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ABSTRACT
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1. Introduction

The geometry based on the element of arc

(1.1) ds = F (x1, . . . , xn; dx1, . . . , dxn),

where F is positively homogeneous of degree 1 in dxi is called Riemannian-Finsler geometry

or Finsler geometry for short. Roughly speaking, F is a collection of Minkowskian norms

Fx in the tangent space at x such that Fx varies smoothly in x. In fact, metric (1.1)

was introduced by Riemann in his famous 1854 Habilitationsvortag ” Uber die Hypotheser
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welche der geometric zugrund liegen”. He paid particular attention to a metric defined by

the positive square root of a positive definite quadratic differential form, i.e.

F 2(x, dx) = gij(x)dx
idxj .

In the famous Paris address of 1900, Hillbert devoted the last problem to variational calculus

of
∫
ds and its geometrical overtone. A few years later, the general development took a cu-

rious turn away from the basic aspect and methods of the theory as developed by P.Finsler.

Finsler’s thesis, which treats curves and surfaces of (1.1), must be regarded as the first step

in this direction. The name ”Finsler geometry” comes from his thesis in 1918 [12].

Now we consider the one of important classes of Finsler metrics known as (α, β)-metrics.

For a first time, the notion of (α, β)-metrics are introduced by Matsumoto [11]. If we set

F = α + β, then we get the Randers metric such that it is one of the most famous (α, β)-

metric. It is worth noting that an (α, β)-metric is a Finsler metric of the form

F = αφ(s), s =
β

α
,

where α =
√

ãij(x)yiyj is induced by a Riemannian metric ã = ãijdx
i ⊗ dxj on a connected

smooth n-dimensional manifold M and β = bi(x)y
i is a 1-form on M [16]. Among other

important and famous (α, β)-metrics, we can mention the Kropina metric F = α2/β, infinite

series metric F = β2

β−α , square metric F = (α + β)2/α, exponential metric F = α exp(β/α)

and Matsumoto metric F = α2/(α− β).

A connected Finsler manifold (M,F ) is said to be homogeneous if its full isometry group

I(M) acts transitively on M . Just as the concept of a line is very important in Euclidean

geometry and has many applications, this concept will naturally be considered important in

other geometries. Geodesics are actually considered to be generalizations of lines in Finsler

geometry. Geodesics are very important concepts of Finsler geometry and there have been

many studies in this field. A geodesic in a homogeneous Finsler space (G/H,F ) is called

homogeneous geodesic if it is an orbit of a one-parameter subgroup of G. In the Riemannian

setting, homogeneous geodesics have been studied by many authors and many results have

also been obtained. In [8], the second author for the first time has extended the concept of

homogeneous geodesics in homogeneous Finsler spaces.

Suppose (M,F ) be a connected homogeneous Finsler space, G is a connected transitive

group of isometries of M and H is the isotropy subgroup at a point o ∈ M . Therefore, M

is naturally identified with the coset space G/H with G-invariant Finsler metric F . Also, in

this case the Lie algebra g of G has a reductive decomposition

g = m+ h,

where m ⊂ g is a subspace of g isomorphic to the ToM and h is the Lie algebra of H.

For the first time, hypercomplex manifolds were introduced by Boyer [3]. He was able

to provide a classification of compact hypercomplex manifolds for dimHM = 1 where H
is the quaternion Lie algebra. Let (M, I, J,K) be a manifold equipped with an action of

the quaternion algebra H on TM . The manifold M is called hypercomplex if the operators
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I, J,K ∈ H define integrable complex structures on M . In [13], Obata showed that this

condition is hold if and only if M admits a torsion-free connection ∇ such that

∇I = ∇J = ∇K = 0.

Obata’s connection on (M, I, J,K) is necessarily unique ([13]).

In [16], we describe all geodesic vectors of invariant infinite series metric on the left invari-

ant hypercomplex four dimensional simply connected Lie groups. In this paper, we extend

these results to any (α, β)-metrics. Indeed, we study homogeneous geodesics of left invariant

(α, β)-metrics on left invariant hypercomplex 4-dimensional simply connected Lie groups and

also we study the conditions for the Douglas and Berwald type of (α, β)-metrics on this Lie

groups. For more details on geodesic vectors see [5, 9, 14, 15].

