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ABSTRACT

An elliptic Sombor index of a graph was introduced by
Gutman et al., [14]. Based on their work, in this paper
we initiated the distance based graphical indices called
an elliptic-eccentric Sombor index of graphs. Here, we
compute the exact values of a certain class of graphs.
Also, some bounds and characterizations in terms or-
der, size, degrees, radius, diameter and other graphical
indices are obtained. Further, we obtained the compar-
ative analysis of molecular graph of Heptane isomers.
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1. introduction

1.1. Fundamental graph notions: In this paper, we assumed all graphs are finite and

simple connected graph. A graph G = (V (G), E(G)), is a simple connected graph, that

is, no loops and no multiedges. As usual, we denotes the order and size of the graphs are

n = |V (G)| and m = |E(G)| of a graph G. The number of vertices are adjacent u is the degree
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of u and is represented by dG(u). In the same way, the minimum and maximum degree of u

are represented by δ(G) = δ and ∆(G) = ∆, respectively. A graph G is a r-regular graph

with δ = r = ∆ for all u ∈ V (G). The distance d(u, v) between any two vertices u and v

in a graph G is the length of (number of edges in) the shortest path connecting them. The

eccentricity of a vertex u in a graph G is the length of the longest distance between any two

pair of vertices, that is εG(u). The value of maximum eccentricity among the vertices called

diameter, diam(G) of G. The value of minimum eccentricity among all the vertices called

radius rad(G) of G. Hence, rad(G) ≤ εG(u) ≤ diam(G) for every u ∈ V (G). For more graph

theoretic terminology not given here, the reader is referred to [9, 19].

1.2. Elements of Chemical graphs: Graphical indices are indeed topological indices /

molecular descriptors that provide quantitative information about the molecular structure

of chemical compounds. These descriptor indices are derived from the graph theoretic prin-

ciples applied to molecular graphs, where atoms are represented as vertices and bonds as

edges. These indices are useful in various areas of chemistry, bio-chemistry and drug design

because they encode structural information that correlates with molecular properties such

as reactivity, biological activity, and physico-chemical properties such as QSPR / QSAR /

QSTR studies. For more information on chemical graph we refer to [4, 5].

1.3. Degree based graphical indices: Here, we can take some of the degree based graph-

ical indices are as shown in Table 1. In 2024, Gutman et al., [14] was introduced the vertex

Graphical indices Mathematical Representation
First Zagreb index, [15] M1(G) =

∑
uv∈E(G)

dG(u) + dG(v)

Second Zagreb index, [15] M2(G) =
∑

uv∈E(G)

dG(u).dG(v)

Forgotten index, [12] F (G) =
∑

uv∈E(G)

d2G(u) + d2G(v)

Sombor index, [16] SO(G) =
∑

u,v∈E(G)

√
d2G(u) + d2G(v).

Table 1. Degree based graphical indices and its mathematical representation.

degree-based elliptic Sombor index of a graph G and is defined as

ESO(G) =
∑

uv∈E(G)

(dG(u) + dG(v))
√
d2G(u) + d2G(v).

For more details on the elliptic Sombor index, we refer to [10, 17, 23, 24, 30, 31, 34] and

mathematical properties and their application of other graphical indices, we refer to [20, 21,

25, 29].

1.4. Eccentricity based graphical indices. In 1997, Sharma et al., [32] introduced the

eccentric-based graphical indices. Here, we used some of the eccentricity based families of

graphical indices are as shown in Table 2. For more information on many eccentricity-based

graphical indices are in [1, 2, 3, 7, 11, 13, 18, 27, 37, 38].
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Graphical indices Mathematical Representation
first Zagreb eccentricity index, [36] εM1(G) =

∑
uv∈E(G)

εG(u) + εG(v)

second Zagreb eccentricity index, [36] εM2(G) =
∑

uv∈E(G)

εG(u) εG(v)

eccentricity Forgotten index, [28] εF (G) =
∑

uv∈E(G)

ε2G(u) + ε2G(v)

eccentricity Harmonic index, [33] εH(G) =
∑

uv∈E(G)

2

εG(u) + εG(v)

Table 2. Eccentricity based graphical indices and its mathematical representation.

