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A graph which does not contain Cy, Py or 2Ks as its
induced subgraphs, is called a threshold graph. In this
paper, we consider Seidel Laplacian matrix of a con-
nected threshold graph and determine Seidel Laplacian
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spectrum. Also the characterization of threshold graphs
having atmost four distinct Seidel Laplacian eigenval-
ues have been done.

1. INTRODUCTION

For a connected graph G with vertex set V' = {v1,v2, -+ ,v,}, the adjacency matrix of

G is denoted by Ag and defined as Ag = (aj;) where a;; = 1 if v; and v; are adjacent and

a;; = 0 otherwise. The energy of the graph G is denoted byE, and defined as sum of the

absolute values of the eigenvalues of Ag. The study of spectrum of adjacency matrix of a

graph paved a way to the area of spectral graph theory. Recently, graph energies related

to different graph matrices such as laplacian matrix, seidel matrix etc have been introduced
and studied by Furtula B, Gutman I, Merris R, et al. [7, 8, 18, 19, 21] . We use Dg to denote
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the diagonal degree matrix. That is,

deg(v1) 0 e 0

0 deg(ve) --- 0

Dg = : g.( ? . :
0 0 - deg(vy)

The Laplacian matrix of G, denoted by Lg is defined as £Lg = Dg — Ag. Let py,---, pn be
eigenvalues of Lg. The Laplacian energy of § was defined as Eg = Y " |1 — 277"], where m
denotes the number of edges in §. Van Lint and Seidel [9] defined the Seidel matrix S8g of G
as 8g = (s;5) where
—1 if v; is adjacent to v;
8ij = 1 if v; is not adjacent to v;

0 otherwise

Clearly 8¢ = J, — I, — 2Ag, where I, is the identity matrix of order n and J, is n x n
matrix with all entries are 1. Let 61, -- , 0, be the eigenvalues of 8g . The Seidel energy of
the graph § was defined as Es, = 1", |6;] [10]. The Seidel Laplacian matrix of graph was
introduced and properties of their spectrum and Seidel Laplacian energy were studied in de-
tail by Gutman I, Jummannaver R.B and Ramane H.S [11]. Let Dg, denote Diag(k;;) where
ki; = n—1—2deg(v;). The Seidel Laplacian matrix is given by 8£g = Dg, —8g. Let 01, -+ , 0y
be the eigenvalues of 8Lg. The multiset of Seidel Laplacian eigenvalues of the graph G is
the Seidel Laplacian spectrum, denoted by Specsc, = {07, - ,0,"} where m; is the mul-
tiplicity of o;. The Seidel Laplacian energy was given by Egg, = Zi:l mg|o;— W [11].

The concept of equitable partition acts as a strong tool in the study of spectral graph
theory. An idea about equitable partitions of symmetric matrices are given as follows. Let
M = (my;) be a symmetric real matrix of order n. Let X = {1,2,---,n}. Let II =
{X1,X5--+, Xk} be a partition of X. Then the matrix M can be written as

My -+ My
M=1": :
M1 - My

)

where M; ; is the submatrix of M defined by M;; = (m,s) where r € X, s € Xg;r,5 =
1,2,---, k. The characteristic matrix P = (p;;) of II is the n x k matrix such that

o 1 ifie Xj
big = 0 otherwise

and its j** column is the characteristic vector of X j for 1 < j <k. If g;; is the average row
sum of M; ; then Qs = (gi5) is the quotient matrix of M. If the each block has constant row
sum, then the partition II is called equitable partition [4]. The following result is well known
on an equitable parition of a matrix. “Let M be a real symmetric matrix and let II be an
equitable partition of M with quotient matrix Qa;. Then the characteristic polynomial of
the quotient matrix Qs divides the characteristic polynomial of M.[17]”

This paper concentrates on the Seidel Laplacian spectrum of threshold graphs. Threshold
graphs are {Cy, Py, 2K5}-free graphs. In literature, threshold graphs are also defined based
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on its binary string representation. The repetitive process of constructing threshold graph on
n vertices as follows, K is threshold graph with one vertex. Assuming H is a threshold graph
on (n — 1) vertices, a threshold graph on n vertices can be formed by adding a new vertex v
such that either v is adjacent to all vertices in H (dominating vertex) or v is nonadjacent to
all vertices in H (isolated vertex).

If T is a threshold graph on n vertices such that v; is the added vertex in the i** step of
operations, then T can be obtained by the binary string (¢1ts - - - t,) such that ¢; = 0 and

0,if v; is an isolated vertex
1,if v; is a dominating vertex

for 7 > 2.

