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ABSTRACT

In the present paper we study Ricci-Bourguignon soli-
tons on three dimensional para-Sasakian manifolds with
potential vector field as a special vector field. We proved
the conditions for such manifold to be isometric to hy-
perbolic space. Further, the nature of RB-soliton based
on the value of real numbers ρ is investigated.
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1. Introduction

Sato [14] introduced an almost paracontact manifold and Zamkovy [19] investigated the

admittance of the pseudo-Riemannian metric with signature (n + 1, n) on the almost para-

contact manifold of dimension (2n + 1). In general, an almost contact manifold has odd

dimension, however, a paracontact manifold can also have even dimension. In modern dif-

ferential geometry study of solitons was well explored. In recent years Ricci and Yamabe

solitons were studied in Mathematics and Physics. De [5] recently investigated gradient soli-

tons on a three-dimensional para-Sasakian manifold.

Bourguignon [1] initiated the study of Ricci-Bourguignon flow, later Catino et. al [2] devel-

oped Ricci-Bourguignon flow into parabolic theory in their research. Bourguignon introduced
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the Ricci -Bourguignon flow given by the equation

(1.1)
∂g

∂t
= −2(S − ρrg), g(0) = g0,

where ρ is a non-zero real number, S is Ricci tensor and r is the scalar curvature. Ricci

Bourguignon soliton (abbrivated as RB-soliton) is self similar solution of RB-flow and is

defined on pseudo(semi)-Riemannian or Riemannaian manifold as follows:

(1.2) (LV g)(X,Y ) = −2S(X,Y ) + 2(λ+ ρr)g(X,Y ),

where LV is Lie-derivative along V , λ is soliton constant. If ρ = 0 then (1.2) defines Ricci

soliton.

If the vector field V is gradient of potential function u then g is said to be gradient Ricci-

Bourguignon soliton and the equation (1.2) takes the form

(1.3) Hessu = −S(X,Y ) + (λ+ ρr)g(X,Y ),

where Hessu denotes the Hessian of smooth function u on M and is defined by Hessu =

∇∇u. Recently many authors studied RB-soliton on three-dimensional contact metric mani-

fold ([3], [12], [4], [8], [16]). Pathra, Ali and Mofarreh[8] studied the RB-soliton and gradient

RB-soliton on k−paracontact, (k, µ)-paracontact and para-Sasakian manifolds.

A vector field V on a pseudo-Riemannian manifold M is affine conformal, conformal, Jacobi

type and torse-forming vector field if([11], [18], [6])

(1.4) (LV∇)(X,Y ) = (Xf)Y + (Y f)X − g(X,Y )Df,

(1.5) (LV g)(X,Y ) = 2δg(X,Y ),

(1.6) ∇X∇Y V −∇∇XY V +R(V,X)Y = 0,

(1.7) ∇XV = fX + α(X)V,

where X, Y and Z are smooth vector fields on M , ∇ is Levi-Civita connection on M , f and

δ are smooth functions on M and α is a 1-form on M .

If α = 0 in (1.7) then V is concircular, α = 0 and f = 1 in (1.7) then V is a concurrent vetor

field, and if α 6= 0 and f = 0 in (1.7) then V is recurrent.

If a (0, 2)-tensor B satisfies the following

(1.8)

(∇XB)(Y,Z) + (∇YB)(Z,X) + (∇ZB)(X,Y ) = k(X)g(Y,Z) + k(Y )g(Z,X) + k(Z)g(X,Y )

for any vector fields X, Y and Z on M , then it is known as the conformal quadratic Killing

tensor, which is a generalization of conformal Killing vector field, where k is a 1-form on M .

2. Preliminaries

A (2n+1)-dimesional smooth manifold M admits an almost paracontact structure (φ, ξ, η),

if there is a (1,1)-tensor field φ, a vector field ξ called Reeb vector field and η is a 1-form

satisfying the following conditions

(2.1) φ2X = X − η(X)ξ, η(ξ) = 1.
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From the definition it follows that φ ◦ ξ = 0, η ◦ φ = 0.