In 2021 [22], Kulli initiated the eccentric Sombor index (fourth Sombor index) of a graph

G and is defined as

(1.1) εSO(G) =
∑

uv∈E(G)

√
ε2G(u) + ε2G(v).

In this paper, we introduced the new eccentricity based graphical index called as an

Elliptic-Eccentric Sombor index of a graph G, and is defined as

(1.2) εES(G) =
∑

uv∈E(G)

(εG(u) + εG(v))
√
ε2G(u) + ε2G(v).

Obviously, the equation (1.1) and equation (1.2) can be expressed as

εSO(G) =
∑

uv∈E(G)

√
ε2G(u) + ε2G(v)

εSO(G) =
∑

uv∈E(G)

√
(n− dG(u))2 + (n− dG(v))2

(1.3) εSO(G) =
∑

uv∈E(G)

√
2n2 + d2G(u) + d2G(v)− 2n(dG(u) + dG(v)).

and

(1.4) εES(G) =
∑

uv∈E(G)

(2n−(dG(u)+dG(v)))
√

2n2 + d2G(u) + d2G(v)− 2n(dG(u) + dG(v)).

2. Some specific classes of graphs

Proposition 2.1. Let Kn be a complete graph with n ≥ 2. Then

εES(Kn) =
√

2n(n− 1).

Proof. Let Kn be a complete graph with n ≥ 2. If the eccentricity of each vertices in Kn are

εG(u) = 1, then

εES(Kn) =
∑

uv∈E(G)

(εKn(u) + εKn(v))
√
ε2Kn

(u) + ε2Kn
(v).

=
n(n− 1)

2
[(1 + 1)

√
1 + 1].

=
√

2n(n− 1). �
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Proposition 2.2. Let Cn be a cycle with n ≥ 3. Then

εES(Cn) =


n3√

2
, if n is even

n(n− 1)2√
2

, if n is odd.

Proof. Let Cn be a cycle graph with n ≥ 3. We have

Case 1. If n is even, then the eccentricity of each vertex εCn(u) =
n

2
, we have

εES(Cn) =
∑

uv∈E(Cn)

(εCn(u) + εCn(v))
√
ε2Cn

(u) + ε2Cn
(v)

= n

[(
n

2
+
n

2

)√
n2

4
+
n2

4

]
.

=
n3√

2
.

Case 2. If n is odd, then the eccentricity of each vertex εCn(v) =
n− 1

2
. Therefore

εES(Cn) =
∑

uv∈E(Cn)

(εCn(u) + εCn(v))
√
ε2Cn

(u) + ε2Cn
(v)

= n

[(n− 1

2
+
n− 1

2

)√(n− 1

2

)2
+
(n− 1

2

)2]
.

=
n(n− 1)2√

2
. �

Proposition 2.3. Let Wn be a wheel graph with n ≥ 5. Then

εES(Wn) = (n− 1)[3
√

5 + 8
√

2].

Proof. Let Wn = K1 +Cn−1 be a wheel graph with n ≥ 5. If the eccentricity of center vertex

in Wn is εWn(v1) = 1 and εWn(vi), for i = 2, 3, 4, . . ., we have

εES(Wn) =
∑

uv∈E(Wn)

(εWn(u) + εWn(v))
√
ε2Wn

(u) + ε2Wn
(v)

= (n− 1)
[
(1 + 2)

√
12 + 22 + (2 + 2)

√
22 + 22

]
.

= (n− 1)[3
√

5 + 8
√

2]. �

Proposition 2.4. Let Kt,s be a complete bipartite graph. Then

εES(Kt,s) =

8
√

2 t s, if t, s > 1

3
√

5(s− 1), if t=1 and s > 1.

