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ABSTRACT

For Krasner hyperrings, we study d-prime hyperideals
where d is a homo-derivation. Furthermore, we show
that every maximal d-hyperideal and d-prime hyper-
ideal is a prime hyperideal of a commutative hyperring.
Finally, we prove that if W is a d-prime hyperideal of
a hyperring R and d(qn) ∈ W for some q ∈ R, then
d2(q) ∈ W .
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1. Introduction

The notion of Krasner hyperrings was introduced by Krasner [10]. Marty [11] proposed

the idea of the hypergroup in 1934. Heidari and Davvaz [7] proposed hyperideals for ordered

semihypergroups in 2011. In [4, 20, 17, 19, 6, 15, 18], several new concepts and results of

ordered hyperstructures are described.

Derivation in rings was first explored by Posner [14] and later (2013) on hyperrings by

Asokkumar [1] and some fundamental properties were investigated in [9]. The notion of

derivations appeared on the ordered semihyperrings in [16]. Also, see [13, 5, 3, 2, 8].
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In this note, we establish some theorems on d-prime hyperideals and obtain several results

about homo-derivations on hyperrings.

Definition 1.1. The triple (R,⊕,⊙) is a hyperring if

(1) (R,⊕) is a canonical hypergroup [12];

(2) (R,⊙) is a semigroup and c⊙ 0 = 0 = 0⊙ c, ∀c ∈ R;

(3) The multiplication ⊙ is distributive with respect to the hyperaddition ⊕.

A subset ∅ ̸= K ⊆ R is a hyperideal if

(1) (K,⊕) is a canonical subhypergroup;

(2) for every k ∈ K and c ∈ R, c⊙ k, k ⊙ c ∈ K.

Definition 1.2. Let (R,⊕,⊙) be a hyperring. A function d : R → R is a derivation [9] if

∀c, c′ ∈ R,

(1) d(c⊕ c′) ⊆ d(c)⊕ d(c′);

(2) d(c⊙ c′) ∈ d(c)⊙ c′ ⊕ c⊙ d(c′),

Example 1.3. Consider the hyperring R = {0, 1,−1}:

⊕ 0 1 −1

0 0 1 −1

1 1 1 R

−1 −1 R −1

⊙ 0 1 −1

0 0 0 0

1 0 1 −1

−1 0 −1 1

Define d : R → R by

d(x) =



0, x = 0

−1, x = 1

1, x = −1

Then, d is a derivation on R.

2. d-prime hyperideals

Definition 2.1. Let (R,⊕,⊙) be a hyperring. A function Λ : R → R is a homomorphism if

∀c, c′ ∈ R,

(1) Λ(c⊕ c′) ⊆ Λ(c)⊕ Λ(c′);

(2) Λ(c⊙ c′) = Λ(c)⊙′ Λ(c′).

A derivation d is called a homo-derivation if

d(c⊙ c′) = d(c)⊙ d(c′)

Theorem 2.2. Let d be a homo-derivation of R. If K is a subhyperring of R, then

d−1(K) = {x ∈ R | d(x) ∈ K}
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is a subhyperring of R.

Proof. For any c, c′ ∈ d−1(K), we get d(c), d(c′) ∈ K. So,

d(c⊖ c′) ⊆ d(c)⊖ d(c′) ⊆ K.

Thus, c⊖ c′ ⊆ d−1(K). On the other hand,

d(c⊙ c′) = d(c)⊙ d(c′) ∈ K.

Hence, c⊙ c′ ∈ d−1(K). □

Definition 2.3. Let d be a homo-derivation of R. A hyperideal K of R, such that K ̸= R,

is called a d-prime hyperideal if

c⊙ c′ ∈ K ⇒ c ∈ K or d(c′) ∈ K, ∀c, c′ ∈ R.

Remark 2.4. [8] For a hyperideal K of R,
√
K := {x ∈ R | ∃n ∈ N such that xn ∈ K}

is a hyperideal of R.

Theorem 2.5. Let d be a homo-derivation of R. If K is a d-prime hyperideal of R, then√
K is a d-prime hyperideal of R.

Proof. Let c ⊙ c′ ∈
√
K and c /∈

√
K for c, c′ ∈ R. We show that d(c′) ∈

√
K. Since

c⊙ c′ ∈
√
K, we get

(c⊙ c′)n ∈ K for some n ∈ N.