Tensor field φ induces an almost paracomplex structure on horizontal bundle D = kerη i.e.,

eigen distribution D+ and D− corresponding to eigen values +1 and −1 of φ, respectively,

have equal dimension. An almost paracontact manifold is normal if Nijenhuis tensor field

Nφ = [φ, φ]− 2dη × ξ vanishes identically.

If an almost paracontact manifold admits pseudo-Riemannian metric g such that

(2.2) g(φX, φY ) = −g(X,Y ) + η(X)η(Y ),

where X and Y in X(M), then (φ, ξ, η, g) is called almost paraconatct metric structure, and

a manifold with this metric structure is called paracontact metric manifold, we have

(2.3) Φ(X,Y ) = g(X,φY ) = dη(X,Y ),

for vector fields X and Y on M , Φ is fundamental 2-form.

In a paracontact metric manifold, we define h = 1
2Lξφ, where h is symmetric trace free

operator and Lξ is Lie derivative along direction ξ which satisfies hξ = 0, tr(h) = 0, tr(hφ) =

0 and h anti-commutes with φ. We have

(2.4) ∇Xξ = −φX + φhX.

A paracontact manifold (M,φ, ξ, η, g) for which ξ is Killing is said to be K− parcontact

manifold. A normal paracontact metric manifold is called a para-Sasakian manifold. Every

para-Sasakian manifold is K-paraconatct but converse is true for dimension 3. In a para-

Sasakian manifold the following hold:

(2.5) R(X,Y )ξ = η(X)Y − η(Y )X,

(2.6) (∇Xφ)(Y ) = −g(X,Y )ξ + η(Y )X,

(2.7) ∇Xξ = −φX,

(2.8) R(ξ,X)Y = −g(X,Y )ξ + η(Y )X,

(2.9) S(X, ξ) = −(n− 1)η(X),

where X and Y are vector fields on M , R is Riemannian curvature tensor, S is Ricci tensor

defined by S(X,Y ) = g(QX,Y ) and Q is Ricci operator.

The Riemannian curvature tensor in a three dimesional pseudo-Riemannian manifold is given

by

(2.10)

R(X,Y )Z = g(Y, Z)QX−g(X,Z)QY +g(QY,Z)X−g(QX,Z)Y − r
2

(g(Y,Z)X−g(X,Z)Y ).

Putting Y = Z = ξ in (2.10), using (2.5) and (2.9), we get

(2.11) S(X,Y ) =
1

2
((r + 2)g(X,Y )− (r + 6)η(X)η(Y )).

Indeed we have the following results.

Lemma 2.1. [7] In a three dimensional para-Sasakian manifold, we have (ξr)=0.
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Lemma 2.2. [17] On an n-dimesional pseudo-Riemannian manifold endowed with conformal

vector field V , we have

(2.12) (LV S)(X,Y ) = −(n− 2)g(∇XDδ, Y ) + (∆δ)g(X,Y ).

(2.13) LV r = −2δr + 2(n− 1)∆δ.

Lemma 2.3. [17] From Yano formula, we have the following

(2.14) (LV∇Zg −∇ZLV g −∇[Z,V ]g)(X,Y ) = −g((LV∇(Z,X)), Y )− g((LV∇(Z, Y )), X),

(2.15) (∇ZLV g)(X,Y ) = ((LV∇(Z,X)), Y ) + g((LV∇(Z, Y )), X),

(2.16) 2g((LV∇)(X,Y ), Z) = (∇XLV g)(Y,Z) + (∇Y LV g)(Z,X)− (∇ZLV g)(X,Y ),

(2.17) (LVR)(X,Y )Z = (∇XLV∇)(Y, Z)− (∇Y LV∇)(X,Z),

for all X, Y and Z on M .

3. Special vector field on three dimensional para-Sasakian manifold

In this section we study affine conformal, conformal and torse forming vector fields on

para-Sasakian manifold.