Proof. Let Kt,s be a complete bipartite graph. We have

Case 1. If the eccentricity of u0 and u1 is 2 and the eccentricity of ui’s is 2.

εES(Kt,s) =
∑

uv∈E(Kt,s)

(εKt,s(u) + εKt,s(v))
√
ε2Kt,s

(u) + ε2Kt,s
(v)

= ts[(2 + 2)
√

22 + 22 + (2 + 2)
√

22 + 22].

= 8
√

2 t s.

Case 2. Let K1,s be a star graph with s ≥ 2. If the eccentricity of u0 = 1 and ui = 2 for
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i = 1, 2, 3, . . ., we have

εES(K1,s) =
∑

uv∈E(K1,s)

(εK1,s(u) + εK1,s(v))
√
ε2K1,s

(u) + ε2K1,s
(v).

= (s− 1)[(1 + 2)
√

12 + 22].

= 3
√

5(s− 1). �

Proposition 2.5. Let DSt,t be a double star graph with n = 2(t + 1) vertices and t ≥ 2.

Then
εES(DSt,t) = 10t

√
13 + 8

√
2,

where DSt,t is a double star, which is obtained by joining the apex vertices of two copies of

star S1,t by an edge.

Proof. Let DSt,t be a double star graph with n = 2(t+ 1) vertices and t ≥ 2. If u and v are

adjacent to every other ui’s, for i = 1, 2, 3, . . . , in DSt,t, then eccentricity of u and v is 2 and

the eccentricity of ui’s is 3.

εES(DSt,t) =
∑

uv∈E(DSt,t)

(εDSt,t(u) + εDSt,t(v))
√
ε2DSt,t

(u) + ε2DSt,t
(v)

= t [(2 + 3)
√

22 + 32] + (2 + 2)
√

22 + 22.

= 10t
√

13 + 8
√

2. �

Proposition 2.6. Let Fn be a fan graph with n ≥ 5. Then

εES(Fn) = 3(n− 1)
√

5 + 8(n− 2)
√

2,

where Fn = K1+Pn−1 is the fan graph defined the graph is obtained by joining all the vertices

of path Pn to a new vertex named center.

Proof. Let Fn be a fan graph with n ≥ 5. If u0 is adjacent to every other ui’s and ui is

adjacent to every other ui+1 vertices for i = 1, 2, 3, . . . , in Fn, then the eccentricity of u0 = 1

and the eccentricity of ui = 2.

εES(Fn) =
∑

uv∈E(Fn)

(εFn(u) + εFn(v))
√
ε2Fn

(u) + ε2Fn
(v)

= (n− 1)[(1 + 2)
√

12 + 22 + 2(n− 2)(2 + 2)
√

22 + 22].

= 3(n− 1)
√

5 + 8(n− 2)
√

2. �

Proposition 2.7. Let FSn be a friendship graph with n ≥ 5. Then

εES(FSn) = (n− 3)[6
√

5 + 8
√

2],

where FSn is the friendship graph defined a graph in which every two distinct vertices have

exactly one common adjacent vertex.

Proof. Let FSn be a friendship graph with n ≥ 2. If u0 is adjacent to every other vertex ui’s

and ui is adjacent to every other vertex ui+1 for i = 1, 2, 3, . . . in FSn, then the eccentricity
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of u0 = 1 and the eccentricity of ui = 2.

εES(FSn) =
∑

uv∈E(FSn)

(εFSn(u) + εFSn(v))
√
ε2FSn

(u) + ε2FSn
(v)

= (n− 3)[(1 + 2)
√

12 + 22 + (2 + 2)
√

22 + 22].

= (n− 3)[3
√

5 + 8
√

2]. �

3. bounds interms of order, size, minimum / maximum degree, radius and

diameter

To prove next couple of results, we make use of the following Lemma.