Threshold graphs were introduced by Chvtal and Hammer [5] and Henderson and Zalc-
stein [6] in 1977 and these graphs having numerous applications in areas including computer
science, psychology and so on [5]. The spectral properties of the adjacency matrix of thresh-
old graphs have been studied by Sciriha, Farrugia in 2011 [23]. Bapat [12] derived formulas
for the determinant, the inverse, when it exists, and inertia of the adjacency matrix of a
threshold graph. D.P. Jacobs, Trevisan and Tura [13, 15] presented algorithms to locate
eigenvalues and to compute characteristic polynomial of a threshold graph. They showed
that all the eigenvalues of threshold graph other than 0 or -1, are simple [14]. Normalized
spectrum of a threshold graph have been studied by Anirban Banerjee and Ranjit Mehatari
in 2017 [16].

In this paper, the Seidel Laplacian spectrum of threshold graphs has been studied. Also
threshold graphs with at most four distinct Seidel Laplacian eigenvalues have been charac-

terized. In coming discussions, we use the term Ty- graphs instead of threshold graphs.

2. SEIDEL LAPLACIAN SPECTRUM OF Ty- GRAPHS

2.1. Seidel Laplacian matrix of Ty- graph. Let T be a connected Ty graph by the
binary string (0%1,1%1, ... 0%, 1%). We set a = Zle a;, and b = Z?Zl bj, a;,b; > 1, for
1 <4,j < k. By the binary sequence of T, we have V(7)) = U1 UV, UU; U Vy - U Uy U Vg,
where U contains aq vertices, V7 contains by vertices and so on. The Seidel matrix of T, Sy

is a square matrix of order a + b given by

_(Jal - Ial) _Ja1 x b1 Ja1 X ag _Jal X bo e Ja1 Xag _Jal X by
—Joixar oy —JIby) Iy xas —Jbixby - Jby xa —Jb, xby,
Jagxal Ja2><b1 (Jag _Iag) _Ja2><b2 Jagxak _‘]a,2><bk
8= | —Jboxa —Jbo xby —Jboxas Loy — Jpy) - Jbo xay —Jbo xby,
Jaka Jakxbl Jaang Jakxbg T (Jak - Iak) _Jakxbk

| —Jbxar —Jby xby —Jby.xas —Joxbr 0 —Ibexa, Ty, — Jb,) ]
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By the construction of T, for u € U;,1 < i < k we have deg(u) =b—b; —by —--- — bj_1.
Then, n — 1 —2deg(u) =a—b—1+2(by +ba+ -+ bi_1).
For v € V},1 < j < k we have deg(v) =b+ai+az+---+a; — 1. Then, n — 1 — 2deg(v) =
a—b+1-2(a1+az+---+a;). Then Dy, = Diag(@ST(U”,DST(Vl), e DST(Uk)’ Dsw<vk>) where
DS‘J’(Ui) and Dngﬂ are diagonal matrices of order a; and b; respectively, for 1 < 4,5 < k.
The Seidel Laplacian matrix 8L+ is a square matrix of order a + b given by

_SL‘I(Ul)al Jarsbi  —Jaixaz  Jaixbs 0 Jayxby |
Jorxar  8Lgvay,,  “bixaz  Jbaxbe 0 Jbixn
_Ja2><a1 _Ja2><b1 8LT(Uz)a2 Ja2><b2 T Jaszk
8Ly = | Jboxar Ty xby Joaxar  8Lawayy, 0 Jbaxiy
_Jakxal _Jak xb1 _Jak X a2 _Jakng T Jakxbk
| Jbixar Tby, xby Iy, xas Topxts o 8Ly, |

where 8Lq(y,) = (a —b+2(b1 + b2 + -+ bi—1))I — J and 8Lqg(y;) = (a —b—2(a1 +az +
--++aj))I + J are block matrices of order a; and b; respectively.

2.2. Spectrum of equitable quotient matrix of SL5. In this section, we determine
eigenvalues of equitable quotient matrix of 8L . Obviously, the partition I : V =U; UVj U
-+ U U, UV, is a equitable partition. Therefore the quotient matrix Qgs; of 8L+ is a square

matrix of order 2k given by

pi1 by —az by - —ap by
ap  m1 —az by - —ap b
—ar —b1 pp by - —ap by
Qsc=|a b a2z ma - —ap b
—ar —bi —az —by -+ prr b
ar  bi az by - ap Mk