Theorem 3.1. If a pseudo-Riemannian metric of a three-dimensional para-Sasakian mani-

fold is a RB-soliton whose potential vector field is affine conformal vector field then the Ricci

tensor S is conformal quadratic Killing tensor.

Proof. Taking covariant derivative along Z in (1.2), we get

(3.1) (∇ZLV g)(X,Y ) = −2(∇ZS)(X,Y ) + 2ρ(Zr)g(X,Y ).

Cyclic change of X, Y , Z and in (3.1), and the use of equations (2.16) and (2.17), give

g((LV∇)(X,Y ), Z) =− (∇XS)(Y,Z)− (∇Y S)(X,Y ) + (∇ZS)(X,Y ) + ρ(Xr)g(Y,Z)

+ ρ(Y r)g(X,Z)− ρ(Zr)g(X,Y ).

(3.2)

Using (1.4) in (2.15), we have

(3.3) (∇XLV g)(Y,Z) = 2(Xf)g(Y,Z).

Making use of (3.3) in (3.1), we infer that

(3.4) (∇XS)(Y,Z) = −(Xf)g(Y,Z) + ρ(Xr)g(Y, Z).

Cyclically inter changing X, Y and Z in (3.4), and adding the equations, we achive that

(3.5) (∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

= (X(ρDr −Df))g(Y,Z) + (Y (ρDr −Df))g(Z,X) + (Z(ρDr −Df))g(X,Y ).

If we set dual 1-form ρDr −Df as k, then last equation becomes

(3.6) (∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y )

= k(X)g(Y,Z) + k(Y )g(X,Z) + k(Z)g(X,Y ),
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which shows S is conformal quadratic Killing tensor. This completes the proof. �

Theorem 3.2. In a three dimesional para-Sasakian manifold, with pseudo-Riemannnian

metric as RB-soliton if the potential vector field V is an affine conformal vector field then it

is Jacobi along geodesic of ξ.

Proof. Taking covariant derivative along Z in equation (2.11), we get

(3.7)

(∇ZS)(X,Y ) =
(Zr)

2
g(X,Y )− (Zr)

2
η(X)η(Y )−

(r
2

+ 3
)
{(∇Z)(X)η(Y )+(∇Zη)(Y )η(X)}.

Making use of (2.11) and (3.7) in (3.2), we obtain

g((LV∇)(X,Y ), Z) =

(
ρ− 1

2

)
{(Xr)g(Y, Z) + (Y r)g(X,Z)− (Zr)g(X,Y )}+

1

2
{(Xr)η(Y )ξ

+ (Y r)η(X)ξ − η(X)η(Y )Dr}.

(3.8)

On comparing (1.4) and (3.8), for all vector fields Z, we arrive at

(Xf)Y − (Y f)X − g(X,Y )Df =

(
ρ− 1

2

)
{(Xr)Y + (Y r)X − g(X,Y )Dr}+

1

2
{(Xr)η(Y )ξ

+ (Y r)η(X)ξ − η(X)η(Y )Dr} − 2(
r

2
+ 3){η(Y )φX

+ η(X)φY }.

(3.9)

Setting X = ξ in last equation, we get

(ξf)Y − (Y f)ξ − η(Y )Df =

(
ρ− 1

2

)
{(ρr)Y + (Y r)ξ − η(Y )Dr}+

1

2
{(ξr)η(Y )ξ + (Y r)ξ

− η(Y )Dr} − 2
(r

2
+ 3

)
φY.

(3.10)

Putting Y = ξ in (3.10), we obtain

(3.11) Df = −ρDr.

Using foregoing equation in (3.10), we get(
−2ρ+

1

2

)
(Xr)Y − 1

2
((Xr)η(Y )ξ + g(X,Y )dr + η(X)η(Y )Dr − (Y r)η(X)ξ)

+ (r + 6){η(Y )φX + η(X)φY } = 0.

(3.12)

Setting X = Y = ξ in (3.12), we achive

(3.13) Dr = 0.