2. Preliminaries

Let M be an n-dimensional C∞ manifold. Denote by TxM the tangent space at x ∈ M

and by TM := ∪x∈MTxM the tangent bundle of M . The dual space of TxM is T ∗
xM , called

the cotangent space at x. The union T ∗M := ∪x∈MT ∗
xM is the cotangent bundle of M .

Definition 2.1. A function F : TM → [0,∞) is called a Finsler structure, if, in a local

coordinate system (xi, yi),

F (x, y) = F (yi
∂

∂xi
|x),

satisfies

(1) F (x, y) is C∞ for y ̸= 0.

(2) F (x, λy) = λF (x, y); λ > 0.

(3) 1
2(F

2)yiyj (y ̸= 0) is positive definite.

A C∞ manifold M with its Finsler structure F is said a Finsler manifold or Finsler space

[12].

Let α =
√

ãij (x) yiyj be a norm induced by a Riemannian metric ã and β (x, y) = bi(x)y
i

be a 1-form on an n-dimensional manifold M . Suppose

b := ∥β(x)∥α :=
√

ãij(x)bi(x)bj(x),

and let the function F is defined as follows

(2.1) F := αφ(s), s =
β

α
,

where φ = φ(s) is a positive C∞ function on (−b0, b0) satisfying

φ (s)− sφ′ (s) +
(
b2 − s2

)
φ′′ (s) > 0, |s| ≤ b < b0.

Then F is a Finsler metric if ∥β(x)∥α < b0 for any x ∈ M . A Finsler metric in the form

(2.1) is called an (α, β)-metric [16].

Proposition 2.2. Suppose that (M,α) be a Riemannian space. Then the (α, β)-metric F =

αϕ(β/α) where β = biy
i, is a 1-form with ∥β(x)∥ =

√
bibi < b0, consists of a Riemannian

metric α along with a smooth vector field X on M with α(X|x) < b0, ∀x ∈ M , i.e.,
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F (x, y) = α(x, y)ϕ

(
⟨X|x, y⟩
α(x, y)

)
, x ∈ M, y ∈ TxM,

where ⟨, ⟩ is the inner product induced by the Riemannian metric α.

Proof. We know that, from the definition of Riemannian metric, the form

⟨m,n⟩ = aijm
inj , m, n ∈ TxM,

is an inner product on TxM . On the other hand, this inner product induces an inner product

on the cotangent space T ∗
xM such that

⟨dxi(x), dxj(x)⟩ = aij(x).

Now with this inner product we can define a linear isomorphism between T ∗
xM and TxM .

Therefore, the 1-form β corresponds to a vector field X on M such that

X|x = bi
∂

∂xi
, bi = aijbj ,

and

⟨X|x, y⟩ = ⟨bi ∂

∂xi
, yj

∂

∂xj
⟩ = biyjaij = bjy

j = β(y).

Also, we have

α(X|x) = ∥β∥ < b0.

□

Suppose that (M,F ) be a Finsler space. The pulled-back bundle π∗TM admits a unique

linear connection, called the Chern connection. It’s connection forms are characterized by

the torsion freeness and almost g-compatibility structural equations. Let the coefficients of

Chern connection are denoted by Γi
jk. Now suppose that σ(t) be a smooth regular curve in

M , with velocity field T and W (t) := W i(t) ∂
∂xi be a vector field along σ. Then the expression[

dW i

dt
+W jT kΓi

jk

]
∂

∂xi
|σ(t),

would have defined the covariant derivative DTW , had Γ not had a directional y-dependence.

If T is plugged into the direction slot y, we get[
dW i

dt
+W jT k(Γi

jk)(σ,T )

]
∂

∂xi
|σ(t),

such that we call it DTW with reference vector T .

A curve σ(t) with the velocity T , is a Finslerian geodesic if

DT

[
T

F (T )

]
= 0, With reference vector T.

We note that, the constant speed geodesics are precisely the solutions of

DTT = 0, With reference vector T.