Lemma 3.1. [6],[8] For any connected graph G with n ≥ 2,

(i) rad(G) ≤ εG(u) ≤ diam(G).

(ii) (n−∆) ≤ εG(u) ≤ (n− δ).

Theorem 3.2. For any connected graph G,

2
√

2 m rad2(G) ≤ εES(G) ≤ 2
√

2 m diam2(G).

Proof. For any connected graph G,

rad(G) ≤ εG(u) ≤ diam(G).

2rad2(G) ≤ {ε2G(u) + ε2G(v)} ≤ 2diam2(G).

(3.1)
√

2rad(G) ≤
√
ε2G(u) + ε2G(v) ≤

√
2diam(G).

rad(G) ≤ εG(u) ≤ diam(G).

(3.2) 2rad(G) ≤ εG(u) + εG(v) ≤ 2diam(G).

Multipliying equations (3.1) and (3.2), we have

2
√

2rad2(G) ≤
(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v) ≤ 2

√
2diam2(G).

The above inequality satisfies for each edge uv ∈ E(G) and apply summation to all over the

inequalities, we have∑
uv∈E(G)

2
√

2 rad2(G) ≤
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v)

≤
∑

uv∈E(G)

2
√

2 diam2(G).

Therefore, 2
√

2 m rad2(G) ≤ εES(G) ≤ 2
√

2 m diam2(G). �

Theorem 3.3. For any connected graph G,

2
√

2m(n−∆)2 ≤ εES(G) ≤ 2
√

2m(n− δ)2.

Further, the inequality holds if and only if G is regular.

Proof. For any connected graph G,

(n−∆) ≤ εG(u) ≤ (n− δ).
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2(n−∆)2 ≤ {ε2G(u) + ε2G(v)} ≤ 2(n− δ)2.

(3.3)
√

2(n−∆) ≤
√
ε2G(u) + ε2G(v) ≤

√
2(n− δ).

(n−∆) ≤ εG(u) ≤ (n− δ).

(3.4) 2(n−∆) ≤ εG(u) + εG(v) ≤ 2(n− δ).

Multipliying equations (3.3) and (3.4), we have

2
√

2(n−∆)2 ≤
(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v) ≤ 2

√
2(n− δ)2.

The above inequality satisfies for each edge uv ∈ E(G) and apply summation to all over

inequalities, we have∑
uv∈E(G)

2
√

2 (n−∆)2 ≤
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v)

≤
∑

uv∈E(G)

2
√

2 (n− δ)2.

Therefore, 2
√

2m(n−∆)2 ≤ εES(G) ≤ 2
√

2m(n− δ)2.
Further, the inequality holds if and only if G is regular. �

4. bounds interms of other eccentric based graphical indices

Theorem 4.1. Let G be a connected graph. Then

εES(G) ≤ εM1(G) εSO(G).

Proof. Let G be a connected graph. Then

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

≤
∑

uv∈E(G)

(
εG(u) + εG(v)

) ∑
uv∈E(G)

√
ε2G(u) + ε2G(v).

Therefore, εES(G) ≤ εM1(G) εSO(G). �

Theorem 4.2. Let G be a connected graph. Then

2rad(G) εSO(G) ≤ εES(G) ≤ 2diam(G) εSO(G).

Proof. Let G be a connected graph. Then

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

≤ 2diam(G)
∑

uv∈E(G)

√
ε2G(u) + ε2G(v).

≤ 2 diam(G) εSO(G).

Similarly, we prove the lower bound.

εES(G) ≥ 2rad(G) εSO(G).

Hence, the proof complete. �
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Theorem 4.3. Let G be a connected graph. Then
√

2 rad(G) εM1(G) ≤ εES(G) ≤
√

2 diam(G) εM1(G).

Proof. Let G be a connected graph. Then

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

≤
√
diam2(G) + diam2(G)

∑
uv∈E(G)

(
εG(u) + εG(v)

)
.

≤
√

2 diam(G) εM1(G).