On integrating (3.13), we get r=constant. Using this in (3.8), we arrive at

(3.14) (LV∇)(X,Y ) = −(r + 6){η(X)φY + η(Y )φX}.

Substituting ξ for X and Y in last equation, we get

(3.15) (LV∇)(ξ, ξ) = 0.
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Taking X = Y = ξ in (2.7), we get ∇ξξ = 0. Using last equation in (1.6), we infer that

(3.16) ∇ξ∇ξV −∇∇ξξV +R(V, ξ)ξ = 0.

Make use of (3.15) and (3.16) in (1.6), we obtain

(3.17) ∇ξ∇ξV +R(V, ξ)ξ = 0.

i.e., the vector field V is Jacobi vector field along the geodesic of ξ. �

Remark 3.3. In a three dimesional para-Sasakian manifold admitting RB-soliton, the Reeb

vector field is geodesic.

Proof. Letting V = ξ in (1.2) and using (2.11), we get

(3.18) g(∇Xξ, Y ) + g(X,∇Y ξ) = (2λ+ 2ρr − r − 2)g(X,Y ) + (r + 6)η(X)η(Y ).

Substituting ξ for X in (3.18), we obtain

(3.19) g(∇ξξ, Y ) + g(∇Y ξ, ξ) = (2λ+ 2ρr + 4)η(Y ).

Setting Y = ξ in (3.19), we have

(3.20) λ = −(ρr + 2).

Using (3.20) in (3.19), we achive

(3.21) ∇ξξ = 0.

i.e., ξ is geodesic. �

Theorem 3.4. If a three dimesional para-Sasakian manifold admits an RB-soliton whose po-

tential vector field V is conformal and scalar curvature is harmonic then manifold is Einstein

and is locally isometric to Hyperbolic space H3(−1).

Proof. Taking Lie derivative of g(ξ, ξ) = 1, we get

(3.22) (LV g)(ξ, ξ) + 2η(LV ξ) = 0.

Putting X = Y = ξ in (1.2), we obtain

(3.23) (LV g)(ξ, ξ) = 4 + 2λ+ 2ρr.

Using (3.23) in (3.22), we arrive at

(3.24) η(LV ξ) = −(2 + λ+ ρr).

Take Lie derivative along V of η(ξ) = 1, we achive

(3.25) (LV η)(ξ) = −η(LV ξ).

Making use of (3.25) in (3.24), we get

(3.26) (LV η)(ξ) = 2 + λ+ ρr.

Setting X = Y = ξ in (1.5), we infer that

(3.27) (LV g)(ξ, ξ) = 2δ.
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On comparing (3.23) and (3.27), we obatin

(3.28) δ = 2 + λ+ ρr.

Make use of (3.28) in (2.12), we get

(3.29) (LV S)(X,Y ) = −ρg(∇XDr, Y ) + ρ(∆r)g(X,Y )

and

(3.30) LV r = −4r − 2λr − 2ρr2 + 4ρ∆r.

We take Lie derivative along V in (2.11) to obtain

(3.31) (LV S)(X,Y ) =
(LV r)

2
{g(X,Y )− η(X)η(Y )}+

(r
2

+ 1
)

(LV g)(X,Y )

−
(r

2
+ 3

)
{(LV η)(X)η(Y ) + (LV η)(Y )η(X)}.

Using (3.29) and (3.30) in (3.31), we have

−ρg(∇XDr, Y ) + ρ(∆r)g(X,Y ) =(−2r + 2ρ∆r + 2λ+ 2ρr)g(X,Y ) + (2r + λr + ρr2

− 2ρ∆r)η(X)η(Y )− (r + 2){
(r

2
+ 1

)
g(X,Y )

−
(r

2
+ 3

)
η(X)η(Y )}.

(3.32)

Substituting X = Y = ξ in foregoing equation and using Lemma 2.1 and equation (3.26),

we have

(3.33) ρ∆r = −(λ+ ρr + 3).

If the scalar curvature is harmonic, that is ∆r = 0, then last equation becomes

(3.34) λ = −(ρr + 3).

