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ABSTRACT

A graph which does not contain C4, P4 or 2K2 as its
induced subgraphs, is called a threshold graph. In this
paper, we consider Seidel Laplacian matrix of a con-
nected threshold graph and determine Seidel Laplacian
spectrum. Also the characterization of threshold graphs
having atmost four distinct Seidel Laplacian eigenval-
ues have been done.
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1. Introduction

For a connected graph G with vertex set V = {v1, v2, · · · , vn}, the adjacency matrix of

G is denoted by AG and defined as AG = (aij) where aij = 1 if vi and vj are adjacent and

aij = 0 otherwise. The energy of the graph G is denoted byEA and defined as sum of the

absolute values of the eigenvalues of AG. The study of spectrum of adjacency matrix of a

graph paved a way to the area of spectral graph theory. Recently, graph energies related

to different graph matrices such as laplacian matrix, seidel matrix etc have been introduced

and studied by Furtula B, Gutman I, Merris R, et al. [7, 8, 18, 19, 21] . We use DG to denote
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the diagonal degree matrix. That is,

DG =


deg(v1) 0 · · · 0

0 deg(v2) · · · 0
...

...
. . .

...

0 0 · · · deg(vn)

 .
The Laplacian matrix of G, denoted by LG is defined as LG = DG − AG. Let µ1, · · · , µn be

eigenvalues of LG. The Laplacian energy of G was defined as EL =
∑n

i=1 |µi −
2m
n |, where m

denotes the number of edges in G. Van Lint and Seidel [9] defined the Seidel matrix SG of G

as SG = (sij) where

sij =


−1 if vi is adjacent to vj

1 if vi is not adjacent to vj

0 otherwise
.

Clearly SG = Jn − In − 2AG, where In is the identity matrix of order n and Jn is n × n
matrix with all entries are 1. Let θ1, · · · , θn be the eigenvalues of SG . The Seidel energy of

the graph G was defined as ESG =
∑n

i=1 |θi| [10]. The Seidel Laplacian matrix of graph was

introduced and properties of their spectrum and Seidel Laplacian energy were studied in de-

tail by Gutman I, Jummannaver R.B and Ramane H.S [11]. Let DSG denote Diag(kii) where

kii = n−1−2deg(vi). The Seidel Laplacian matrix is given by SLG = DSG−SG. Let σ1, · · · , σn
be the eigenvalues of SLG. The multiset of Seidel Laplacian eigenvalues of the graph G is

the Seidel Laplacian spectrum, denoted by SpecSLG
= {σm1

1 , · · · , σml
l } where mi is the mul-

tiplicity of σi. The Seidel Laplacian energy was given by ESLG
=

∑l
i=1mi|σi− n(n−1)−4m

n |[11].

The concept of equitable partition acts as a strong tool in the study of spectral graph

theory. An idea about equitable partitions of symmetric matrices are given as follows. Let

M = (mij) be a symmetric real matrix of order n. Let X = {1, 2, · · · , n}. Let Π =

{X1, X2 · · · , Xk} be a partition of X. Then the matrix M can be written as

M =


M1,1 · · · M1,k

...
...

Mk,1 · · · Mk,k


where Mi,j is the submatrix of M defined by Mi,j = (mrs) where r ∈ Xr, s ∈ Xs; r, s =

1, 2, · · · , k. The characteristic matrix P = (pij) of Π is the n× k matrix such that

pij =

{
1 if i ∈ Xj

0 otherwise

and its jth column is the characteristic vector of Xj for 1 ≤ j ≤ k. If qi,j is the average row

sum of Mi,j then QM = (qij) is the quotient matrix of M . If the each block has constant row

sum, then the partition Π is called equitable partition [4]. The following result is well known

on an equitable parition of a matrix. “Let M be a real symmetric matrix and let Π be an

equitable partition of M with quotient matrix QM . Then the characteristic polynomial of

the quotient matrix QM divides the characteristic polynomial of M .[17]”

This paper concentrates on the Seidel Laplacian spectrum of threshold graphs. Threshold

graphs are {C4, P4, 2K2}-free graphs. In literature, threshold graphs are also defined based
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on its binary string representation. The repetitive process of constructing threshold graph on

n vertices as follows, K1 is threshold graph with one vertex. Assuming H is a threshold graph

on (n− 1) vertices, a threshold graph on n vertices can be formed by adding a new vertex v

such that either v is adjacent to all vertices in H (dominating vertex) or v is nonadjacent to

all vertices in H (isolated vertex).