Similarly, we prove the lower bound.

εES(G) ≥
√

2 rad(G) εM1(G).

Thus, the desired result follows. �

Corollary 4.1. Let G be a connected graph. Then

(i) 2(n−∆) εSO(G) ≤ εES(G) ≤ 2(n− δ) εSO(G)

(ii)
√

2(n−∆) εM1(G) ≤ εES(G) ≤
√

2(n− δ) εM1(G).

Further, the inequality holds if and only if G is regular.

Proof. By Theorem 4.2, Theorem 4.3 and Lemma 3.1 (i) and (ii) we obtain the desired

results. �

Theorem 4.4. Let G be a connected graph. Then

εM2
2 (G)

2
√

2

diam2(G)
≤ εES(G) ≤ εM2

2 (G)
2
√

2

rad2(G)
.

Proof. Let G be a connected graph. Then

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

≥
∑

uv∈E(G)

(
εG(u).εG(v)

)2[ 1

εG(u)
+

1

εG(v)

]√ 1

ε2G(u)
+

1

ε2G(v)

≥ 2
√

2

diam2(G)
εM2

2 (G).

Similarly, we prove the upper bound

εES(G) ≤ 2
√

2

rad2(G)
εM2

2 (G).

Therefore,

εM2
2 (G)

2
√

2

diam2(G)
≤ εES(G) ≤ εM2

2 (G)
2
√

2

rad2(G)
.

Hence, the proof complete. �

Theorem 4.5. Let G be a connected graph. Then

2

diam(G)
εM2(G) εSO(G) ≤ εES(G) ≤ 2

rad(G)
εM2(G) εSO(G).

Proof. By Theorem4.4, we obtain the desired result. �



230 N. Harish, C. Nandeesh Kumar and B. Chaluvaraju

Corollary 4.2. Let G be a connected graph. Then

(i) εM2
2 (G)

2
√

2

(n− δ)2
≤ εES(G) ≤ εM2

2 (G)
2
√

2

(n−∆)2
.

(ii)
2

(n− δ)
εM2(G) εSO(G) ≤ εES(G) ≤ 2

(n−∆)
εM2(G) εSO(G).

Further, the inequality holds if and only if G is regular.

Proof. By Theorem 4.4, Theorem 4.5 and Lemma 3.1 (ii), we obtain the desired results. �

Theorem 4.6. Let G be a connected graph. Then

εES(G) ≤ diam(G) + rad(G)

diam(G) rad(G)
εM2(G) εSO(G).

Proof. Let G be a connected graph. Then

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

=
∑

uv∈E(G)

(
εG(u).εG(v)

)[εG(u) + εG(v)

εG(u).εG(v)

]√
ε2G(u) + ε2G(v)

≤ diam(G) + rad(G)

diam(G)rad(G)
εM2(G) εSO(G).

Hence, the result. �

Lemma 4.7. (Chebyschev’s inequality) Let ai and bi are real numbers. Then

n
n∑

i=1

aibi ≥
n∑

i=1

ai

n∑
i=1

bi,

with equality holds if and only if a1 = a2 = ... = an or b1 = b2 = ... = bn.

Lemma 4.8. Root mean square inequalities are Arithmatic Mean and Quadratic Mean (AM-

QM). For positive real number a1, a2, ..., an, we have∑n
i=1 ai
n

≤
√∑n

i=1 a
2
i

n
.

Theorem 4.9. Let G be a connected graph. Then

εES(G) ≥ 1

n
εM1(G) εSO(G).

Proof. Let ai = εG(ui) + εG(vi) and bi =
√
ε2G(ui) + ε2G(vi) for i = 1, 2, 3, ..., we have

εES(G) =
∑

uv∈E(G)

(
εG(ui) + εG(vi)

)√
ε2G(ui) + ε2G(vi).