A Finsler structure F is said to be of Berwald type if the Chern connection coefficients

Γi
jk in natural coordinates have no y dependence. We note that, Berwald spaces are just a
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bit more general than Riemannian and locally Minkowskian spaces. They provide examples

that are more properly Finslerian, but only slightly so.

Now let,

Di
jkl =

∂3

∂yj∂yk∂yl

(
Gi − 1

n+ 1

∂Gm

∂ym
yi

)
.

We call D := Di
jkldx

j ⊗ dxk ⊗ dxl the Douglas tensor. Douglas metric is characterized by

the curvature equation D = 0. We note that all Berwald spaces are Douglas spaces, but

there are many non-Berwald Douglas metrics. The following Theorem give a necessary and

sufficient condition for an invariant Randers metric to be a Douglas metric on a homogeneous

manifold.

Theorem 2.3. [1] Let α be an invariant Riemannian metric on G/H, m be the orthogonal

complement of h in g with respect to inner product ⟨, ⟩ on g induced by α. Then there exists

a bijection between the set of all invariant Randers metrics on G/H with the underlying

Riemannian metric α and the set

V1 = {X ∈ m : Ad(h)X = X, ⟨X,X⟩ < 1, ∀h ∈ H}.

Moreover, the Randers metric is of Douglas type if and only if X satisfies

⟨[Y,Z]m, X⟩ = 0, ∀Y, Z ∈ m.

Here, [Y,Z]m denotes the projection of [Y, Z] to m.

For left invariant (α, β)-metrics on a Lie group G, we have the following Theorem:

Theorem 2.4. [4] Let F be a left invariant (α, β)-metric on a Lie group G, arising from

a left invariant Riemannian metric ⟨, ⟩ and a left invariant vector filed X. Then F is of

Berwald type if and only if the following two conditions are valid:

(2.2)
⟨
[y,X], z

⟩
+
⟨
[z,X], y

⟩
= 0,

⟨
[y, z], X

⟩
= 0, ∀y, z ∈ g.

Definition 2.5. Suppose (G/H,F ) be a homogeneous Finsler manifold with a fixed origin

o. Let g and h be the Lie algebras of G and H respectively and g = m + h a reductive

decomposition. Therefore, a homogeneous geodesic through the o ∈ G/H is a geodesic γ(t)

of the form

(2.3) γ(t) = exp(tZ)(o), t ∈ R,

where Z is a nonzero vector of g.

In [7] and in the Riemannian setting, we have:

Lemma 2.6. [7] A nonzero vector X ∈ g is a geodesic vector if and only if

(2.4) ⟨[X,Y ]m, Xm⟩ = 0, ∀Y ∈ m.

Here m written as subscript denotes the m-component of a vector from g with respect to the

decomposition g = m+ h.

After this, the second author in Finsler setting shown that:

Lemma 2.7. [8] Suppose (G/H,F ) be a homogeneous Finsler space with a reductive decom-

position

g = h+m.
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Therefore, Y ∈ g− {0} is a geodesic vector if and only if

(2.5) gYm(Ym, [Y, Z]m) = 0, ∀Z ∈ m,

where the subscript m indicates the projection of a vector from g to m.

Now we give the definition of a complex manifold.

Definition 2.8. Complex manifolds are differentiable manifolds with a holomorphic atlas.

They are necessarily of even dimension, say 2n, and allow for a collection of charts (Ui, zi)

that are one to one maps of the corresponding Ui to Cn such that for every non-empty

intersection Ui ∩ Uj the maps are ziz
−1
j are holomorphic.

For example, the (unit) two-sphere S2, which is the subset of R3, defined by

x2 + y2 + z2 = 1,

is a complex manifold.

As the word already indicates, almost complex means it is not quite complex. Indeed, we

have:

Definition 2.9. If a real manifold M admits a globally defined tensor J of rank (1, 1) with

the property

(2.6) J2 = −1,

then M is called an almost complex manifold. Here, 1 is the identity operator and J is a

tensor field of type (1, 1); both operators are maps from the tangent bundle TM into itself.

Also, a globally defined (1, 1) tensor satisfying (2.6) is called an almost complex structure.