If T is a threshold graph on n vertices such that vi is the added vertex in the ith step of

operations, then T can be obtained by the binary string (t1t2 · · · tn) such that t1 = 0 and

ti =

0, if vi is an isolated vertex

1, if vi is a dominating vertex

for i ≥ 2.

Threshold graphs were introduced by Chvtal and Hammer [5] and Henderson and Zalc-

stein [6] in 1977 and these graphs having numerous applications in areas including computer

science, psychology and so on [5]. The spectral properties of the adjacency matrix of thresh-

old graphs have been studied by Sciriha, Farrugia in 2011 [23]. Bapat [12] derived formulas

for the determinant, the inverse, when it exists, and inertia of the adjacency matrix of a

threshold graph. D.P. Jacobs, Trevisan and Tura [13, 15] presented algorithms to locate

eigenvalues and to compute characteristic polynomial of a threshold graph. They showed

that all the eigenvalues of threshold graph other than 0 or -1, are simple [14]. Normalized

spectrum of a threshold graph have been studied by Anirban Banerjee and Ranjit Mehatari

in 2017 [16].

In this paper, the Seidel Laplacian spectrum of threshold graphs has been studied. Also

threshold graphs with at most four distinct Seidel Laplacian eigenvalues have been charac-

terized. In coming discussions, we use the term TH - graphs instead of threshold graphs.

2. Seidel Laplacian Spectrum of TH- graphs

2.1. Seidel Laplacian matrix of TH- graph. Let T be a connected TH graph by the

binary string (0a1 , 1b1 , · · · , 0ak , 1bk). We set a =
∑k

i=1 ai, and b =
∑k

j=1 bj , ai, bj ≥ 1, for

1 ≤ i, j ≤ k. By the binary sequence of T, we have V (T) = U1 ∪ V1 ∪ U2 ∪ V2 · · · ∪ Uk ∪ Vk,

where U1 contains a1 vertices, V1 contains b1 vertices and so on. The Seidel matrix of T, ST

is a square matrix of order a+ b given by

ST =



(Ja1 − Ia1) −Ja1×b1 Ja1×a2 −Ja1×b2 · · · Ja1×ak −Ja1×bk

−Jb1×a1 (Ib1 − Jb1) Jb1×a2 −Jb1×b2 · · · Jb1×ak −Jb1×bk

Ja2×a1 Ja2×b1 (Ja2 − Ia2) −Ja2×b2 · · · Ja2×ak −Ja2×bk

−Jb2×a1 −Jb2×b1 −Jb2×a2 (Ib2 − Jb2) · · · Jb2×ak −Jb2×bk
...

...
...

. . .
...

...

Jak×a1 Jak×b1 Jak×a2 Jak×b2 · · · (Jak − Iak) −Jak×bk

−Jbk×a1 −Jbk×b1 −Jbk×a2 −Jbk×b1 · · · −Jbk×ak (Ibk − Jbk)


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By the construction of T, for u ∈ Ui, 1 ≤ i ≤ k we have deg(u) = b− b1 − b2 − · · · − bi−1.

Then, n− 1− 2deg(u) = a− b− 1 + 2(b1 + b2 + · · ·+ bi−1).

For v ∈ Vj , 1 ≤ j ≤ k we have deg(v) = b+ a1 + a2 + · · ·+ aj − 1. Then, n− 1− 2deg(v) =

a−b+1−2(a1+a2+· · ·+aj). Then DST = Diag(DST(U1)
,DST(V1)

, · · · ,DST(Uk)
,DST(Vk)

) where

DST(Ui)
and DST(Vj)

are diagonal matrices of order ai and bj respectively, for 1 ≤ i, j ≤ k.