where pj; = a—b+2(bi1+ba+---+bi—1) —a; and nj; = a—b—2(a1 +az+---+a;)+b;. Let
D = Diag(ay,by,--- ,ar,b) be the diagonal matrix. We get D'/2Qg. D~'/2 is a symmetric
matrix. Therefore Qg is similar to the symmetric matrix DY2Qg. D71/2 which implies it is
similar to a diagonal matrix. So Qg is diagonalizable. Using the elementary operations of de-
terminant, we get [A—Qsc| = AA—(m11—b1)) (A= (p22+a2)) - - - (A= (prr+ak)) (A= (Ner—x))-
So the spectrum of Qg is given by (0,a—b+2(b1+ba+---+bj—1),a—b—2(a1+az+---+a;))
where 2 < ¢ < k and 1 < j < k. Thus all the eigenvalues of Qg are simple.

Theorem 2.1. Let t = 0%1b1 ... 0% 1% be the binary string of the Ty- graph T. Then 0 is
a simple eigenvalue of Qsz if a #b—2(by +ba+---+bi—1) ora# b+2(a1 +az+---+aj)
where 2 <i<kand1<j<k-1.
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Proof. 0 is an eigenvalue of Qgsg. It is simple if @ # b — 2(by + by + -+ + bji—1) or a #
b+2(a1+az+---+a;) where 2 <i < kand 1< j<k—1. Otherwise algebraic multiplicity
of 0 is two. O

Theorem 2.2. Let t = 0% 1% ... 0% 1% be the binary string of the Ty- graph T. The Seidel

Laplacian spectrum of T consists the following

e 0 € Specse,y-

e a — b with multiplicity a; — 1.

e a—b+2(by +be+ -+ bi—1) with multiplicity a;;2 <i <k

e a—b—2(a1+ax+ -+ aj) with multiplicity bj;1 < j <k—1
e —(a+ b) with multiplicity by,.

Proof. By the construction of T, each U; is an independent set with order a; where 1 < ¢ < k.
Every vertex in U; is adjacent only to the dominating vertices after them. Then, we have
deg(u) =b—by —by—---—b;_1, for u € U;. 8Lg — (n— 2deg(u))I has a; identical rows and so
(A — (n —2deg(u)))%~ 1 is the factor of characteristic polynomial of 8Lq. For 1 < j < k, the
subset Vj is a clique of order b; with N(z)\V; = N(y)\V; for all z,y € V;. For v € V},1 <
j < k, we have deg(v) =b+ a1 +az+ -+ a; — 1. Similarly 8Lg — (n — 2deg(v) — 2)I has
b; identical rows and so (A — (n — 2deg(v) — 2))% 1 is the factor of characteristic polynomial
of §L4. Remaining eigenvalues of 8L+ are eigenvalues of equitable quotient matrix Qg.
For v € Vi, n —2deg(v) —2 = (a+b) —2(b+a1+az+---+a,—1) —2=—(a+b). By
Theorem 2.1, 0 € Specse,. Let mg be the algebraic multiplicity of the eigenvalue 0. For
2<i<kand1<j5j<k—-1

ai, ifa=1b

a;+1, fa=b—2(by+by+---+bi—1)

bj—i-l, ifa:b+2(a1+a2+~-'+aj)

1, otherwise

Finally Seidel Laplacian spectrum of 7 is given by (0™, (a —b)** =1 (a —b+2(by + by +-- -+
bi—1))%, (a—b—2(a1 +az+ - +a;))%, —(a+b)*) where2<i<kand 1 <j<k—1. O

Example 2.3. Let T be a Ty-graph with binary string ¢ = 02101.

FIGURE 1. T : (02101)
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1

-1 0 1 -1 1

We have 8L5 = | 1 1 -2 -1 1
-1 -1 -1 2 1

11 1 1 -4

The eigenvalues of 8Lg are —5,—3,0,1, 3.

Corollary 2.4. Let T be a Ty- graph with binary representation t = 04111 ... 0% 1% where
a; = bj =1 > 1. Then the distinct Seidel Laplacian eigenvalues are given by 0,2r,4r, -, 2(k—
1)r, =2r, —4r,--- | —=2kr with same multiplicity r.