By Lemma 4.7, we have

n
n∑

i=1

(
εG(ui) + εG(vi)

)√
ε2G(ui) + ε2G(vi)

≥
n∑

i=1

εG(ui) + εG(vi)

n∑
i=1

√
ε2G(ui) + ε2G(vi).

≥ 1

n
εM1(G) εSO(G).
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Hence, the proof. �

Theorem 4.10. Let G be a connected graph. Then

εES(G) ≤
√
n εES(G).

Proof. Let ai =
(
εG(ui) + εG(vi)

)√
ε2G(ui) + ε2G(vi), for i = 1, 2, 3, · · · . By Lemma 4.8, we

have ∑n
i=1

(
εG(ui) + εG(vi)

)√
ε2G(ui) + ε2G(vi)

n

≤

√√√√(∑n
i=1

(
εG(ui) + εG(vi)

)√
ε2G(ui) + ε2G(vi)

)2
n

.

Therefore, εES(G) ≤
√
n εES(G). �

Theorem 4.11. Let G be a connected graph. Then

rad(G)√
2

εM2
1 (G) εH(G) ≤ εES(G) ≤ diam(G)√

2
εM2

1 (G) εH(G).

Proof. Let G be a connected graph. Then

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

=
∑

uv∈E(G)

[
εG(u) + εG(v)

]2
2

2

εG(u) + εG(v)

√
ε2G(ui) + ε2G(vi).

≤ 1

2
εM2

1 (G) εH(G)
√

2diam(G).

≤ diam(G)√
2

εM2
1 (G) εH(G).

Similarly, we prove the lower bound

εES(G) ≥ rad(G)√
2

εM2
1 (G) εH(G).

Therefore, we obtain the desired result. �

Corollary 4.3. Let G be a connected graph. Then

(n−∆)√
2

εM2
1 (G) εH(G) ≤ εES(G) ≤ (n− δ)√

2
εM2

1 (G) εH(G).

Further, the inequality holds if and only if G is regular.

Theorem 4.12. Let G be a connected graph. Then

2rad2(G) εH(G) εSO(G) ≤ εES(G) ≤ 2diam2(G) εH(G) εSO(G).

Proof. By Theorem 4.11, we obtain the desired result. �

Corollary 4.4. Let G be a connected graph. Then

2(n−∆)2 εH(G) εSO(G) ≤ εES(G) ≤ 2(n− δ)2 εH(G) εSO(G).

Further, the inequality holds if and only if G is regular.



232 N. Harish, C. Nandeesh Kumar and B. Chaluvaraju

Theorem 4.13. For any connected graph G,

εES(G) ≤ rad(G) + diam(G)√
rad2(G) + diam2(G)

εF (G).

Proof. For any connected graph G,

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

=
∑

uv∈E(G)

εG(u) + εG(v)√
ε2G(u) + ε2G(v)

(ε2G(u) + ε2G(v)).

≤ rad(G) + diam(G)√
rad2(G) + diam2(G)

εF (G). �

Corollary 4.5. For any connected graph G,

εES(G) ≤ 2mn− (∆ + δ)√
2n2 − 2n(∆ + δ) + ∆2 + δ2

εF (G).

Next, we prove a single results we make use of the following definition:

Semi-regular graph: A graph G∗ is considered as a semiregular graph, if every vertex

in the graph G∗ is exactly 2 distance away from the same number of other vertices. If each

vertex is 2 distance away from n other vertices, the graph is referred to as n-semiregular.

Theorem 4.14. For any connected graph G,

εES(G) ≤ (2mn−M1(G))
√
F (G)− 2nM1(G) + 2mn2,

more over the inequality holds if and only if G ∼= P4 or K4 or (n − 1, n − 2)-semi-regular

graph.

Proof. By using equations (1.2) and (1.4), we have

εES(G) =
∑

uv∈E(G)

(
εG(u) + εG(v)

)√
ε2G(u) + ε2G(v).

= (n− dG(u) + n− dG(v))
∑

uv∈E(G)

√
(n− dG(u))2 + (n− dG(v))2.

