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ABSTRACT

In this paper we prove some curvature properties of
anti-invariant submanifold of Lorentzian para-Kenmotsu
manifold (briefly, LP-Kenmotsu manifold) with respect
to Zamkovoy connection (∇∗). Next, we study Einstein
soliton on anti-invariant submanifold of LP-Kenmotsu
manifold with respect to Zamkovoy connection. Fur-
ther, we study η-Einstein soliton on this submanifold
with respect to Zamkovoy connection under different
curvature conditions. Finally, we give an example of
anti-invariant submanifold of 5-dimensional
LP-Kenmotsu manifold admitting η-Einstein soliton
with respect to ∇∗ and verify a relation on the manifold
under consideration.
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1. Introduction

In 2008, the notion of Zamkovoy canonical connection (briefly, Zamkovoy connection) was

introduced by Zamkovoy [30] for a para-contact manifold. And this connection was defined as

a canonical para-contact connection whose torsion is the obstruction of para-contact manifold

to be a para-Sasakian manifold. Later, Biswas and Baishya [1, 2] studied this connection

on generalized pseudo Ricci symmetric Sasakian manifolds and on almost pseudo symmetric
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Sasakian manifolds. This connection was further studied by Blaga [3] on para-Kenmotsu

manifolds. In 2020, Mandal and Das [7, 13, 14, 15] studied in detail on various curvature

tensors of Sasakian and LP-Sasakian manifolds admitting Zamkovoy connection. In 2021,

they discussed LP-Sasakian manifolds equipped with Zamkovoy connection and conharmonic

curvature tensor [16]. Recently, they introduced Zamkovoy connection on Lorentzian para-

Kenmotsu manifold [17] and studied Ricci soliton on it with respect to this connection.

Zamkovoy connection for an n-dimensional almost contact metric manifold M equipped

with an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field ϕ, a

vector field ξ, a 1-form η and a Riemannian metric g, is defined by

(1.1) ∇∗
XY = ∇XY + (∇Xη) (Y ) ξ − η (Y )∇Xξ + η (X)ϕY,

for all X, Y ∈ χ (M) , where χ (M) is the set of all vector fields on M.

In 2018, the notion of Lorentzian para-Kenmotsu manifold (LP- Kenmotsu manifold for

short) has been introduced by Haseeb and Prasad [9]. Later, Shukla and Dixit [25] studied

ϕ-recurrent Lorentzian para-Kenmotsu manifolds and find that such type of manifolds are

η-Einstein. Further, Chandra and Lal [6] studied some special results on 3-dimensional

Lorentzian para-Kenmotsu manifolds. This manifold is also studied by Sai Prasad, Sunitha

Devi [22].

In 1977, anti-invariant submanifolds of Sasakian space forms were introduced by Yano

and Kon [28]. Later in 1985, Pandey and Kumar investigated properties of anti-invariant

submanifolds of almost para-contact manifolds [20]. Recently, Karmakar and Bhattyacharyya

[11] studied anti-invariant submanifolds of some indefinite almost contact and para-contact

manifolds. Most recently, Karmakar [10] studied η-Ricci-Yamabe soliton on anti-invariant

submanifolds of trans-Sasakian manifold admitting Zamkovoy connection.

Let ϕ be a differential map from a manifold Ñ into another manifold M̃ and let the

dimensions of Ñ , M̃ be ñ, m̃ (ñ < m̃), respectively. If rankϕ = ñ, then ϕ is called an

immersion of Ñ into M̃. If ϕ(p) ̸= ϕ(q) for p ̸= q, then ϕ is called an imbedding of Ñ into M̃.

If the manifolds Ñ and M̃ satisfy the following two conditions, then Ñ is called submanifold

of M̃ - (i) Ñ ⊂ M̃, (ii) the inclusion map from Ñ into M̃ is an imbedding of Ñ into M̃.

A submanifold Ñ is called anti-invariant if X ∈ Tx(Ñ) ⇒ ϕX ∈ T⊥
x (Ñ) for all X ∈ Ñ ,

where Tx(Ñ) and T⊥
x (Ñ) are respectively tangent space and normal space at x ∈ Ñ . Thus

in an anti-invariant submanifold Ñ , we have for all X, Y ∈ Ñ

g(X,ϕY ) = 0.

The concept of Ricci flow was first introduced by R. S. Hamilton in the early 1980s.

Hamilton [8] observed that the Ricci flow is an excellent tool for simplifying the structure

of a manifold. It is the process which deforms the metric of a Riemannian manifold by

smoothing out the irregularities. The Ricci flow equation is given by

(1.2)
∂g

∂t
= −2S,

where g is a Riemannian metric, S is Ricci tensor and t is time. The solitons for the Ricci

flow is the solutions of the above equation, where the metrices at different times differ by a

diffeomorphism of the manifold. A Ricci soliton is represented by a triple (g, V, λ), where V
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is a vector field and λ is a scalar, which satisfies the equation

(1.3) LV g + 2S + 2λg = 0,

where S is Ricci curvature tensor and LV g denotes the Lie derivative of g along the vector field

V . A Ricci soliton is said to be shrinking, steady, expanding according as λ < 0, λ = 0, λ > 0,

respectively. The vector field V is called potential vector field and if it is a gradient of a

smooth function, then the Ricci soliton (g, V, λ) is called a gradient Ricci soliton and the

associated function is called potential function. Ricci soliton was further studied by many

researchers. For instance, we see [19, 21, 24, 26] and their references.

