of elements a, b ∈ F the
supremum of a and b taken in E belongs to F . A subset B of a vector
lattice E is said to be solid if it follows from |y| ≤ |x| whit x ∈ B and
y ∈ E that y ∈ B . An order ideal of E is a solid subspace . The solid
hull of a subset W is the smallest solid set including W and is exactly
the set Sol(W ) := {x ∈ E : ∃y ∈ W with |x| ≤ |y|}. A sequence (xn)n
in a vector lattice is said to be disjoint whenever |xn| ∧ |xm| = 0 holds
for n 6= m . A Banach lattice is a Banach space (E, ‖.‖) such that E is
a vector lattice and its norm satisfies the following property : for each
x, y ∈ E such that |x| ≤ |y| , we have ‖x‖ ≤ ‖y‖ . If E is a Banach
lattice, its topological dual E′, endowed with the dual norm and dual
order is also a Banach lattice . A norm ‖.‖ of a Banach lattice E is order
continuous if for each generalized sequence (xα)α such that xα ↓ 0 in E ,
the generalized sequence (xα)α convergs to 0 for the norm ‖.‖ where the
notation xα ↓ 0 means that (xα)α is decreasing, its infimum exists and
infα(xα) = 0. A Banach lattice E is is said to be an AM -space if for
each x, y ∈ E such that |x| ∧ |y| = 0, we have ‖x+ y‖ = max{‖x‖, ‖y‖}.
The Banach lattice E is an AL-space if its topological dual E′ is an
AM -space . We will use the term operator T : E → F between two
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Banach lattices to mean a bounded linear mapping. It is positive if
T (x) ≥ 0 in F whenever x ≥ 0 in E . It is well known that each positive
linear mapping on a Banach lattice is continuous . The operator T is
regular if T = T1 − T2 where T1 and T2 are positive operators . For
terminology concerning Banach lattice theory and positive operators we
refer the reader to [1].

2. Main Results

Theorem 2.1. If an operator T from a Banach space X into a Banach
space Y is compact and T (X) is closed, then T (X) is finite-dimensional.

Proof. Let T : X → Y be a compact operator between Banach spaces.
Since T (X) = T (X), T (X) is a Banach space. If U , denotes the open
ball of X then T (U) is an open set in T (X). On the other hand

T (U) is compact. So, T (X) is locally compact and then T (X) is finite-
dimensional. �

Corollary 2.2. If T : X → Y is a surjective compact operator between
Banach spaces, then Y is finite-dimensional.

Corollary 2.3. If X is an infinite-dimensional Banach space, then there
is no surjective compact operator on X.

Theorem 2.4. Let T : X → Y be a weakly compact operator between
Banach spaces. If T (X) is closed, then T (X) is reflexive.

Proof. Let T : X → Y be a weakly compact operator between Banach
spaces. Since T (X) is closed, T (X) is a Banach space and from equality
T (X) =

⋃
n∈N nT (BX), we see that T (BX) contains a closed ball of

T (X). On the other hand, T (BX) is weakly compact. So, that closed
ball is weakly compact, then T (X) is reflexive. �

Corollary 2.5. If T : X → Y is a surjective weakly compact operator
between Banach spaces, then Y is reflexive.

Corollary 2.6. If X is a non-reflexive Banach space, then there is no
surjective weakly compact operator on X.

An operator T from a Banach space E into a Banach lattice F is said
to be semi-compact if for each ε > 0, there exists some u ∈ F+ such
that, T (BE) ⊂ [−u, u] + εBF where F+ = {x ∈ F : x ≥ 0}.
Example 2.7. The identity operator i : `∞ → `∞ is a surjective semi-
compact operator, but the operator T : `∞ → `∞ defined by T (α1, α2, ...) =
(α1,

α2
2 ,

α3
3 , ...) is a semi-compact operator which is not surjective.
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Proposition 2.8. Let E, F be Banach lattices such that F has an order
continuous norm and T : E → F be a positive surjective semi-compact
operator. Then F is reflexive.