We note that, Locally, this implies that at each given point p ∈ M , there is an endo-

morphism Jp : TpM → TpM which satisfies (Jp)
2 = 1p and which depends smoothly on

p ∈ M .

3. Hypercomplex manifolds and geodesic vectors of (α, β)-metrics on four

dimensional Lie groups

In this section we will study the hypercomplex manifolds. Then we describe all geodesics

vectors of (α, β)-metrics on the left invariant hypercomplex four dimensional simply con-

nected Lie groups.

3.1. Hypercomplex manifolds. As previously stated, an almost complex structure on

a real differentiable manifold M is a tensor field J which is, at every point x of M , an

endomorphism of the tangent space TxM such that J2 = −1, where 1 denotes the identity

transformation of TxM .

We remind that, the Lie bracket is defined on the space of vector fields and acts on functions

according to:

[X,Y ]f = X(Y (f))− Y (X(f)).

Definition 3.1. Let (M,J) be an almost complex manifold. Then for any two vector fields

X and Y , we define the Nijenhuis tensor N as

(3.1) N(X,Y ) = [X,Y ] + J [JX, Y ] + J [X, JY ]− [JX, JY ].
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Definition 3.2. Let (M,J) be an almost complex manifold. If the Lie bracket of any

two holomorphic vector field is again a holomorphic vector filed, then the almost complex

structure is said to be integrable.

Definition 3.3. A manifold M with three globally-defined, integrable complex structures

I, J,K satisfying the quaternion identities

(3.2) I2 = J2 = K2 = −1, and IJ = K = −JI,

is called a hypercomplex manifold.

We note that for a four dimensional manifold M , a hypercomplex structure on M is

a family H = {Jα}α=1,2,3 of fiber-wise endomorphism of TM such that

(3.3) − J2J1 = J1J2 = J3, J2
α = −IdTM , α = 1, 2, 3,

(3.4) Nα = 0, α = 1, 2, 3,

where Nα is the Nijenhuis tensor (torsion) corresponding to Jα.

Also, an almost complex structure is a complex structure if and only if it has no torsion

[6]. Then the complex structures Jα, α = 1, 2, 3, on a four dimensional manifold M form a

hypercomplex if they satisfy in the relation (3.3).

Definition 3.4. A Riemannian metric ⟨, ⟩ on a hypercomplex manifold (M,H) is called

hyper-Hermitian if for all vector fields X and Y on M and for all α = 1, 2, 3 satisfy in the

following relation:

⟨JαX,JαY ⟩ = ⟨X,Y ⟩.

Definition 3.5. A hypercomplex structure H = {Jα}α=1,2,3 on a Lie group G is said to be

left invariant if for any t ∈ G we have

Jα = T lt ◦ Jα ◦ T lt−1 ,

where T lt is the differential function of the left translation lt.

3.2. Geodesics vectors of (α, β)-metrics. In this section, we consider left invariant hyper-

Hermitian Riemannian metrics on left invariant hypercomplex four dimensional simply con-

nected Lie groups. In [2], Barberis shown that in this spaces, g is either Abelian or isomorphic

to one of the following Lie algebras:

Case (1): [e2, e3] = e4, [e3, e4] = e2, [e4, e2] = e3, e1 : central.(3.5)

Case (2): [e1, e3] = e1, [e2, e3] = e2, [e1, e4] = e2, [e2, e4] = −e1.(3.6)

Case (3): [e1, e2] = e2, [e1, e3] = e3, [e1, e4] = e4.(3.7)

Case (4): [e1, e2] = e2, [e1, e3] =
1

2
e3, [e1, e4] =

1

2
e4, [e3, e4] =

1

2
e2.(3.8)

where {e1, e2, e3, e4} is an orthonormal basis.

As mentioned earlier in Proposition (2.2), we can also write the (α, β)-metrics as follows:
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F (y) =
√

⟨y, y⟩ϕ

(
⟨X, y⟩√
⟨y, y⟩

)
.