The Seidel Laplacian matrix SLT is a square matrix of order a+ b given by

SLT =



SLT(U1)a1
Ja1×b1 −Ja1×a2 Ja1×b2 · · · Ja1×bk

Jb1×a1 SLT(V1)b1
−Jb1×a2 Jb1×b2 · · · Jb1×bk

−Ja2×a1 −Ja2×b1 SLT(U2)a2
Ja2×b2 · · · Ja2×bk

Jb2×a1 Jb2×b1 Jb2×a2 SLT(V2)b2
· · · Jb2×bk

...
...

...
...

. . .
...

−Jak×a1 −Jak×b1 −Jak×a2 −Jak×b2 · · · Jak×bk

Jbk×a1 Jbk×b1 Jbk×a2 Jbk×b2 · · · SLT(V1)bk


where SLT(Ui) = (a− b+ 2(b1 + b2 + · · ·+ bi−1))I − J and SLT(Vj) = (a− b− 2(a1 + a2 +

· · ·+ aj))I + J are block matrices of order ai and bj respectively.

2.2. Spectrum of equitable quotient matrix of SLT. In this section, we determine

eigenvalues of equitable quotient matrix of SLT . Obviously, the partition Π : V = U1 ∪ V1 ∪
· · · ∪ Uk ∪ Vk is a equitable partition. Therefore the quotient matrix QSL of SLT is a square

matrix of order 2k given by

QSL =



ρ11 b1 −a2 b2 · · · −ak bk

a1 η11 −a2 b2 · · · −ak bk

−a1 −b1 ρ22 b2 · · · −ak bk

a1 b1 a2 η22 · · · −ak bk
...

...
...

...
. . .

...
...

−a1 −b1 −a2 −b2 · · · ρkk bk

a1 b1 a2 b2 · · · ak ηkk


where ρii = a−b+2(b1 +b2 + · · ·+bi−1)−ai and ηjj = a−b−2(a1 +a2 + · · ·+aj)+bj . Let

D = Diag(a1, b1, · · · , ak, bk) be the diagonal matrix. We get D1/2QSLD
−1/2 is a symmetric

matrix. Therefore QSL is similar to the symmetric matrix D1/2QSLD
−1/2, which implies it is

similar to a diagonal matrix. SoQSL is diagonalizable. Using the elementary operations of de-

terminant, we get |λ−QSL| = λ(λ−(η11−b1))(λ−(ρ22+a2)) · · · (λ−(ρkk+ak))(λ−(ηkk−bk)).

So the spectrum of QSL is given by (0, a−b+2(b1 +b2 + · · ·+bi−1), a−b−2(a1 +a2 + · · ·+aj))
where 2 ≤ i ≤ k and 1 ≤ j ≤ k. Thus all the eigenvalues of QSL are simple.

Theorem 2.1. Let t = 0a11b1 · · · 0ak1bk be the binary string of the TH- graph T. Then 0 is

a simple eigenvalue of QSL if a 6= b− 2(b1 + b2 + · · ·+ bi−1) or a 6= b+ 2(a1 + a2 + · · ·+ aj)

where 2 ≤ i ≤ k and 1 ≤ j ≤ k − 1.
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Proof. 0 is an eigenvalue of QSL. It is simple if a 6= b − 2(b1 + b2 + · · · + bi−1) or a 6=
b+ 2(a1 + a2 + · · ·+ aj) where 2 ≤ i ≤ k and 1 ≤ j ≤ k− 1. Otherwise algebraic multiplicity

of 0 is two. �

Theorem 2.2. Let t = 0a11b1 · · · 0ak1bk be the binary string of the TH- graph T. The Seidel

Laplacian spectrum of T consists the following

• 0 ∈ SpecSLT
.

• a− b with multiplicity a1 − 1.

• a− b+ 2(b1 + b2 + · · ·+ bi−1) with multiplicity ai; 2 ≤ i ≤ k
• a− b− 2(a1 + a2 + · · ·+ aj) with multiplicity bj ; 1 ≤ j ≤ k − 1

• −(a+ b) with multiplicity bk.

Proof. By the construction of T, each Ui is an independent set with order ai where 1 ≤ i ≤ k.