Catino and Mazzieri [5] in 2016 first introduced the notion of Einstein soliton as a gener-

alization of Ricci soliton. An almost contact manifold M with structure (ϕ, ξ, η, g) is said to

have an Einstein soliton (g, V, λ) if

(1.4) LV g + 2S + (2λ− r)g = 0,

holds, where r being the scalar curvature. The Einstein soliton (g, V, λ) is said to be

shrinking, steady or expanding according as λ < 0, λ = 0 or λ > 0, respectively. Einstein

soliton creates some self-similar solutions of the Einstein flow equation

∂g

∂t
= −2S + rg.

Again as a generalization of Einstein soliton the η-Einstein soliton on manifoldM (ϕ, ξ, η, g)

is introduced by A. M. Blaga [4] and it is given by

(1.5) LV g + 2S + (2λ− r)g + 2βη ⊗ η = 0,

where, β is some constant. When β = 0 the notion of η-Einstein soliton simply reduces

to the notion of Einstein soliton. And when β ̸= 0, the data (g, V, λ, β) is called proper

η-Einstein soliton on M. The η-Einstein soliton is called shrinking if λ < 0, steady if λ = 0,

and expanding if λ > 0.

A transformation of an n-dimensional Riemannian manifold M , which transforms every

geodesic circle of M into a geodesic circle, is called a concircular transformation [12, 29]. A

concircular transformation is always a conformal transformation. Here geodesic circle means

a curve in M whose first curvature is constant and second curvature is identically zero. An

interesting invariant of a concircular transformation is the concircular curvature tensor (W) ,

which was defined in [27, 29] as

(1.6) W (X,Y )Z = R (X,Y )Z − r

n (n− 1)
[g (Y, Z)X − g (X,Z)Y ] ,

for all X, Y, Z ∈ χ(M), set of all vector fields of the manifold M , where R is the Riemannian

curvature tensor and r is the scalar curvature.

Definition 1.1. A Riemannian manifold M is called an η-Einstein manifold if its Ricci

curvature tensor is of the form

S (Y,Z) = k1g (Y, Z) + k2η (Y ) η (Z) ,

for all Y, Z ∈ χ (M) , where k1, k2 are scalars.

This paper is structured as follows:
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First two sections of the paper have been kept for introduction and preliminaries. In

Section-3, we give expression for Zamkovoy connection on anti-invariant submanifold of

LP-Kenmotsu manifold. In Section-4, we study Einstein soliton with respect to Zamkovoy

connection on anti-invariant submanifold of LP-Kenmotsu manifold. Section-5 concerns

with η-Einstein soliton with respect to Zamkovoy connection on anti-invariant submanifold

of LP-Kenmotsu manifold. Section-6 contains η-Einstein soliton on anti-invariant subman-

ifold of LP-Kenmotsu manifold satisfying (ξ.)R∗ .S∗ = 0. Section-7 deals with η-Einstein

soliton on anti-invariant submanifold of LP-Kenmotsu manifold satisfying (ξ.)W∗ .S∗ = 0.

In Section-8, we discuss η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu

manifold satisfying (ξ.)S∗ .W∗ = 0. Finally Section-9, contains an example of anti-invariant

submanifold of 5-dimensional LP-Kenmotsu manifold admitting η-Einstein soliton with re-

spect to Zamkovoy connection.

2. Preliminaries

Let M be an n-dimensional Lorentzian almost para-contact manifold with structure

(ϕ, ξ, η, g), where η is a 1-form, ξ is the structure vector field, ϕ is a (1, 1)-tensor field

and g is a Lorentzian metric satisfying

ϕ2 (X) = X + η (X) ξ, η(ξ) = −1,(2.1)

g (X, ξ) = η (X) ,(2.2)

g (ϕX, ϕY ) = g (X,Y ) + η (X) η (Y ) ,(2.3)

for all vector fields X, Y on M . A Lorentzian almost para-contact manifold is said to be

Lorentzian para-contact manifold if η becomes a contact form. In a Lorentzian para-contact

manifold the following relations also hold [18, 23]:

ϕ (ξ) = 0, η ◦ ϕ = 0,(2.4)

g (X,ϕY ) = g (ϕX, Y ) .(2.5)

The manifold M is called a Lorentzian para-Kenmotsu manifold if

(2.6) (∇Xφ)Y = −g (ϕX, Y ) ξ − η (Y )ϕX,

for all smooth vector fields X, Y on M.
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In a Lorentzian para-Kenmotsu manifold the following relations also hold [9, 17]:

∇Xξ = −X − η (X) ξ,(2.7)

(∇Xη)Y = −g (X,Y )− η (X) η (Y ) ,(2.8)

η (R (X,Y )Z) = g (Y, Z) η (X)− g(X,Z)η (Y ) ,(2.9)

R (X,Y ) ξ = η (Y )X − η (X)Y,(2.10)

R(ξ,X)Y = g(X,Y )ξ − η (Y )X,(2.11)

R(ξ,X)ξ = X + η (X) ξ,(2.12)

S (X, ξ) = (n− 1) η (X) ,(2.13)

S (ξ, ξ) = − (n− 1) ,(2.14)

Qξ = (n− 1) ξ,(2.15)

S (ϕX, ϕY ) = S (X,Y ) + (n− 1) η (X) η (Y ) ,(2.16)

for all smooth vector fields X, Y, Z on M.

3. Zamkovoy connection on anti-invariant submanifold of LP-Kenmotsu

manifold

Expression of Zamkovoy connection on an n-dimensional LP-Kenmotsu manifold M [17]

is

(3.1) ∇∗
XY = ∇XY − g(X,Y )ξ + η (Y )X + η (X)ϕY.

Setting Y = ξ in (3.1) we obtain

(3.2) ∇∗
Xξ = −2 [X + η (X) ξ] .

The Riemannian curvature tensor R∗ with respect to Zamkovoy connection [17] on M is

given by

R∗ (X,Y )Z = R (X,Y )Z + 3g (Y, Z)X − 3g (X,Z)Y

+2g (Y, Z) η (X) ξ − 2g (X,Z) η (Y ) ξ

+2g(Y, ϕZ)η (X) ξ − 2g (X,ϕZ) η (Y ) ξ

+2η (Y ) η (Z)X − 2η (X) η (Z)Y

−2η (Y ) η (Z)ϕX + 2η (X) η (Z)ϕY.(3.3)

For an anti-invariant submanifold M of M the Riemannian curvature tensor with respect

to Zamkovoy connection is given by

R∗ (X,Y )Z = R (X,Y )Z + 3g (Y, Z)X − 3g (X,Z)Y

+2g (Y, Z) η (X) ξ − 2g (X,Z) η (Y ) ξ

+2η (Y ) η (Z)X − 2η (X) η (Z)Y

−2η (Y ) η (Z)ϕX + 2η (X) η (Z)ϕY.(3.4)

Writing the equation (3.4) by the cyclic permutations of X, Y and Z and using the fact that

R (X,Y )Z +R (Y,Z)X +R (Z,X)Y = 0, we have

(3.5) R∗ (X,Y )Z +R∗ (Y,Z)X +R∗ (Z,X)Y = 0.
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Therefore, the Riemannian curvature tensor with respect to Zamkovoy connection on M

satisfies the 1st Bianchi identity.

Taking inner product of (3.4) with a vector field U, we get

R∗ (X,Y, Z, U) = R (X,Y, Z, U) + 3g (Y, Z) g (X,U)− 3g (X,Z) g (Y, U)

+2g (Y, Z) η (X) η (U)− 2g (X,Z) η (Y ) η (U)

+2g (X,U) η (Y ) η (Z)− 2η (X) η (Z) g (Y, U) ,(3.6)

where R∗ (X,Y, Z, U) = g(R∗ (X,Y )Z,U) and X, Y, Z, U ∈ χ (M) .

Contracting (3.6) over X and U , we get

(3.7) S∗(Y, Z) = S(Y, Z) + (3n− 5)g(Y,Z) + 2(n− 2)η (Y ) η (Z) ,

where S∗ is the Ricci curvature tensor with respect to Zamkovoy connection.

Proposition 3.1. The Riemannian curvature tensor with respect to Zamkovoy connection

on an anti-invariant submanifold of LP-Kenmotsu manifold satisfies the 1st Bianchi identity.

Proposition 3.2. Ricci tensor with respect to Zamkovoy connection of an anti-invariant

submanifold of LP-Kenmotsu manifold is symmetric and it is given by (3.7).

Lemma 3.3. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu man-

ifold admitting Zamkovoy connetion, then

R∗ (X,Y ) ξ = 2 [η (Y )X − η (X)Y + η (Y )ϕX − η (X)ϕY ] ,(3.8)

R∗ (ξ, Y )Z = 2 [g (Y, Z) ξ − η (Z)Y − η (Z)ϕY ] ,(3.9)

R∗ (ξ, Y ) ξ = 2 [η (Y ) ξ + Y + ϕY ] ,(3.10)

S∗(ξ, Z) = S∗(Z, ξ) = 2 (n− 1) η (Z) ,(3.11)

Q∗Y = QY + (3n− 5)Y + 2(n− 2)η (Y ) ξ,(3.12)

Q∗ξ = 2 (n− 1) ξ,(3.13)

r∗ = r + (n− 1)(3n− 4),(3.14)

for all X, Y, Z ∈ χ (M) , where R∗, Q∗ and r∗ denote Riemannian curvature tensor, Ricci

operator and scalar curvature of M with respect to ∇∗, respectively.