Proof. Let T : E → F be a positive surjectuve semi-compact operator
between Banach lattices E and F such that F has an order continuous
norm. By [2, Theorem 2.2], T is a weakly compact operator. Since T is
surjective, by Corollary 2.5, F is reflexive. �

Corollary 2.9. Let E be a non-reflexive Banach lattice with an order
continuous norm. Then there is no positive surjective semi-compact op-
erator on E.

Recall that a nonzero element x of a Banach lattice E is discrete
if the order ideal generated by x equals the subspace generated by x.
The vector lattice E is discrete if it admits a complete disjoint system
of discrete elements. For example the Banach lattice `2 is discrete but
L1[0, 1] is not.

Theorem 2.10. Let E, F be Banach lattices and T : E → F be a
positive injective semi-compact operator such that its range is closed. If
one of the following statements is valid, then E is finite-dimensional .

(1) F is discrete and its norm is order continuous.
(2) E′ is discrete of order continuous norm and F has an order

continuous norm.
(3) The norms of E, E′ and F are order continuous and E has the

Dunford-pettis property (i.e. each weakly compact operator from
E into an arbitrary Banach space F is Dunford-pettis).

Proof. Let E, F be Banach lattices. Assume that T : E → F is a positive
injective semi-compact operator such that its range is closed. We first
show that T ′ is surjective . Since T (E) is closed, T (E) is a Banach space,
so, T1 : E → T (E) is a bijective operator between Banach spaces. Then
T ′1 : T (E)′ → E′ is bijective. Consequently T ′ : F ′ → E′ is surjective.
Now, by [2, Theorem 2.6], if one of the above conditions is valid, then
T is compact. Therefore T ′ is compact. So, T ′ is a surjective compact
operator. Then by Corollary 2.2, E′ is finite dimensional. Hence E is
finite-dimensional. This completes the proof. �

An operator T from a Banach space E into another F is said to be
Dunford-Pettis, if it carries each weakly compact subset of E onto a
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compact subset of F (i.e. whenever xn
w−→ 0 implies Txn

‖.‖−−→ 0 ). It
is clear that any compact operator is Dunford-Pettis, while a Dunford-
Pettis operator is not necessarily compact. Indeed the identity operator
i : `1 → `1 is Dunnford-Pettis but is not compact. The operator T :
`∞ → `∞ defined by T (α1, α2, ...) = (α1,

α2
2 ,

α3
3 , ...) is a Dunford-Pettis

operator which is not surjective.

Theorem 2.11. Let E, F be Banach lattices and T : E → F be a posi-
tive surjective Dunford-Pettis operator. If one of the following conditions
is valid, then F is finite-dimensional.

(1) The norm of E and E′ are order continuous.
(2) E′ is discrete and its norm is order continuous.
(3) The norm of E′ is order continuous, F is discrete and its norm

is order continuous.

Proof. Let E and F be Banach lattices and T : E → F be a positive
surjective Dunford-Pettis operator. By [5, Theorem 2.2], T is a compact
operator. Applying Corollary 2.2, F is finite dimensional. �

An operator T from a Banach lattice E into a Banach space X is
said to be b-weakly compact, if it maps each subset of E which is b-
order bounded (i.e. order bounded in the topological bidual E′′) into a
relatively weakly compact subset of X.

Example 2.12. The identity operator i : `1 → `1 is a surjective b-
weakly compact operator, but the operator T : `2 → `2 defined by
T (α1, α2, ...) = (α1

2 ,
α2
22
, α3
23
, ...) is a b-weakly compact operator which is

not surjective.

Theorem 2.13. Let E and F be Banach lattices and T : E → F be
an interval preserving surjective b-weakly compact operator. Then the
norm of F is order continuous.