Now by using the formula

gy(u, v) =
1

2

∂2

∂s∂t
F 2(x, y + su+ tv)|s=t=0,

and some computations we get:

gy(u, v) = ⟨u, v⟩ϕ2(r) + ⟨y, u⟩ϕ(r)ϕ′(r)
( ⟨X, v⟩√

⟨y, y⟩
− ⟨X, y⟩⟨y, v⟩

(⟨y, y⟩)
3
2

)
+
(
(ϕ′(r))2 + ϕ(r)ϕ′′(r)

)( ⟨X, v⟩√
⟨y, y⟩

− ⟨X, y⟩⟨y, v⟩)
(⟨y, y⟩)

3
2

)
×
(
⟨X,u⟩

√
⟨y, y⟩ − ⟨y, u⟩⟨X, y⟩√

⟨y, y⟩

)
+

ϕ(r)ϕ′(r)√
⟨y, y⟩)

(
⟨X,u⟩⟨y, v⟩ − ⟨u, v⟩⟨X, y⟩

)
,

(3.9)

where r = ⟨X,y⟩√
⟨y,y⟩

. Therefore for all z ∈ g we have:

gym(ym, [y, z]m) = ⟨X, [y, z]m⟩
(
ϕ′(r)F (y)

)
+ ⟨ym, [y, z]m⟩

(
ϕ2(r)− ϕ(r)ϕ′(r)r

)
= ⟨SX +Qym, [y, z]m⟩,

(3.10)

where

S = ϕ′(r)F (y), Q = ϕ2(r)− ϕ(r)ϕ′(r)r.

In [10] and in Theorem (3.4), we show that a non-zero vector y ∈ g is a geodesic vector if

and only if

(3.11) ⟨SX +Qym, [y, z]m⟩ = 0, ∀z ∈ g.

Now, by using equation (3.11) a vector y =
∑4

i=1 yiei of g is a geodesic vector if and only

if for each j = 1, 2, 3, 4,

(3.12)

⟨
S

4∑
i=1

xiei +Q

4∑
i=1

yiei,
[ 4∑

i=1

yiei, ej

]⟩
= 0.

Therefore, we get the following cases:

3.2.1. Case (1). 
j = 2 → S(x3y4 − x4y3) = 0,

j = 3 → S(x4y2 − x2y4) = 0,

j = 4 → S(x2y3 − x3y2) = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if and only if

y ∈ Span{e1}.



Geodesic vectors of (α, β)-metrics on hypercomplex Lie groups 279

Corollary 3.6. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invariant

metric ⟨, ⟩ and an invariant vector field X =
∑4

i=1 xiei on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.5) holds. Then geodesic vectors depending

on x2, x3 and x4.

Theorem 3.7. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invari-

ant metric ⟨, ⟩ and an invariant vector field X = x1e1 on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.5) holds. Then y ∈ g is a geodesic vector

of (M,F ) if and only if y is a geodesic vector of (M, ⟨, ⟩).

Proof. Let y ∈
∑4

i=1 yiei ∈ g. Let y is a geodesic vector of (M, ⟨, ⟩). By using (2.4) we have

⟨y, [y, ei]⟩ = 0 for each i = 1, 2, 3, 4. Therefore by using (3.12), y is a geodesic of (M,F ).

Conversely, let y =
∑5

i=1 yiei ∈ g is a geodesic vector of (M,F ), because ⟨X, [y, ei]⟩ = 0 for

each i = 1, 2, 3, 4, by using (3.12) we have ⟨y, [y, ei]⟩ = 0. □

In the following, we shall give a necessary and sufficient condition for an invariant (α, β)-

metric to be Berwald metric on a left invariant hypercomplex 4-dimensional simply connected

Lie groups with (3.5) holds.

Theorem 3.8. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Riemannian

metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-dimensional

simply connected Lie group and let (3.5) holds. If (M,F ) is of Berwald type, then ⟨X, e2⟩ =
⟨X, e3⟩ = ⟨X, e4⟩ = 0.

Proof. From Theorem (2.4), if the corresponding left invariant (α, β)-metric is of Berwald

type, then X satisfy

(3.13) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.5) the proof is complete. □

Corollary 3.9. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.5) holds. If ⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ =
0 and

⟨
[y,X], z

⟩
+
⟨
[z,X], y

⟩
= 0 holds, then (M,F ) must be Berwaldian.