Taking Lie derivative of η(X) = g(X, ξ) along V , we get

(3.35) (LV η)(X) = (LV g)(X, ξ) + g(X,LV ξ).

Using (1.2) in (3.35), we achive

(3.36) (LV η)(X) = 4(2 + λ+ ρr)η(X) + g(X,LV ξ).

Making use of equation (1.7) in (3.35), we obtain

(3.37) (LV η)(X) = 2δη(X) + g(X,LV ξ).

On comapring (3.36) and (3.37), we arrive at

(3.38) δη(X) = (2 + λ+ ρr)η(X).

Putting X = ξ in last equation, we get

(3.39) δ = (2 + λ+ ρr).

Utilizing (3.34) in (3.39), we infer that

(3.40) δ = −1.
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Using (1.7), (3.34) and (3.40) in (1.2), we get

(3.41) S(X,Y ) = −2g(X,Y ).

i.e., Manifold M is Einstein and its scalar cuvature r = −6.

Utilizing (3.41) in (2.10), we achive

(3.42) R(X,Y )Z = −{g(X,Z)Y − g(Y,Z)X}.

Thus M has constant scetional curvature -1.

Using r = −6 in (3.34), we get λ = 6ρ − 3. Therefore the soliton is shrinking, steady or

expanding according as ρ < 1
2 , ρ = 1

2 and ρ > 1
2 respectively. �

Corollary 3.5. In a three dimensional para-Sasakian manifold with the pseudo-Riemannian

metric as RB-soliton, the potential vector field V as conformal vector field reduces to homo-

thetic vector field and the manifold has quadratic Killing tensor.

Proof. Utilizing equation (1.7) in (1.2), we arrive at

(3.43) S(X,Y ) = (λ+ ρr − δ)g(X,Y ).

Taking covariant derivative along Z in (3.43), we obtain

(3.44) (∇ZS)(X,Y ) = (ρ(Zr)− (Zδ))g(X,Y ).

Cyclically changing along X , Y and Z in (3.44) and adding all obtained equations, we get

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) =(ρ(Xr)− (Xδ))g(Y, Z) + (ρ(Y r)

− (Y δ))g(X,Z) + (ρ(Zr)− (Zδ))g(X,Y ).

(3.45)

Contracting (3.45) with respect to Y and Z, we obatin

(3.46) 2(Xr) = 5ρ(Xr)− 5(Xδ).

Replacing Z and Y by ξ in (3.45), we infer that

(3.47) (∇XS)(ξ, ξ) + 2(∇ξS)(X, ξ) = ρ(Xr)− 2(ξδ)η(X).

Setting X = ξ in (3.47), we get

(3.48) (ξδ) = 0.

Using (3.48) in (3.47), we achive that

(3.49) (Xδ) = 0,

for all vector fields X, which shows that δ is constant.

Using (3.49) in (3.47), we arrive at

(3.50) (5ρ− 2)(Xr) = 0.

We choose (5ρ − 2) 6= 0. Therefore (Xr) = 0, for all vector fields X. i.e., r is a constant.

Putting these in (3.45), we get

(3.51) (∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) = 0,

which shows that S is a quadratic Killing tensor. �
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Theorem 3.6. If three dimesional para-Sasakian manifold with torse forming vector field ξ

admits RB-soliton (g, V, λ) then scalar curvature r = −6 and soliton constant λ = 6ρ − 3.

Further the soliton is shrinking, steady and expanding according as ρ < 1
2 , ρ = 1

2 and ρ > 1
2 .

Proof. Taking inner product of (2.1) with ξ, we get

(3.52) η(∇Xξ) = fη(X) + α(X).

Utilizing (2.7) in (3.52), we obtain

(3.53) α(X) = −fη(X).

Putting X = ξ in last equation, we infer that

(3.54) α(ξ) = −f.

Making use of (3.53) in (2.1), we arrive at

(3.55) ∇Xξ = f(X − η(X)ξ).