Every vertex in Ui is adjacent only to the dominating vertices after them. Then, we have

deg(u) = b− b1− b2−· · ·− bi−1, for u ∈ Ui. SLT− (n−2deg(u))I has ai identical rows and so

(λ− (n− 2deg(u)))ai−1 is the factor of characteristic polynomial of SLT. For 1 ≤ j ≤ k, the

subset Vj is a clique of order bj with N(x)\Vj = N(y)\Vj for all x, y ∈ Vj . For v ∈ Vj , 1 ≤
j ≤ k, we have deg(v) = b+ a1 + a2 + · · ·+ aj − 1. Similarly SLT − (n− 2deg(v)− 2)I has

bj identical rows and so (λ− (n− 2deg(v)− 2))bj−1 is the factor of characteristic polynomial

of SLT. Remaining eigenvalues of SLT are eigenvalues of equitable quotient matrix QSL.

For v ∈ Vk, n − 2deg(v) − 2 = (a + b) − 2(b + a1 + a2 + · · · + ak − 1) − 2 = −(a + b). By

Theorem 2.1, 0 ∈ SpecSLT
. Let m0 be the algebraic multiplicity of the eigenvalue 0. For

2 ≤ i ≤ k and 1 ≤ j ≤ k − 1

m0 =


a1, if a = b

ai + 1, if a = b− 2(b1 + b2 + · · ·+ bi−1)

bj + 1, if a = b+ 2(a1 + a2 + · · ·+ aj)

1, otherwise

Finally Seidel Laplacian spectrum of T is given by (0m0 , (a− b)a1−1, (a− b+ 2(b1 + b2 + · · ·+
bi−1))ai , (a− b− 2(a1 + a2 + · · ·+ aj))

bj ,−(a+ b)bk) where 2 ≤ i ≤ k and 1 ≤ j ≤ k− 1. �

Example 2.3. Let T be a TH -graph with binary string t = 02101.

Figure 1. T : (02101)
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We have SLT =


0 −1 1 −1 1

−1 0 1 −1 1

1 1 −2 −1 1

−1 −1 −1 2 1

1 1 1 1 −4

.

The eigenvalues of SLT are −5,−3, 0, 1, 3.

Corollary 2.4. Let T be a TH- graph with binary representation t = 0a11b1 · · · 0ak1bk where

ai = bj = r ≥ 1. Then the distinct Seidel Laplacian eigenvalues are given by 0, 2r, 4r, · · · , 2(k−
1)r,−2r,−4r, · · · ,−2kr with same multiplicity r.

Proof. Here a = b = kr, 0 is the Seidel Laplacian eigenvalue with multiplicity a1 = r. For

2 ≤ i ≤ k, a−b+2(b1+b2+· · ·+bi−1) = 2(i−1)r and for 1 ≤ j ≤ k, a−b−2(a1+a2+· · ·+aj) =

−2jr are distinct Seidel Laplacian eigenvalues with same multiplicity r. �

3. TH- graphs with a maximum of four distinct Seidel Laplacian eigenvalues

This section classify all such TH - graphs which have at most four distinct Seidel Laplacian

eigenvalues. We start with spectral properties of TH - graphs where k = 1 and k = 2.

Case I: k = 1

Let T be a TH - graph with binary string t = 0a1b. Then seidel laplacian spectrum of T

consists of following

(1) a− b with multiplicity a− 1

(2) −(a+ b) with multiplicity b

(3) 0 with

(a) multiplicity 1 if a 6= b

(b) multiplicity a if a = b

Remark 3.1. If a = 1, then T is the complete graph Kn while if b = 1, then T is the star graph

Sn. In these two cases, the Seidel Laplacian eigenvalues are 0, (−n)n−1 and 0, (n−2)n−2,−n
respectively.

Remark 3.2. If a = b ≥ 1 in case I, then the Seidel Laplacian eigenvalues are 0a,−(2a)a.

Case II: k = 2

Let T be a TH - graph with binary string t = 0a11b10a21b2 . Then distinct Seidel Laplacian

spectrum of T consists of following

(1) a− b with multiplicity a1 − 1

(2) a− b+ 2b1 with multiplicity a2

(3) a− b− 2a1 with multiplicity b1

(4) −(a+ b) with multiplicity b2.