Proof. Here a = b = kr, 0 is the Seidel Laplacian eigenvalue with multiplicity a; = r. For
2<i<k,a=b+2(by+bo+---+bi—1) =2(i—1)randfor 1 < j <k, a—b—2(a1+as+---+a;) =
—2jr are distinct Seidel Laplacian eigenvalues with same multiplicity 7. U

3. Ty- GRAPHS WITH A MAXIMUM OF FOUR DISTINCT SEIDEL LAPLACIAN EIGENVALUES

This section classify all such T~ graphs which have at most four distinct Seidel Laplacian

eigenvalues. We start with spectral properties of Ty~ graphs where k =1 and k = 2.
Casel: k=1

Let T be a Ty- graph with binary string t = 0%1°. Then seidel laplacian spectrum of T
consists of following
(1) a — b with multiplicity a — 1
(2) —(a+ b) with multiplicity b
(3) 0 with
(a) multiplicity 1 if a # b
(b) multiplicity a if a = b
Remark 3.1. If a = 1, then T is the complete graph K, while if b = 1, then T is the star graph

n—2
b

S,. In these two cases, the Seidel Laplacian eigenvalues are 0, (—n)"~! and 0, (n — 2) -n

respectively.
Remark 3.2. If a =b > 1 in case I, then the Seidel Laplacian eigenvalues are 0%, —(2a)®.

Case II: k = 2

Let T be a Ty- graph with binary string ¢t = 0211°10%21%2, Then distinct Seidel Laplacian
spectrum of T consists of following
(1) @ — b with multiplicity a; — 1
(2) a — b+ 2b; with multiplicity ao
(3) @ — b — 2a; with multiplicity by
(4) —(a + b) with multiplicity bs.
(5) 0 with

(a) multiplicity 1 if a # b or a # b — 2b; or a # b+ 2a;

4

)
)
)
5)
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(b) multiplicity a; if a = b
(c¢) multiplicity as + 1 if a = b — 2by
(d) multiplicity by + 1 if a = b+ 2a;

Pineapple Graph: A pineapple graph is obtained by joining pendant vertices to a vertex
of a complete graph. Clearly a pineapple graph is always a connected Ty- graph. The
binary representation of pineapple graph is 01°=10"~*~11. When b = 1, we have a star graph
of order n. When n = 2b + 2, Seidel Laplacian spectrum of a pineapple graph is given by
0%, (n—2)""*=1 —n whereas n # 2b+2, Seidel Laplacian eigenvalues are 0, (n —2)"~0~1 (
20 — 2)0~1 —n,

n—

Theorem 3.3. Let T be a Ty- graph with the binary string t = 091101 ...0% 1% Then T
has exactly two distinct Seidel Laplacian eigenvalues if and only if T is either complete graph
K, or complete split graph K, + K,,.

Proof. Assume that T has exactly two distinct Seidel Laplacian eigenvalues. Then k£ = 1
and ¢t = 0%1% is the binary string of T by Theorem 2.2. 0 and —(a + b) are the only Seidel

Laplacian eigenvalues. We consider two cases.

Case I Ifa>0and a—b=0or —(a+b).
Ifa—b=—(a+b) = 2a =0, which is not possible. Hence a—b =0 = a = b. Therefore
t = 091 is the string of Ty graph T. If t = 0%1¢, then T is a complete split graph K,, + K,

where n = a.

Case II: If a = 1 then a — b ¢ Specse.,.. Sot = 01 is the string of Ty- graph T. If t = 01°
is the complete graph K, where n =1+ b.
Conversely if t = 091¢ or 01°, then by Theorem 2.2 8£q has exactly two distinct eigenvalues
namely 0 and —(a + b).
O

Theorem 3.4. Let T be the Ty- graph with binary string t = 0%11°1...0% 1% Then T
has exactly three distinct Seidel Laplacian eigenvalues if and only if one of the following
conditions hold

(1) t= 041 : a1 > 1 and a; # by.

(2) t = 010100411001,

(3) t = 01P1gr21a2+br

Proof. If T has exactly three distinct Seidel Laplacian eigenvalues, then k¥ < 2. For a Tpy-
graph, the Seidel Laplacian matrix has atleast two Seidel Laplacian eigenvalues, they are 0
and —(a+b). Then the third Seidel Laplacian eigenvalue of T will be one among a—b, a—b+2b;

and a — b — 2a;. We consider three cases.
Case 1: a — b is the third Seidel Laplacian eigenvalue of 7.

Then a; > 1 and a # b.
But a — b+ 2b; # a — b — 2a; and its value must be 0 or —(a+0b). If a — b+ 2by = —(a+b)
then a = —by, which is not possible. If @ — b+ 2a; = —(a + b), then a = a1 = a9 = 0.
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Hence the binary string of the Ty~ graph is of the form ¢ = 0%11% with a; > 1 and a # b.
Case 2: a — b+ 2b; is the third Seidel Laplacian eigenvalue.