Theorem 3.4. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu man-

ifold is Ricci flat with respect to Zamkovoy connection, then M is η-Einstein manifold.

Proof. Let M be an n-dimensional anti-invariant submanifold of an LP-Kenmotsu manifold,

which is Ricci flat with respect to Zamkovoy connection i.e., S∗(Y, Z) = 0, for all Y, Z ∈
χ (M) . Then from (3.7), we have

S(Y, Z) = −(3n− 5)g(Y,Z)− 2(n− 2)η (Y ) η (Z) ,

which implies that M is an η-Einstein manifold. □

Concircular curvature tensor of M with respect to Zamkovoy connection is given by

W∗ (X,Y )Z = R∗ (X,Y )Z

− r∗

n (n− 1)
[g (Y, Z)X − g (X,Z)Y ] ,(3.15)
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for allX, Y, Z ∈ χ (M), whereR∗,W∗ and r∗ are Riemannian curvature tensor, concircular

curvature tensor and scalar curvature tensor of M with respect to ∇∗, respectively.

Lemma 3.5. Let M be an n-dimensional anti-invariant submanifold of LP-Kenmotsu man-

ifold admitting Zamkovoy connetion, then

η (W∗ (X,Y )Z) =[
r + (n− 1)(3n− 4)

n (n− 1)

]
[g (X,Z) η (Y )− g (Y, Z) η (X)] ,(3.16)

(3.17) η (W∗ (X,Y ) ξ) = 0, η (W∗ (X, ξ) ξ) = 0, η (W∗ (ξ, Y ) ξ) = 0,

W∗ (X,Y ) ξ =

[
r + (n− 1)(n− 4)

n(n− 1)

]
[η (X)Y − η (Y )X]

+2 [η (Y )ϕX − η (X)ϕY ] ,(3.18)

(3.19) W∗ (ξ,X)Y = −
[
r + (n− 1)(n− 4)

n(n− 1)

]
[g (X,Y ) ξ − η (Y )X] ,

for all X, Y, Z ∈ χ (M) .

4. Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold

with respect to Zamkovoy connection

Theorem 4.1. An Einstein soliton (g, V, λ) on an anti-invariant submanifold of LP-Kenmotsu

manifold is invariant under Zamkovoy connection if relation holds

0 = 2g(X,Y )η (V )− g(X,V )η (Y )− g(Y, V )η (X)

−(n− 2)(3n− 7)g(X,Y ) + 4(n− 2)η (X) η (Y ) .(4.1)

Proof. The equation (1.4) with respect to Zamkovoy connection on an anti-invariant sub-

manifold M of LP-Kenmotsu manifold may be written as

(4.2) (L∗
V
g)(X,Y ) + 2S∗(X,Y ) + (2λ− r∗)g(X,Y ) = 0,

where L∗
V
g denote Lie derivative of g with respect to ∇∗ along the vector field V and S∗

is the Ricci curvature tensor of M with respect to ∇∗.

After expanding (4.2) and using (3.1) and (3.7) we have

(L∗
V
g)(X,Y ) + 2S∗(X,Y ) + (2λ− r∗)g(X,Y )

= g(∇∗
XV, Y ) + g(X,∇∗

Y V ) + 2S∗(X,Y ) + (2λ− r∗)g(X,Y )

= (LV g)(X,Y ) + 2S(X,Y ) + (2λ− r)g(X,Y )

+2g(X,Y )η (V )− g(X,V )η (Y )− g(Y, V )η (X)

−(n− 2)(3n− 7)g(X,Y ) + 4(n− 2)η (X) η (Y ) ,(4.3)

which shows that the Einstein soliton (g, V, λ) is invariant on M under Zamkovoy connec-

tion, if (4.1) holds. □

Theorem 4.2. Let M be an anti-invariant submanifold of LP-Kenmotsu manifold admitting

an Einstein soliton (g, V, λ) with respect to ∇∗. If the non-zero potential vector field V be

collinear with the structure vector field of M , then the soliton is
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1. expanding if r > −(3n− 8)(n− 1),

2. steady if r = −(3n− 8)(n− 1),

3. shrinking if r < −(3n− 8)(n− 1).

Proof. Setting V = ξ in (4.2) and using (3.2) we get

0 = (L∗
ξ
g)(X,Y ) + 2S∗(X,Y ) + (2λ− r∗)g(X,Y )

= g(∇∗
Xξ, Y ) + g(X,∇∗

Y ξ) + 2S∗(X,Y ) + (2λ− r∗)g(X,Y )

= [−4− (n− 2)(3n− 7) + 2λ− r] g(X,Y )

+2S(X,Y ) + 4(n− 3)η (X) η (Y ) .(4.4)

Putting X = Y = ξ and using (2.1), (2.14) in (4.4) we get

λ =
1

2
[r + (3n− 8)(n− 1)] ,

which proves the theorem. □

5. η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold

with respect to Zamkovoy connection

Theorem 5.1. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu man-

ifold admits η-Einstein soliton (g, ξ, λ, β) with respect to Zamkovoy connection, then the

soliton scalars are given by the following equations

λ =
r

2

[
n− 2

n− 1

]
+

1

2
(3n2 − 10n+ 12),

β = − 1

2(n− 1)
[r − (n− 1)(n+ 4)] .