≤ (2mn−M1(G))
√
F (G)− 2nM1(G) + 2mn2.

Hence, the proof. �

5. Chemical applicabilities for molecular graph of Heptane isomers

In this research work, we use molecular graph of nine heptane isomers. Heptane (C7H16)

is an alkane consisting of seven carbon atoms as shown in Figure 1. It has several isomers,

which are compounds with the same molecular formula but different structural arrange-

ments. Heptane can exist as various structural isomers based on how the carbon atoms are

connected. These are differ in the number of carbon atoms in the parent chain. The IU-

PAC names of heptane isomers are n-heptane (G1), 2-methylhexane (G2), 3-methylhexane

(G3), 2,2-dimethylpentane (G4), 2,3-dimethylpentane (G5), 2,4-dimethylpentane (G6), 3,3-

dimethylpentane (G7), 3-ethylpentane (G8) and 2,2,3-trimethylbutane (G9). As many dif-

ferent isomers of n-heptane are used in organic syntheses and are ingredients of gasoline,
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rubber solvent naphtha, mixed isomers for use as thinners in paints and coatings, as pure

n-heptane for research and development, as a precursor in pharmaceutical manufacturing,

and as petroleum mixtures used as fuels. For more details on molecular graph of heptane

isomers we refer to [26, 35].

Figure 1. Molecular graph of heptane isomers

Heptane isomers
Eccentricity based graphical indices

εES(Gi)
εSO(Gi)

εM1(Gi)
εM2(Gi)

εF (Gi)
G1 357.081 38.426 54 124 254
G2 268.335 33.451 47 93 191
G3 245.711 32.048 45 85 175
G4 159.083 25.816 36 54 114
G5 176.05 27.214 38 60 126
G6 159.083 25.816 36 54 114
G7 176.05 27.214 38 60 126
G8 142.111 24.422 34 48 102
G9 101.44 20.856 29 34 73

Table 3. The computed values of eccentricity based graphical indices of
molecular graphs of heptane isomers

Comparative Analysis: The molecular graph of heptane isomers Gi for 1 ≤ i ≤ 9 is

compared. By comparing all the isomers n-heptane having more boiling point. The computed

values of graphical indices and heptane isomers as shown in the Table 3. From this table we

can easily analyse the more or less or equal or frequently changes their values of graphical

indices for each isomers. The comparative analysis or graphical representation shows the

variations between the graphical indies and heptane isomers are as shown in the Figure 2.
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Figure 2. Comparative Analysis

By observation of Table 3 and Figure 2 the values of heptane isomers G4 and G6 are having

the same value and also, G5 and G7. The remaining all the heptane isomers G1, G2, G3, G8

and G9 are having different values. The ranges of eccentricity based graphical indices are

decreasing or increasing their values. It is mathematically represented as

εES(Gi) >
εF (Gi) >

εM2(Gi) >
εM1(Gi) >

εSO(Gi).

6. conclusion and future work

In this paper, we obtained the exact values for specific class graphs and found some bounds

in terms order, size, minimum / maximum degrees, radius, and diameter. Also, the bounds

and characterization of the elliptic-eccentric Sombor index and other eccentricity families

of graphical indices were found. Finally, we show the relationship between the eccentricity

families of graphical indices and molecular graphs of heptane isomers. For the comparative

advantages, applications, and mathematical point of view, many questions are suggested by

this research, including the following:

1. Find the extremal values and extremal graphs of the elliptic-eccentric Sombor index.

Also, characterize the other eccentricity families of graphical indices.

2. Find the values of the elliptic-eccentric Sombor index of chemical graphs / product

graph / derived graphs.

3. Determine the bounds and characterization of the elliptic-eccentric Sombor index in

relation to other eccentric-based graphical indices.

4. Determine the elliptic-eccentric Sombor index values for the QSPR / QSAR / QSTR

Model.
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