Then as # 0, a—b+2by #0,a—b+2b; # —(a+b) and a—b =0 or a; = 1. Now if
a — b =0 then
e a—b—2a1 =0 = —2a; = 0, which is not possible.
e a—b—2a; = —(a+b) = a = aj,in this case T has exactly two distinct Seidel
Laplacian eigenvalues, a contradiction.

Therefore a # b . If a1 > 1 and a # b, then this case reduces to Case 1. Hence a # b and
ar = 1.

Ifa—b—2a; = —(a+Db), then a = a;. So T has exactly two Seidel Laplacian eigenvalues
by Theorem 3.3. If a — b —2a; =0 = a — b = 2, then the binary string is of the form
t = 01010bF11b~br

Case 3: a — b — 2ay is the third Seidel Laplacian eigenvalue.

Then a —b—2a; #0,a—b—2a; # —(a+b)anda—b=0o0ra; =1. Nowifa—b=0
then
e a—b+2by =0 = 2b; = 0, which is not possible.
e a—b+2b =—(a+b) = by = —a,which is not possible.
Soa #band ag = 1. If a— b+ 2by = —(a + b) then a + by = 0, which is impossible. If
a — b+ 2b; = 0, then the binary string of T is of the form ¢ = 01b10®2192F01+1
Conversely if t = 0%11% with a; > 1 and a; # by, t = 010100+116-h
or t = 01010%2192+01+1 then T has exactly three distinct Seidel Laplacian eigenvalues. O

Theorem 3.5. Let T be the Ty- graph with binary string t = 0911%1 ... 0% 1% . Then T has
exactly four distinct Seidel Laplacian eigenvalues if and only if one of the following conditions
hold

(1) t =0%1%10%1%; ay > 1 and a = b.

(2) t =091%10%1%; a1 > 1 and a = b — 2b1.

(3) t =0%1%10%1%; ay > 1 and a = b+ 2a;

(4) t =041%10%21%2; qy =1, a # b — 2b; and a # b + 2a,

Proof. If T has exactly four distinct Seidel Laplacian eigenvalues, then K = 2. So the binary
string of the Ty-graph 7 is of the form ¢ = 0%1°10921%2. We have 0, —(a + b) € Specss,, .
Consider the following cases:

Case I: If a; > 1 and a # b.

Then a — b € Specsg,. The fourth eigenvalue is either a — b+ 2by or @ — b — 2a;. We

consider the following subcases;

Subcase I: a — b — 2a; is the fourth Seidel Laplacian eigenvalue.
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Then a—b—2a1 # 0, a—b—2a; # —(a+0b) and a—b—2a; # (a—b). If a—b+2by = (a—b)
or —(a+b) = by =0 or a+ by =0, which is not possible. Hence a — b+ 2b; = 0. Then
the binary string is of the form t = 0911%10%21%2 with a = b — 2b;.

Subcase II: a — b + 2b; is the fourth Seidel Laplacian eigenvalue.

Then a —b+2b; #0,a—b+2b; # —(a+b) and a — b+ 2by # (a—b). Now, a —b—2a; =
(a —b) = —2a; = 0, which is impossible. But a — b —2a; = —(a +b) = a = ay,
then by Theorem 3.4, T has exactly three distinct Seidel Laplacian eigenvalues. Therefore
a —b—2a; =0 . Then the binary string is ¢t = 0%11%10%21%2 with a = b — 2a;.

Case II: If a; > 1 and a = b.

Then 0 € Specs, with multiplicity a;. So the values of a — b — 2a; and a — b+ 2b; are
not equal to 0 and —(a +b). We have a — b — 2a1, a — b+ 2b; # —(a +b). Hence the binary
string is of the form ¢t = 0%11°10%21% with a = b,a # b — 2b; and a # b + 2a;

Case III: If a; =1 and a # b
Then a—b ¢ Specsy... Hence the binary string of the Tg- graph is of the form ¢ = 0™ 1b10221b2
with ap = 1,0 # b —2b; and a # b+ 2.

Case IV:Ifay=1landa=10»

Then the values of a — b — 2a1, a — b+ 2b; are not equal to 0 and —(a + b). Thus the
binary string of the T- graph is of the form ¢ = 0%11%10%21% with a; = 1,a # b — 2b; and
a#b+2.

Conversely if the binary string ¢ satisfies these four cases, then Theorem 2.2 T has exactly

four distinct Seidel Laplacian eigenvalues. O

4. CONCLUSION

In this study, we have studied the Seidel Laplacian spectrum of Ty-graphs. Addition-
ally, we have characterized Ty-graphs with the binary string ¢ = 0%11%1 ... 0% 1% for small
values of k. Further scope of study, we can find their applications in chemical graph theory.
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