Proof. The equation (1.5) with respect to Zamkovoy connection on an anti-invariant sub-

manifold M of LP-Kenmotsu manifold may be written as

(5.1) (L∗
V
g)(X,Y ) + 2S∗(X,Y ) + (2λ− r∗)g(X,Y ) + 2βη(X)η(Y ) = 0.

Applying V = ξ in (5.1) we get

0 = g(∇∗
Xξ, Y ) + g(X,∇∗

Y ξ) + 2S∗(X,Y )

+(2λ− r∗)g(X,Y ) + 2βη (X) η (Y ) .(5.2)

Using (3.2) in (5.2) we obtain

(5.3) 0 = 2S∗(X,Y ) + (2λ− r∗ − 4)g(X,Y ) + 2(β − 2)η (X) η (Y ) .

Using (3.7) in (5.3) we get

0 = 2S(X,Y ) + [2λ− (r + 4)− (n− 2)(3n− 7)] g(X,Y )

+2(β + 2n− 6)η (X) η (Y ) .(5.4)

Setting X = Y = ξ in (5.4) we have

(5.5) λ = β +
1

2
[r + (3n− 8)(n− 1)] .
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Taking an orthonormal frame field and contracting (5.4) over X and Y we obtain

(5.6) β = λn− r

2
(n− 2)− 1

2
(n− 1)(3n2 − 10n+ 12).

Comparing the value of β from (5.5) and (5.6) we get

(5.7) λ =
r

2

[
n− 2

n− 1

]
+

1

2
(3n2 − 10n+ 12).

Putting the value of λ from (5.7) in (5.5) we get

β = − 1

2(n− 1)
[r − (n− 1)(n+ 4)] .

□

Corollary 5.2. If an n-dimensional anti-invariant submanifold M of an LP-Kenmotsu man-

ifold contains η-Einstein soliton (g, ξ, λ, β) with respect to ∇∗ then M is η-Einstein manifold

Proof. From equation (5.4) we have

S(X,Y ) = −
[
2λ− (r + 4)− (n− 2)(3n− 7)

2

]
g(X,Y )

−(β + 2n− 6)η (X) η (Y ) ,

which shows that M is η-Einstein manifold. □

Theorem 5.3. Let M be an anti-invariant submanifold of an LP-Kenmotsu manifold ad-

mitting η-Einstein soliton (g, ξ, λ, β) with respect to ∇∗. If the structure vector field ξ of M

be parallel i.e., ∇Xξ = 0, then M is an η-Einstein manifold.

Proof. If ξ is parallel, then from (3.1) we have

(5.8) ∇∗
Xξ = −X − η (X) ξ.

After expanding the Lie derivative and setting V = ξ in (5.1) we get

0 = g(∇∗
Xξ, Y ) + g(X,∇∗

Y ξ) + 2S∗(X,Y )

+(2λ− r∗)g(X,Y ) + 2βη (X) η (Y ) .(5.9)

Using (3.7), (3.14) and (5.8) in (5.9) we get

S(X,Y ) = −1

2
[2λ− r + (3n− 7)(n− 2)] g(X,Y )− (β + 2n− 5)η (X) η (Y ) ,

which shows that M is η-Einstein. □

Theorem 5.4. If M be an anti-invariant submanifold of an LP-Kenmotsu manifold admit-

ting η-Einstein soliton (g, V, λ, β) with respect to ∇∗ such that V ∈ D, then scalar curvature

of M is given by

r = 2(λ− β)− (n− 1)(3n− 8),

where D is a distribution on M defined by D = ker η.

Proof. Here V ∈ D and hence

(5.10) η (V ) = 0.

Taking covariant derivative of (5.10) with respect to ξ and using (∇ξη)V = 0, we get

(5.11) η (∇ξV ) = 0.
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In view of (3.1) and (5.11) we have

(5.12) η
(
∇∗

ξV
)
= 0.

After expanding the Lie derivative of (5.1) we get

0 = g(∇∗
XV, Y ) + g(X,∇∗

Y V ) + 2S∗(X,Y )

+(2λ− r∗)g(X,Y ) + 2βη (X) η (Y ) .(5.13)

Setting X = Y = ξ in (5.13) and using (3.11), (5.12), we obtain

0 = 2λ− r − (n− 1)(3n− 8)− 2β.