(5) 0 with

(a) multiplicity 1 if a 6= b or a 6= b− 2b1 or a 6= b+ 2a1
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(b) multiplicity a1 if a = b

(c) multiplicity a2 + 1 if a = b− 2b1

(d) multiplicity b1 + 1 if a = b+ 2a1

Pineapple Graph: A pineapple graph is obtained by joining pendant vertices to a vertex

of a complete graph. Clearly a pineapple graph is always a connected TH - graph. The

binary representation of pineapple graph is 01b−10n−b−11. When b = 1, we have a star graph

of order n. When n = 2b + 2, Seidel Laplacian spectrum of a pineapple graph is given by

0b, (n−2)n−b−1,−n whereas n 6= 2b+2, Seidel Laplacian eigenvalues are 0, (n−2)n−b−1, (n−
2b− 2)b−1,−n.

Theorem 3.3. Let T be a TH- graph with the binary string t = 0a11b1 · · · 0ak1bk . Then T

has exactly two distinct Seidel Laplacian eigenvalues if and only if T is either complete graph

Kn or complete split graph Kn +Kn.

Proof. Assume that T has exactly two distinct Seidel Laplacian eigenvalues. Then k = 1

and t = 0a1b is the binary string of T by Theorem 2.2. 0 and −(a + b) are the only Seidel

Laplacian eigenvalues. We consider two cases.

Case I: If a > 0 and a− b = 0 or −(a+ b).

If a−b = −(a+b) =⇒ 2a = 0, which is not possible. Hence a−b = 0 =⇒ a = b. Therefore

t = 0a1a is the string of TH - graph T. If t = 0a1a, then T is a complete split graph Kn +Kn

where n = a.

Case II: If a = 1 then a− b /∈ SpecSLT
. So t = 01b is the string of TH - graph T. If t = 01b

is the complete graph Kn where n = 1 + b.

Conversely if t = 0a1a or 01b, then by Theorem 2.2 SLT has exactly two distinct eigenvalues

namely 0 and −(a+ b).

�

Theorem 3.4. Let T be the TH- graph with binary string t = 0a11b1 · · · 0ak1bk . Then T

has exactly three distinct Seidel Laplacian eigenvalues if and only if one of the following

conditions hold

(1) t = 0a11b1; a1 > 1 and a1 6= b1.

(2) t = 01b10b+11b−b1.

(3) t = 01b10a21a2+b1+1

Proof. If T has exactly three distinct Seidel Laplacian eigenvalues, then k ≤ 2. For a TH -

graph, the Seidel Laplacian matrix has atleast two Seidel Laplacian eigenvalues, they are 0

and−(a+b). Then the third Seidel Laplacian eigenvalue of T will be one among a−b, a−b+2b1

and a− b− 2a1. We consider three cases.

Case 1: a− b is the third Seidel Laplacian eigenvalue of T.

Then a1 > 1 and a 6= b.

But a− b+ 2b1 6= a− b− 2a1 and its value must be 0 or −(a+ b). If a− b+ 2b1 = −(a+ b)

then a = −b1, which is not possible. If a − b + 2a1 = −(a + b), then a = a1 =⇒ a2 = 0.
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Hence the binary string of the TH - graph is of the form t = 0a11b1 with a1 > 1 and a 6= b.

Case 2: a− b+ 2b1 is the third Seidel Laplacian eigenvalue.

Then a2 6= 0, a − b + 2b1 6= 0, a − b + 2b1 6= −(a + b) and a − b = 0 or a1 = 1. Now if

a− b = 0 then

• a− b− 2a1 = 0 =⇒ −2a1 = 0, which is not possible.

• a − b − 2a1 = −(a + b) =⇒ a = a1,in this case T has exactly two distinct Seidel

Laplacian eigenvalues, a contradiction.

Therefore a 6= b . If a1 > 1 and a 6= b, then this case reduces to Case 1. Hence a 6= b and

a1 = 1.

If a − b − 2a1 = −(a + b) , then a = a1. So T has exactly two Seidel Laplacian eigenvalues

by Theorem 3.3. If a − b − 2a1 = 0 =⇒ a − b = 2, then the binary string is of the form

t = 01b10b+11b−b1 .

Case 3: a− b− 2a1 is the third Seidel Laplacian eigenvalue.