Taking V = ξ in (1.2), we have

(3.56) g(∇Xξ, Y ) + g(X,∇Y ξ) = −2S(X,Y ) + 2(λ+ ρr)g(X,Y ).

Using (3.55) in (3.56), we achive

(3.57) S(X,Y ) = (λ+ ρr − f)g(X,Y ) + fη(X)η(Y ).

Taking covariant derivative along Z in (3.57), we arrive at

(∇ZS)(X,Y ) =(ρ(Zr)− (Zf))g(X,Y ) + (Zf)η(X)η(Y ) + f2{g(X,Z)η(Y ) + g(Y, Z)η(X)

− 2fη(X)η(Y )η(Z)}.

(3.58)

Making cyclic change of X, Y , Z in (3.59) and addition of the three equations yield

(∇XS)(Y,Z) + (∇Y S)(Z,X) + (∇ZS)(X,Y ) =(ρ(Xr)− (Xf))g(Y, Z) + (ρ(Y r)− (Y f))g(X,Z)

+ (ρ(Zr)− (Zf))g(X,Y ) + (Xf)η(Y )η(Z)

+ (Y f)η(X)η(Z) + (Zf)η(X)η(Y )

+ 2f2{g(X,Y )η(Z) + g(X,Z)η(Y ) + g(Y, Z)η(X)}

− 6f3η(X)η(Y )η(Z).

(3.59)

Contracting (3.59) with respect to Y = Z = ei, i=1 to 3, we arrive at

(3.60) 2(Xr) = 5ρ(Xr)− 4(Xf) + 2(ξf)η(X) + 6f2η(X)− 6f3η(X).

Taking X = ξ in (3.60) and using Lemma 2.1, we get

(3.61) (ξf) = 3f2 − 3f3.

Utilizing (3.61) in (3.60), we obtain

(3.62) (2− 5ρ)(Xr) = −4(Xf) + (12f2 − 12f3)η(X).

Putting Y = Z = ξ in (3.59), we have

(3.63) g((∇XQ)(ξ), ξ) + 2g((∇ξQ)(ξ), X) = ρ(Xr) + 6f2η(X)− 6f3η(X).
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Using (3.58) in (3.63), we obtain

(3.64) ρ(ξf)η(X) = (2f2 − 2f3)η(X).

Putting X = ξ in (3.64), we infer that

(3.65) ρ(ξf) = 2f2 − 2f3.

Making use of (3.61) in (3.64), we achive

(3.66) (3ρ− 2)(f2 − f3) = 0.

If (3ρ − 2) 6= 0 then f2 = f3 or f = 1. this in (3.55) reduces the vector field ξ to a torse

forming vector field.

Setting f = 1 in (3.62), we arrive at

(3.67) (Xr) = 0,

for all vector fields X. Therefore r is a constant.

Using (2.11) in (1.2), we get

(3.68) (LV g)(X,Y ) = (2ρ+ 2λ− r − 2)g(X,Y ) + (r + 6)η(X)η(Y ).

Utilizing (3.68) in (3.31), we infer that

(LV S)(X,Y ) =
(r

2
+ 1

)
(2ρ+ 2λ− r − 2)g(X,Y ) +

(r
2

+ 1
)

(r + 6)η(X)η(Y )

−
(r

2
+ 1

)
{(LV η)(X)η(Y ) + (LV η(X))η(Y )}.

(3.69)

Taking covariant derivative along Z in (2.11) with ξ as torse formnig vector field and making

use of (3.55) and (Xr) = 0, we achive

(3.70) (∇ZS)(X,Y ) = −
(r

2
+ 1

)
{g(X,Z)η(Y ) + g(Y, Z)η(X)− 2η(X)η(Y )η(Z)}.

Taking covariant derivative of (1.2) with respect to Z, we get

(3.71) (∇ZLV g)(X,Y ) = −2(∇ZS)(X,Y ).

Cyclic inter change of X, Y , Z in (3.71) and use of (2.17) , gives

(3.72) g((LV∇)(X,Y ), Z) = −(∇XS)(Y,Z)− (∇Y S)(Z, ) + (∇ZS)(X,Y ).