Proof. Let E and F be Banach lattices and T : E → F be a positive
surjective b-weakly compact operator. Assume that {yn}n ⊆ F with
yn ↓ 0. Since T is surjective, there is an element x1 ∈ E such that
Tx1 = y1. It is clear that {yn}n ⊆ [0, y1] = T ([0, x1]). Since T ([0, x1])
is relatively weakly compact, there is a subsequence {ynj}j from {yn}n
such that ynj

w−→ y0 ∈ F . Since {ynj}j is a decreasing sequence, by [1,

Theorem 3.52], ynj

‖.‖−−→ y0 ∈ F . Since yn ↓ 0, y0 = 0. Then ‖yn‖ → 0.
Thus F has order continuous norm. �
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Recall that if E is a Banach lattice and if 0 6 x′′ ∈ E′′, then the
principal ideal Ix′′ generated by x′′ ∈ E′′ under the norm ‖.‖∞ defined
by

‖y′′‖∞ = inf{λ > 0 : |y′′| ≤ λx′′}, y′′ ∈ Ix′′ ,
is an AM -space with unit x′′, whose closed unit ball is order interval
[−x′′, x′′].

Lemma 2.14. Let E be a Banach lattice. Then every b-order bounded
disjoint sequence in E is weakly convergent to zero.

Proof. Let {xn}n be a disjoint sequence in E such that {xn}n ⊆ [−x′′, x′′]
for some x′′ ∈ E′′. Let Y = Ix′′ ∩ E and equip Y with the order unit
norm ‖.‖∞ generated by x′′. The space (Y, ‖.‖∞) is an AM -space, so,
Y ′ is an AL-space and then its norm is order continuous. Now, by [8,

Theorem 2.4.14], we see that xn
w−→ 0. �

Theorem 2.15. Every Dunford-Pettis operator from a Banach lattice
E into a Banach space X is b-weakly compact.

Proof. Let T be a Dunford-Pettis operator from a Banach lattice E into
a Banach space X. By [6, Proposition 1], it suffices to show that {Txn}n
is norm convergent to zero for each b-order bounded disjoint sequence
{xn}n in E+. Let {xn}n be a b-order bounded disjoint sequence in E+.
As the canonical embedding of E into E′′ is a lattice homomorphism,
{xn}n is an order bounded disjoint sequence in E′′. Thus by preceding
lemma, {xn}n is σ(E,E′) convergent to zero in E. Now, since T is
Dunford-Pettis, {Txn}n is norm convergent to zero. This completes the
proof. �

Theorem 2.16. Let E and F be Banach lattices such that F is not
reflexive. If a positive Dunford-Pettis operator T : E → F is surjective,
then the norm of E′ is not order continuous.

Proof. Assume that the norm of E′ is order continuous. Let B be the
band generated by E in its topological bidual E′′. Since T is Dunford-
Pettis, by Theorem 2.15, T is b-weakly compact. Now, [6, Proposition
2] may apply to yield T ′′(B) ⊂ F where T ′′ is the second adjoint of T .
On the other hand, since the norm of E′ is order continuous, it follows
from [8, Theorem 2.4.14] that B = E′′. Thus T ′′(E′′) ⊂ F and hence
from [1, Theorem 5.23], T is weakly compact. Since T is also surjective,
by Corollary 2.5, F is reflexive which is a contradiction. �

As a consequence of Theorems 2.13 and 2.15, we obtain:
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Corollary 2.17. Let E and F be Banach lattices and T : E → F be an
interval preserving surjective Dunford-Pettis operator. Then the norm
of F is order continuous.

2.1. Surjective L- and M-weakly compact operators. Recall that
if E is a Banach lattice then Ea is the maximal order ideal in E on
which the norm is order continuous. A positive element in E is discrete
if its linear span is an order ideal in E. E is termed discrete if the band
generated by the discrete elements is the whole space. For instance c,
c0, lp(1 6 p 6 ∞) are discrete Banach lattices but the spaces L1[0, 1]
and C[0, 1] are not discrete. It turns out that the class of Banach lat-
tices E that we need are those such that Ea are discrete. Although a
sublattice of a discrete vector lattice need not be discrete, an ideal must
be, so that if E is discrete then so is Ea. By [7, Corollary 2.3], we see
that if E has order continuous norm then E is discrete, if and only if
E has weakly sequentially continuous lattice operations. It is clear that
if F is a closed sublattice of a Banach lattice with weakly sequentialy
continuous lattice operations then the same is true for F . This applies,
in particular, when F = Ea so that if E has weakly sequentially contin-
uous lattice operations, then Ea is discrete. By [1, Theorem 4.31], we
see that if E is an AM -space then E has weakly sequentially continuous
lattice operations, so that Ea is discrete.
An operator T from a Banach lattice E into a Banach space X is M -
weakly compact if limn‖T (xn)‖ = 0 holds for every norm bounded dis-
joint sequence (xn)n in E. An operator T from a Banach space X into a
Banach lattice E is called L-weakly compact if limn‖yn‖ = 0 holds for
every disjoint sequence (yn)n in the solid hull of T (BX) where BX is the
closed unit ball of X. Let E and F be Banach lattices. If T : E → F
is a surjective L-weakly (resp. M -weakly) compact operator then F is
reflexive [1, Theorem 5.61]. A compact (and hence a weakly compact)
operator need not be L- or M -weakly compact and L-weakly compact
operator need not be compact operator:

Example 2.18. Consider the operator T : `1 → `∞ defined by

T (α1, α2, ...) = (Σ∞n=1αn,Σ
∞
n=1αn, ...).

Since T has rank one, is a compact operator. The sequence {en} of
the standard unit vectors is a norm bounded disjoint sequence of `1
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satisfying Ten = (1, 1, 1, ...) for each n. This shows that T is not M -
weakly compact. On the other hand, if U is the closed unit ball of `1,
then it is easy to see that {en} is also a disjoint sequence in the solid hull
of T (U). From ‖en‖∞ 9 0, we see that T fails to be L-weakly compact.

Example 2.19. (1) The inclusion map i : L2[0, 1] → L1[0, 1] is M -
and L-weakly compact operator which is not compact [8, Propo-
sition 3.6.20].

(2) Let (X,
∑
, µ) be a measure space such that µ is an atomless

measure and let Ai be finite measurable pairwise disjoint sets.
Then there exists a weakly null sequence (fn)n in L1(µ) which is
not norm null. Hence, the operator T : L1(µ) → L1(µ) defined
by T (f) =

∑∞
n=1(

∫
Ai
fdµ)fn is M -weakly and L-weakly compact

operator which is not compact. Note that T is not surjective.

Example 2.20. Let E = `2 and F = L1[0, 1]. By [8, Corollary 2.7.7], we
see that F contains a closed subspace H which is isomorphic to `2, so
that the isomorphism T : E → H ⊂ F is weakly compact and hence as
F is an AL-space, surjective L-weakly compact operator.

Proposition 2.21. Let E be a Banach lattice such that Ea is discrete
and X be a Banach space. If T : X → E is a surjective L-weakly
compact operator, then E is finite-dimensional.

Proof. Let E be a Banach lattice such that Ea is discrete and X be
a Banach space. Let T : X → E is a surjective L-weakly compact
operator. Applying [4, Theorem 3.1], T is compact. Since T is also
surjective, by Corollary 2.2, E is finite-dimensional. �

Proposition 2.22. Let E and F be Banach lattices such that the norm
of E′ is order continuous and F be infinite-dimensional. If T : E → F is
a regular surjective L-weakly compact operator, then E′ is not discrete.

Proof. Assume that E′ is discrete. Clearly the operator T ′ : F ′ → E′

is a regular M -weakly compact operator. Since the norm of E′ is order
continuous, by [8, Corollary 3.6.14], T ′ is a regular L-weakly compact
operator and hence is compact by [4, Theorem 3.1]. Thus T is also
compact and hence by Corollary 2.2, F is finite-dimensional which is a
contradiction. �

Proposition 2.23. Let E and F be Banach lattices such that F is
infinite-dimensional and its norm is not order continuous. If T : E → F
is a surjective M -weakly compact operator, then (E′)a is not discrete.
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Proof. If (E′)a is discrete, then by [4, Theorem 4.2 ], T is a surjective
compact operator. Then F is finite-dimensional which is a contradiction.

�

Finally, as a consequence of [4, Theorem 4.5], we obtain:

Corollary 2.24. Let F be an infinite-dimensional discrete Banach lat-
tice with an order continuous norm. If T is a regular M -weakly compact
operator from a Banach lattice E (which is arbitrary) into F , then T is
not surjective.
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