Now, we shall give a necessary and sufficient condition for an invariant Randers metric

to be Douglas metric on a left invariant hypercomplex 4-dimensional simply connected Lie

groups with (3.5) holds.

Theorem 3.10. Suppose (M,F ) be the Randers metric induced by the Riemannian metric

⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-dimensional simply

connected Lie group and let (3.5) holds. Then (M,F ) is of Douglas type if and only if

⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ = 0.

Proof. From Theorem (2.3), the corresponding Randers metric is of Douglas type if and only

if X satisfy

(3.14) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.5) the proof is complete. □
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3.2.2. Case (2). 
j = 1 → Sx1y3 +Qy1y3 + Sx2y4 +Qy2y4 = 0,

j = 2 → Sx1y4 +Qy1y4 − (Sx2y3 +Qy2y3) = 0,

j = 3 → Sx1y1 +Qy21 + Sx2y2 +Qy22 = 0,

j = 4 → S(x2y1 − x1y2) = 0.

As a special case, if X = x3e3 + x4e4, then a vector y of g is a geodesic vector if and only

if y ∈ Span{e3, e4}.

Corollary 3.11. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invariant

metric ⟨, ⟩ and an invariant vector field X =
∑4

i=1 xiei on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.6) holds. Then geodesic vectors depending

on x1 and x2.

Theorem 3.12. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invariant

metric ⟨, ⟩ and an invariant vector field X = x3e3 + x4e4 on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.6) holds. Then y ∈ g is a geodesic vector

of (M,F ) if and only if y is a geodesic vector of (M, ⟨, ⟩).

Proof. The proof is the same as before. □

In the following, we shall give a necessary and sufficient condition for an invariant (α, β)-

metric to be Berwald metric on a left invariant hypercomplex 4-dimensional simply connected

Lie groups with (3.6) holds.

Theorem 3.13. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex

4-dimensional simply connected Lie group and let (3.6) holds. If (M,F ) is of Berwald type,

then ⟨X, e1⟩ = ⟨X, e2⟩ = 0.

Proof. From Theorem (2.4), if the corresponding left invariant (α, β)-metric is of Berwald

type, then X satisfy

(3.15) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.6) the proof is complete. □

Corollary 3.14. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex

4-dimensional simply connected Lie group and let (3.6) holds. If ⟨X, e1⟩ = ⟨X, e2⟩ = 0 and⟨
[y,X], z

⟩
+
⟨
[z,X], y

⟩
= 0 holds, then (M,F ) must be Berwaldian.

Now, we shall give a necessary and sufficient condition for an invariant Randers metric

to be Douglas metric on a left invariant hypercomplex 4-dimensional simply connected Lie

groups with (3.6) holds.

Theorem 3.15. Suppose (M,F ) be the Randers metric induced by the Riemannian metric

⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-dimensional simply

connected Lie group and let (3.6) holds. Then (M,F ) is of Douglas type if and only if

⟨X, e1⟩ = ⟨X, e2⟩ = 0.
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Proof. From Theorem (2.3), the corresponding Randers metric is of Douglas type if and only

if X satisfy

(3.16) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.6) the proof is complete. □

3.2.3. Case (3).
j = 1 → S(x2y2 + x3y3 + x4y4) +Q(y22 + y23 + y24) = 0,

j = 2 → Sx2y1 +Qy2y1 = 0,

j = 3 → Sx3y1 +Qy3y1 = 0,

j = 4 → Sx4y1 +Qy4y1 = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if and only if

y ∈ Span{e1}.

Corollary 3.16. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invariant

metric ⟨, ⟩ and an invariant vector field X =
∑4

i=1 xiei on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.7) holds. Then geodesic vectors depending

on x2, x3 and x4.

Theorem 3.17. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invari-

ant metric ⟨, ⟩ and an invariant vector field X = x1e1 on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.7) holds. Then y ∈ g is a geodesic vector

of (M,F ) if and only if y is a geodesic vector of (M, ⟨, ⟩).

Proof. The proof is the same as before. □

Now, we shall give a necessary and sufficient condition for an invariant (α, β)-metric to be

Berwald metric on a left invariant hypercomplex 4-dimensional simply connected Lie groups

with (3.7) holds.