Utilizing (3.70) in (3.72), we have

(3.73) (LV∇)(X,Y ) = (r + 2){g(X,Y )ξ − η(X)η(Y )ξ}.

Taking covariant derivative along Z in (3.73), we get

(∇ZLV∇)(X,Y ) =(r + 2){g(X,Y )Z − g(X,Y )η(Z)ξ − g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ

− η(X)η(Y )Z + 3η(X)η(Y )η(Z)ξ}.

(3.74)

Using (3.74) in (2.17), we arrive at

(3.75) (LVR)(X,Y )Z = (r + 2){g(Y,Z)X − g(X,Z)Y + η(X)η(Z)Y − η(Y )η(Z)X}.

Contracting (3.75) with respect to X, we get

(3.76) (LV S)(Y,Z) = 2(r + 2){g(Y, Z)− η(Y )η(Z)}.
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Setting Y = Z = ξ in last equation, we obtain

(3.77) (LV S)(ξ, ξ) = 0.

Thus taking X = Y = ξ in (3.69) and comparing the equation with (3.77), we arrive at

(3.78) (r + 6)(LV η)(ξ) =
(r

2
+ 1

)
(2ρr + 2λ− r − 2) + (

r

2
+ 2)(r + 6).

Substituting Y = ξ in (3.70), we get

(3.79) (LV g)(X, ξ) = (2ρr + 2λ+ 4)η(X).

Lie differentiation of η(X) = g(X, ξ) with respect to V and using (3.79), yields

(3.80) (LV η)(X) = (2ρr + 2λ+ 4)η(X) + g(X,LV ξ).

Again taking Lie derivative of g(ξ, ξ) = 1 with respect to V , we achive

(3.81) (LV g)(ξ, ξ) + 2η(LV ξ) = 0.

Making use of (3.79) in (3.81), we have

(3.82) η(LV ξ) = −(ρr + λ+ 2).

Now taking X = ξ in (3.80) , we arrive at

(3.83) (LV η)(ξ) = ρr + λ+ 2.

Using (3.83) in (3.78), we infer that

(3.84) λ =
1

4
(r − 2− 4ρr).

Putting V = ξ in (3.68) and using (2.7) by setting X = Y = ξ, we obtain

(3.85) λ = −(ρr + 2).

On comparing (3.84) and (3.85), we obatin

(3.86) r = −6.

Using (3.86) in (3.84), we achive

(3.87) λ = 6ρ− 2.

This completes the proof. �

Theorem 3.7. The potential vector field of RB-soliton on three dimesional para-Sasakian

manifold with ξ as torse forming vector field is Jacobi along geodesic of ξ.

Proof. Putting X = Y = ξ in (3.73), we get

(3.88) (LV∇)(ξ, ξ) = 0.

Using (3.88) in (1.6), we achive

(3.89) ∇ξ∇ξV +R(V, ξ)ξ = 0.

i.e., the vector V is a Jacobi vector field along geodesic of ξ. �
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4. Gradient RB-soliton on three dimensional para-Sasakian manifold

Theorem 4.1. Let pseudo-Riemannian metric of three dimesional para-Sasakian manifold

be a gradient RB-soliton. Then the manifold is locally isometric to the hyperbolic space

H3(−1).

Proof. From equation (1.3), we have

(4.1) ∇XDu = (λ+ ρr)X −QX.

Using equation (2.11) in(4.1), we get

(4.2) ∇XDu = (λ+ ρr − r

2
− 1)X +

(r
2

+ 3
)
η(X)ξ.

Taking covariant derivative along Y in (4.2), we obtain

(4.3) ∇Y∇XDu = (ρ(Y r)− 1

2
(Y r))X + (λ+ ρr − r

2
− 1)∇YX

+
(Y r)

2
η(X)ξ +

(r
2

+ 3
)
{g(∇Y ξ,X)ξ + η(∇YX)ξ + η(X)∇Y ξ}.