This gives the theorem. □

6. η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold

satisfying (ξ.)R∗ .S∗ = 0

Theorem 6.1. Let M (ϕ, ξ, η, g) be an n-dimensional anti-invariant submanifold of an LP-

Kenmotsu manifold admitting η-Einstein soliton (g, ξ, λ, β) with respect to ∇∗. If M satisfies

(ξ.)R∗ .S∗ = 0, then the soliton constants are given by

β = 2, λ =
1

2
[r + (3n− 8)(n− 1) + 4] .

Proof. If M contains an η-Einstein soliton (g, ξ, λ, β) with respect to ∇∗, then (5.2) gives

(6.1) S∗(X,Y ) =

[
2− λ+

r∗

2

]
g(X,Y )− (β − 2)η (X) η (Y ) .

The condition that must be satisfied by S∗ is

(6.2) S∗(R∗(ξ,X)Y,Z) + S∗(Y,R∗(ξ,X)Z) = 0,

for all X, Y, Z ∈ χ (M) .

Using (3.9) and replacing the expression of S∗ from (6.1) in (6.2) we get

0 = (β − 2) [g(X,Y )η (Z) + η (Y ) η (Y ) η (Z)]

+(β − 2) [g(X,Z)η (Y ) + η (Y ) η (Y ) η (Z)] .(6.3)

For Z = ξ, we have

(β − 2)g(ϕX, ϕY ) = 0,

for all X, Y ∈ χ (M) , which gives

β = 2.

From (5.5) and (6.3) it follows that

β = 2, λ =
1

2
[r + (3n− 8)(n− 1) + 4] .

□

Corollary 6.2. The η-Einstein soliton (g, ξ, λ, β) on an n-dimensional anti-invariant sub-

manifold M of an LP-Kenmotsu manifold satisfying (ξ.)R∗ .S∗ = 0 is shrinking, steady or
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expanding according as

r < − [(3n− 8)(n− 1) + 4] ,

r = − [(3n− 8)(n− 1) + 4] ,

r > − [(3n− 8)(n− 1) + 4] .

Corollary 6.3. There is no Einstein soliton on M satisfying (ξ.)R∗ .S∗ = 0 with potential

vector field ξ.

7. η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold

satisfying (ξ.)W∗ .S∗ = 0

Theorem 7.1. Let M (ϕ, ξ, η, g) be an n-dimensional anti-invariant submanifold of an LP-

Kenmotsu manifold admitting η-Einstein soliton (g, ξ, λ, β) with respect to ∇∗. If M satisfies

(ξ.)W∗ .S∗ = 0, then the scalar curvature of M is given by

r = −2(n− 1)(n− 2),

provided β ̸= 2.

Proof. The condition that must be satisfied by S∗ is

(7.1) 0 = S∗(W∗(ξ,X)Y,Z) + S∗(Y,W∗(ξ,X)Z),

for all X, Y, Z ∈ χ (M) .

Replacing the expression of S∗ from (6.1) in (7.1) we obtain

0 = (β − 2)

[
1− r∗

n(n− 1)

]
[g(X,Y )η (Z) + η (Y ) η (Y ) η (Z)]

+(β − 2)

[
1− r∗

n(n− 1)

]
[g(X,Z)η (Y ) + η (Y ) η (Y ) η (Z)] .(7.2)

Setting Z = ξ in (7.2) we get

(7.3) 0 = (β − 2)

[
1− r∗

n(n− 1)

]
g(ϕX, ϕY ).

Using (3.14) in (7.3) we get

r = −2(n− 1)(n− 2),

if

β ̸= 2,

which gives the theorem. □

8. η-Einstein soliton on anti-invariant submanifold of LP-Kenmotsu manifold

satisfying (ξ.)S∗ .W∗ = 0

Theorem 8.1. Let M (ϕ, ξ, η, g) be an n-dimensional anti-invariant submanifold of an LP-

Kenmotsu manifold admitting η-Einstein soliton (g, ξ, λ, β) with respect to ∇∗. If M satisfies

(ξ.)S∗ .W∗ = 0, then the soliton constants are given by

λ =
r + (n− 1)(3n− 4) + 4

2
+

2(n− 1) [r + (n− 1)(3n− 4)]

r + (n− 1)(n− 4)
,

β = 2n+
2(n− 1) [r + (n− 1)(3n− 4)]

r + (n− 1)(n− 4)
.
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Proof. The condition that must be satisfied by S∗ is

0 = S∗(X,W∗(Y,Z)V )ξ − S∗(ξ,W∗(Y,Z)V )X

+S(X,Y )W∗(ξ, Z)V − S∗(ξ, Y )W∗(X,Z)V

+S∗(X,Z)W∗(Y, ξ)V − S∗(ξ, Z)W∗(Y,X)V

+S∗(X,V )W∗(Y,Z)ξ − S∗(ξ, V )W∗(Y, Z)X,(8.1)

for all X, Y, Z, V ∈ χ (M) . Taking inner product with ξ the relation (8.1) becomes

0 = −S∗(X,W∗(Y, Z)V )− S∗(ξ,W∗(Y, Z)V )η(X)

+S∗(X,Y )η(W∗(ξ, Z)V )− S∗(ξ, Y )η(W∗(X,Z)V )