Then a− b− 2a1 6= 0, a− b− 2a1 6= −(a+ b) and a− b = 0 or a1 = 1. Now if a− b = 0

then

• a− b+ 2b1 = 0 =⇒ 2b1 = 0, which is not possible.

• a− b+ 2b1 = −(a+ b) =⇒ b1 = −a,which is not possible.

So a 6= b and a1 = 1. If a − b + 2b1 = −(a + b) then a + b1 = 0, which is impossible. If

a− b+ 2b1 = 0, then the binary string of T is of the form t = 01b10a21a2+b1+1

Conversely if t = 0a11b1 with a1 > 1 and a1 6= b1, t = 01b10b+11b−b1

or t = 01b10a21a2+b1+1, then T has exactly three distinct Seidel Laplacian eigenvalues. �

Theorem 3.5. Let T be the TH- graph with binary string t = 0a11b1 · · · 0ak1bk . Then T has

exactly four distinct Seidel Laplacian eigenvalues if and only if one of the following conditions

hold

(1) t = 0a11b10a21b2; a1 > 1 and a = b.

(2) t = 0a11b10a21b2; a1 > 1 and a = b− 2b1.

(3) t = 0a11b10a21b2; a1 > 1 and a = b+ 2a1

(4) t = 0a11b10a21b2; a1 = 1, a 6= b− 2b1 and a 6= b+ 2a1

Proof. If T has exactly four distinct Seidel Laplacian eigenvalues, then K = 2. So the binary

string of the TH -graph T is of the form t = 0a11b10a21b2 . We have 0,−(a + b) ∈ SpecSLT
.

Consider the following cases:

Case I: If a1 > 1 and a 6= b.

Then a − b ∈ SpecSLT
. The fourth eigenvalue is either a − b + 2b1 or a − b − 2a1. We

consider the following subcases;

Subcase I: a− b− 2a1 is the fourth Seidel Laplacian eigenvalue.
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Then a−b−2a1 6= 0, a−b−2a1 6= −(a+b) and a−b−2a1 6= (a−b). If a−b+2b1 = (a−b)
or −(a + b) =⇒ b1 = 0 or a + b1 = 0, which is not possible. Hence a − b + 2b1 = 0. Then

the binary string is of the form t = 0a11b10a21b2 with a = b− 2b1.

Subcase II: a− b+ 2b1 is the fourth Seidel Laplacian eigenvalue.

Then a− b+ 2b1 6= 0, a− b+ 2b1 6= −(a+ b) and a− b+ 2b1 6= (a− b). Now, a− b− 2a1 =

(a − b) =⇒ −2a1 = 0, which is impossible. But a − b − 2a1 = −(a + b) =⇒ a = a1,

then by Theorem 3.4, T has exactly three distinct Seidel Laplacian eigenvalues. Therefore

a− b− 2a1 = 0 . Then the binary string is t = 0a11b10a21b2 with a = b− 2a1.

Case II: If a1 > 1 and a = b.

Then 0 ∈ SpecSLT
with multiplicity a1. So the values of a − b − 2a1 and a − b + 2b1 are

not equal to 0 and −(a+ b). We have a− b− 2a1, a− b+ 2b1 6= −(a+ b). Hence the binary

string is of the form t = 0a11b10a21b2 with a = b, a 6= b− 2b1 and a 6= b+ 2a1

Case III: If a1 = 1 and a 6= b

Then a−b /∈ SpecSLT
. Hence the binary string of the TH - graph is of the form t = 0a11b10a21b2

with a1 = 1, a 6= b− 2b1 and a 6= b+ 2.

Case IV: If a1 = 1 and a = b

Then the values of a − b − 2a1, a − b + 2b1 are not equal to 0 and −(a + b). Thus the

binary string of the TH - graph is of the form t = 0a11b10a21b2 with a1 = 1, a 6= b − 2b1 and

a 6= b+ 2.

Conversely if the binary string t satisfies these four cases, then Theorem 2.2 T has exactly

four distinct Seidel Laplacian eigenvalues. �

4. Conclusion

In this study, we have studied the Seidel Laplacian spectrum of TH -graphs. Addition-

ally, we have characterized TH -graphs with the binary string t = 0a11b1 · · · 0ak1bk for small

values of k. Further scope of study, we can find their applications in chemical graph theory.
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