Using (2.7) in (4.3), we get

∇Y∇XDu =(ρ(Y r)− 1

2
(Y r))X + (λ+ ρr − r

2
− 1)∇YX

+
(Y r)

2
η(X)ξ +

(r
2

+ 3
)
{−g(φY,X)ξ + η(∇YX)ξ − η(X)φ(Y )ξ}.

(4.4)

Repeated use of (4.2) and (4.4) in R(X,Y )Du = ∇X∇YDu − ∇Y∇XDu − ∇[X,Y ]Du, we

obtain

R(X,Y )Du =(ρ(Xr)− 1

2
(Xr))Y +

(Xr)

2
η(Y )ξ − (ρ(Y r)− 1

2
(Y r))g(X,Z) +

(Xr)

2
η(Y )η(Z)

− (Y r)

2
η(X)η(Z) +

(r
2

+ 3
)
{−2g(φX, Y )η(Z)− g(φX,Z)η(Y ) + g(φY,Z)η(X)}.

(4.5)

Taking X = Z = ξ in (4.5), we achive

(4.6) g(R(ξ, Y )Du, ξ) = (ρ(ξr))η(Y )− ρ(Y r) + (ξr)η(Y ).

Making use of Lemma 2.1 in last equation, we get

(4.7) g(R(ξ, Y )Du, ξ) = −ρ(Y r).

Contracting (4.5) with respect to X, we get

(4.8) S(Y,Du) =

(
−2ρ+

1

2

)
(Y r).

Replace X by Du in (2.11), we obtain

(4.9) S(Y,Du) =
(r

2
+ 1

)
g(Y,Du)−

(r
2

+ 3
)
η(Y )(ξu).

On comparing (4.8) and (4.9), we achive

(4.10)

(
−2ρ+

1

2

)
(Y r) =

(r
2

+ 1
)

(Y u)−
(r

2
+ 3

)
η(Y )(ξu).

Taking Y = ξ in last equation, we arrive at

(4.11) (ξu) = 0.
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Take inner product with Du in (2.5), we infer that

(4.12) g(R(X,Y )Du, ξ) = η(Y )(Xu)− η(X)(Y u).

Thus taking X = ξ in (4.12), we have

(4.13) g(R(ξ, Y )Du, ξ) = η(Y )(ξu)− (Y u).

Replace Z by ξ in (4.5) and on comparing the equation with (4.13), we arrive

(4.14) ρ(Xr)η(Y )− ρ(Y r)η(X)− 2
(r

2
+ 3

)
g(φX, Y ) = η(Y )(Xu)− η(X)(Y u).

Replace X by φX and Y by φY in (4.14) and using (2.1), we get

(4.15) (r + 6)g(X,φY ) = 0.

Therefore r = −6. Using this in (2.11), we obtain

(4.16) S(X,Y ) = −2g(X,Y ).

Using (4.16) in (2.10), we have

(4.17) R(X,Y )Z = −{g(X,Z)Y − g(Y,Z)X}.

i.e., the space has a constant sectional curvature -1. �

5. Conclusions

This research focuses on RB-solitons on three-dimensional para-Sasakian manifolds. We

begin by considering the potential vector field V as affine conformal vector, leading to the

Ricci tensor being a conformal quadratic Killing tensor. We also establish that potential

vector field as affine conformal vector field is the Jacobi along the geodesic of ξ. Next, we

investigate the case when the potential vector field V is conformal. We show that under

this condition, the manifold is locally isometric to hyperbolic space, the vector field V is

homothetic, and the manifold has a quadratic Killing tensor. We then consider the case

where V is a torse-forming vector field. We prove that V is Jacobi along geodesics and

we use ρ to analyze the nature of the soliton. Lastly, we demonstrate that for a gradient

RB-soliton, the manifold has constant sectional curvature -1, which implies that it is locally

isometric to hyperbolic space. In conclusion, this paper provides a thorough analysis of

RB-solitons on three-dimensional para-Sasakian manifolds, examining different forms of the

potential vector field and their geometric consequences.
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