+S∗(X,Z)η(W∗(Y, ξ)V )− S∗(ξ, Z)η(W∗(Y,X)V )

+S∗(X,V )η(W∗(Y, Z)ξ)− S∗(ξ, V )η(W∗(Y,Z)X).(8.2)

Setting V = ξ and using (3.16), (3.17), (3.18), (3.19) we get

0 = S∗(X,W∗(Y, Z)ξ) + S∗(ξ,W∗(Y,Z)ξ)η(X)

+S∗(ξ, ξ)η(W∗(Y, Z)X).(8.3)

Replacing the expression of S∗ from (6.1) in (8.3) we obtain

0 =

[
2− λ+

r∗

2

] [
2− r∗

n(n− 1)

]
[g (X,Y ) η (Z)− g (X,Z) η (Y )]

+
2r∗

n
[g (X,Y ) η (Z)− g (X,Z) η (Y )] .(8.4)

Setting Z = ξ in (8.4) we get

(8.5) 0 =

[
2− λ+

r∗

2

] [
2− r∗

n(n− 1)

]
g (ϕX, ϕY ) +

2r∗

n
g (ϕX, ϕY ) ,

Using (3.14) in (8.5) we obtain

λ =
r + (n− 1)(3n− 4) + 4

2
+

2(n− 1) [r + (n− 1)(3n− 4)]

r + (n− 1)(n− 4)
.

Putting the value of λ in (5.5) we get

β = 2n+
2(n− 1) [r + (n− 1)(3n− 4)]

r + (n− 1)(n− 4)
.

This gives the theorem. □

9. Example of anti-invariant submanifold of 5-dimensional LP-Kenmotsu

manifold admitting η-Einstein soliton with respect to Zamkovoy

connection

We consider a 5-dimensional manifold

M =
{
(x, y, z, u, v) ∈ R5

}
,

where (x, y, z, u, v) are the standard co-ordinates in R5.
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We choose the linearly independent vector fields

E1 = x
∂

∂x
,E2 = x

∂

∂y
,E3 = x

∂

∂z
,E4 = x

∂

∂u
,E5 = x

∂

∂v
.

Let g be the Riemannian metric defined by g (Ei, Ej) = 0, if i ̸= j for i, j = 1, 2, 3, 4, 5,

and g (E1, E1) = −1, g (E2, E2) = 1, g (E3, E3) = 1, g (E4, E4) = 1, g (E5, E5) = 1.

Let η be the 1-form defined by η (X) = g (X,E1) , for any X ∈ χ
(
M5

)
. Let ϕ be the (1, 1)

tensor field defined by

(9.1) ϕE1 = 0, ϕE2 = −E3, ϕE3 = −E2, ϕE4 = −E5, ϕE5 = −E4.

Let X, Y, Z ∈ χ
(
M5

)
be given by

X = x1E1 + x2E2 + x3E3 + x4E4 + x5E5,

Y = y1E1 + y2E2 + y3E3 + y4E4 + y5E5,

Z = z1E1 + z2E2 + z3E3 + z4E4 + z5E5.

Then, we have

g (X,Y ) = x1y1 + x2y2 + x3y3 + x4y4 + x5y5,

η (X) = −x1,

g (ϕX, ϕY ) = x2y2 + x3y3 + x4y4 + x5y5.

Using the linearity of g and ϕ, η (E1) = −1, ϕ2X = X + η (X)E1 and g (ϕX, ϕY ) =

g (X,Y ) + η (X) η (Y ) for all X,Y ∈ χ (M).

We have

[E1, E2] = E2, [E1, E3] = E3, [E1, E4] = E4, [E1, E5] = E5,

[E2, E1] = −E2, [E3, E1] = −E3, [E4, E1] = −E4, [E5, E1] = −E5,

[Ei, Ej ] = 0 for all others i and j.

Let the Levi-Civita connection with respect to g be ∇, then using Koszul formula we get

the following

∇E1
E1 = 0,∇E1

E2 = 0,∇E1
E3 = 0,∇E1

E4 = 0,∇E1
E5 = 0,

∇E2
E1 = −E2,∇E2

E2 = −E1,∇E2
E3 = 0, ∇E2

E4 = 0,∇E2
E5 = 0,

∇E3
E1 = −E3, ∇E3

E2 = 0 ,∇E3
E3 = −E1 ,∇E3

E4 = 0 ,∇E3
E5 = 0,

∇E4
E1 = −E4,∇E4

E2 = 0,∇E4
E3 = 0,∇E4

E4 = −E1,∇E4
E5 = 0,

∇E5
E1 = −E5,∇E5

E2 = 0,∇E5
E3 = 0,∇E5

E4 = 0, ∇E5
E5 = −E1.

From the above results we see that the structure (ϕ, ξ, η, g) satisfies

(∇Xϕ)Y = −g(ϕX, Y )ξ − η(Y )ϕX,

for all X, Y ∈ χ
(
M5

)
, where η (ξ) = η (E1) = −1. Hence M5 (ϕ, ξ, η, g) is a LP-Kenmotsu

manifold.