Theorem 3.18. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex

4-dimensional simply connected Lie group and let (3.7) holds. If (M,F ) is of Berwald type,

then ⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ = 0.

Proof. From Theorem (2.4), if the corresponding left invariant (α, β)-metric is of Berwald

type, then X satisfy

(3.17) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.7) the proof is complete. □

Corollary 3.19. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.7) holds. If ⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ =
0 and

⟨
[y,X], z

⟩
+
⟨
[z,X], y

⟩
= 0 holds, then (M,F ) must be Berwaldian.

Now, we shall give a necessary and sufficient condition for an invariant Randers metric

to be Douglas metric on a left invariant hypercomplex 4-dimensional simply connected Lie

groups with (3.7) holds.
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Theorem 3.20. Suppose (M,F ) be the Randers metric induced by the Riemannian metric

⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-dimensional simply

connected Lie group and let (3.7) holds. Then (M,F ) is of Douglas type if and only if

⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ = 0.

Proof. From Theorem (2.3), the corresponding Randers metric is of Douglas type if and only

if X satisfy

(3.18) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.7) the proof is complete. □

3.2.4. Case (4).
j = 1 → S(2x2y2 + x3y3 + x4y4) +Q(2y22 + y23 + y24) = 0,

j = 2 → Sx2y1 +Qy2y1 = 0,

j = 3 → S(x3y1 − x2y4) +Q(y3y1 − y2y4) = 0,

j = 4 → S(x2y3 + x4y1) +Q(y4y1 + y2y3) = 0.

As a special case, if X = x1e1, then a vector y of g is a geodesic vector if and only if

y ∈ Span{e1}.

Corollary 3.21. Let (M,F ) be a Finsler space with infinite series metric F defined by an

invariant metric ⟨, ⟩ and an invariant vector field X =
∑4

i=1 xiei on left invariant hypercom-

plex 4-dimensional simply connected Lie group and let (3.8) holds. Then geodesic vectors

depending on x2, x3 and x4.

Theorem 3.22. Let (M,F ) be a Finsler space with (α, β)-metric F defined by an invari-

ant metric ⟨, ⟩ and an invariant vector field X = x1e1 on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.8) holds. Then y ∈ g is a geodesic vector

of (M,F ) if and only if y is a geodesic vector of (M, ⟨, ⟩).

Proof. The proof is the same as before. □

Now, we shall give a necessary and sufficient condition for an invariant (α, β)-metric to be

Berwald metric on a left invariant hypercomplex 4-dimensional simply connected Lie groups

with (3.8) holds.

Theorem 3.23. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex

4-dimensional simply connected Lie group and let (3.8) holds. If (M,F ) is of Berwald type,

then ⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ = 0.

Proof. From Theorem (2.4), if the corresponding left invariant (α, β)-metric is of Berwald

type, then X satisfy

(3.19) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.8) the proof is complete. □
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Corollary 3.24. Suppose (M,F ) be the left invariant (α, β)-metric induced by the Rie-

mannian metric ⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-

dimensional simply connected Lie group and let (3.8) holds. If ⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ =
0 and

⟨
[y,X], z

⟩
+
⟨
[z,X], y

⟩
= 0 holds, then (M,F ) must be Berwaldian.

Now, we shall give a necessary and sufficient condition for an invariant Randers metric

to be Douglas metric on a left invariant hypercomplex 4-dimensional simply connected Lie

groups with (3.8) holds.

Theorem 3.25. Suppose (M,F ) be the Randers metric induced by the Riemannian metric

⟨, ⟩ and the left invariant vector field X on left invariant hypercomplex 4-dimensional simply

connected Lie group and let (3.8) holds. Then (M,F ) is of Douglas type if and only if

⟨X, e2⟩ = ⟨X, e3⟩ = ⟨X, e4⟩ = 0.

Proof. From Theorem (2.3), the corresponding Randers metric is of Douglas type if and only

if X satisfy

(3.20) ⟨[y, z], X⟩ = 0, ∀y, z ∈ m.

Therefore, by using formula (3.8) the proof is complete. □
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