Let M∗ (ϕ, ξ, η, g) be an anti-invariant submanifold of M5 (ϕ, ξ, η, g). Then the non-zero

components of Riemannian curvature of M∗ with respect to Levi-Civita connection ∇ are

given by
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R (E1, E2)E1 = E2, R (E1, E2)E2 = −E1, R (E1, E3)E1 = E3,

R (E1, E3)E3 = −E1, R (E1, E4)E1 = E4, R (E1, E4)E4 = −E1,

R (E1, E5)E1 = E5, R (E1, E5)E5 = −E1, R (E2, E1)E2 = E1,

R (E2, E1)E1 = −E2, R (E2, E3)E2 = E3, R (E2, E3)E3 = −E2,

R (E2, E4)E2 = E4, R (E2, E4)E4 = −E2, R (E2, E5)E2 = E5,

R (E2, E5)E5 = −E2, R (E3, E1)E3 = E1, R (E3, E1)E1 = −E3,

R (E3, E2)E3 = E2, R (E3, E2)E2 = −E3, R (E3, E4)E3 = E4,

R (E3, E4)E4 = −E3, R (E3, E5)E3 = E5, R (E3, E5)E5 = −E3,

R (E4, E1)E4 = E1, R (E4, E1)E1 = −E4, R (E4, E2)E4 = E2,

R (E4, E2)E2 = −E4, R (E4, E3)E4 = E3, R (E4, E3)E3 = −E4,

R (E4, E5)E4 = E5, R (E4, E5)E5 = −E4, R (E5, E1)E5 = E1,

R (E5, E1)E1 = −E5, R (E5, E2)E5 = E2, R (E5, E2)E2 = −E5,

R (E5, E3)E5 = E3, R (E5, E3)E3 = −E5, R (E5, E4)E5 = E4.

By the help of (3.1), we obtain

∇∗
E1
E1 = 0, ∇∗

E1
E2 = E3,∇∗

E1
E3 = E2,∇∗

E1
E4 = E5,∇∗

E1
E5 = E4,

∇∗
E2
E1 = −2E2,∇∗

E2
E2 = −2E1,∇∗

E2
E3 = 0, ∇∗

E2
E4 = 0,∇∗

E2
E5 = 0,

∇∗
E3
E1 = −2E3,∇∗

E3
E2 = 0,∇∗

E3
E3 = −2E1,∇∗

E3
E4 = 0,∇∗

E3
E5 = 0,

∇∗
E4
E1 = −2E4, ∇∗

E4
E2 = 0,∇∗

E4
E3 = 0,∇∗

E4
E4 = −2E1,∇∗

E4
E5 = 0,

∇∗
E5
E1 = −2E5,∇∗

E5
E2 = 0,∇∗

E5
E3 = 0,∇∗

E5
E4 = 0, ∇∗

E5
E5 = −2E1.

Some of the non-zero components of Riemannian curvature tensor of M∗ with respect to

Zamkovoy connection are given by

R∗ (E1, E3)E1 = 2 (E2 − E3) , R
∗ (E2, E3)E2 = −4E3,

R∗ (E4, E3)E4 = −4E3, R
∗ (E5, E3)E5 = −4E3,

R∗ (E3, E1)E1 = 2 (E2 − E3) , R
∗ (E3, E2)E2 = 4E3,

R∗ (E3, E4)E4 = 4E3, R
∗ (E3, E5)E5 = 4E4.

Using the above curvature tensors the Ricci curvature tensors of M∗ with respect to ∇
and ∇∗ are

S (E1, E1) = −4, S (E2, E2) = S (E3, E3) = −2,

S (E4, E4) = S (E5, E5) = −2,

S∗ (E1, E1) = −8, S∗ (E2, E2) = S∗ (E4, E4) = 14,

S∗ (E5, E5) = S∗ (E3, E3) = 14.

Therefore, the scalar curvature tensor of M∗ with respect to Levi-Civita connection is r =

−12 and scalar curvature tensor with respect to Zamkovoy connection is r∗ = 32.

Setting V = X = Y = E1 in (5.1) we have
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0 =
(
L∗

E1
g
)
(E1, E1) + 2S∗ (E1, E1) + (2λ− r∗)g (E1, E1) + 2βη (E1) η (E1) ,

= g
(
∇∗

E1
E1, E1

)
+ g

(
E1,∇∗

E1
E1

)
+2S∗ (E1, E1) + (2λ− r∗)g (E1, E1) + 2βη (E1) η (E1) ,

= 0 + 0 + 2(−8) + (2λ− 32)(−1) + 2β,

= β − λ+ 8,

which gives

λ = β + 8,

= λ+
1

2
[−12 + 28] ,

= λ+
1

2
[−12 + (3× 5− 8)(5− 1)] ,

= λ+
1

2
[r + (3n− 8)(n− 1)] ,

which shows that λ and β satisfies relation (5.5).
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