So, cn ⊙ c′n ∈ K. Since K is a d-prime hyperideal and cn /∈ K, we have d(c′n) ∈ K. So,

(d(c′))n = d(c′n) ∈ K. Thus, d(c′) ∈
√
K. □

Example 2.6. Let R = {0, q, r, c} and

⊕ 0 q r c

0 0 q r c

q q {0, r} {q, c} r

r r {q, c} {0, r} q

c c r q 0

⊙ 0 q r c

0 0 0 0 0

q 0 q r c

r 0 r r 0

c 0 c 0 c

Clearly,

d(x) =


0, x = 0, c

r, x = q, r

is a homo-derivation on a hyperring (R,⊕,⊙). Clearly, K1 = {0, r} and K2 = {0, c} are

d-prime hyperideals of R.

Definition 2.7. A hyperideal K of R is said to be a d-hyperideal if
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d(x) ∈ K, ∀x ∈ K.

Theorem 2.8. Let d be a homo-derivation of a commutative hyperring (R,⊕,⊙). If K is a

maximal d-hyperideal and d-prime, then K is prime.

Proof. Let q ⊙ b ∈ K with q /∈ K and b /∈ K for q, b ∈ R. Let x ∈ y ⊕ z ⊆ K⊕ < q > for

y ∈ K and z ∈< q >. Then

x⊙ b ∈ (y ⊕ z)⊙ b

= (y ⊕ (r ⊙ q))⊙ b

= (y ⊙ b)⊕ (r ⊙ q ⊙ b)

⊆ (K ⊙R)⊕ (R⊙K)

⊆ K ⊕K

⊆ K.

where r ∈ R. So, b⊙ x ∈ K with b /∈ K. Since K is d-prime, we get

d(x) ∈ K ⊆ K⊕ < q >.

As K is a maximal d-hyperideal, K = K⊕ < q >. Hence, q ∈ K, a contradiction. Therefore,

K is a prime hyperideal of R. □

Theorem 2.9. Let d be a homo-derivation of a hyperring (R,⊕,⊙). Then K is a d-prime

hyperideal of R iff for any hyperideals V and W of R, V ⊙ W ⊆ K implies V ⊆ K or

d(W ) ⊆ K.

Proof. (⇒): Let K be a d-prime hyperideal of R, V ⊙W ⊆ K and V ⊈ K, where V,W are

hyperideals of R. We prove that d(W ) ⊆ K. As V ⊈ K, there exists v ∈ V such that v /∈ K.

Take any w ∈ W . Then,

v ⊙ w ∈ V ⊙W ⊆ K.

Since K is a d-prime hyperideal and v /∈ K, we get d(w) ∈ K for all w ∈ W . Thus,

d(W ) ⊆ K.

(⇐): Suppose that v ⊙ w ∈ K for some v, w ∈ R. Then < v ⊙ w >⊆ K. So,

< v > ⊙ < w >⊆< v ⊙ w >⊆ K.

Hence, < v >⊆ K or d(< w >) ⊆ K. Thus, v ∈ K or d(w) ∈ K. Thus, K is a d-prime

hyperideal. □

Theorem 2.10. Let d be a homo-derivation of a hyperring (R,⊕,⊙, 0, 1). If K is a d-prime

hyperideal and d(qn) ∈ K for some q ∈ R, then d2(q) ∈ K.
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Proof. Let q ∈ R and d(qn) ∈ K. Then,

d(qn) ∈ K

⇒ d(q ⊙ q ⊙ · · · ⊙ q︸ ︷︷ ︸
n-copies

) ∈ K

⇒ d(q)⊙ d(q)⊙ · · · ⊙ d(q)︸ ︷︷ ︸
n-copies

∈ K

⇒ (d(q))n ∈ K.

So,

(d(q))n−1 ⊙ d(q) ∈ K.

As K is a d-prime hyperideal,

(d(q))n−1 ∈ K or d(d(q)) ∈ K.

Thus,

(d(q))n−1 ∈ K or d2(q) ∈ K.

If (d(q))n−1 ∈ K, then

(d(q))n−2 ⊙ d(q) ∈ K.

As K is a d-prime hyperideal,

(d(q))n−2 ∈ K or d(d(q)) ∈ K.

By continuing this process, we get

d(q) ∈ K or d(d(q)) ∈ K.

If d(q) ∈ K, then 1 ⊙ d(q) = d(q) ∈ K. Since K is a d-prime hyperideal and 1 /∈ K, we

obtain d(d(q)) ∈ K, i.e., d2(q) ∈ K. □

3. Conclusions

This study was conducted to investigate the significant relationship between homo-

derivations and prime hyperideals in hyperrings. We have shown that every maximal homo-

derivation-hyperideal and homo-derivation-prime hyperideal is a prime hyperideal of a com-

mutative hyperring R. Furthermore, we proved that if W is a d-prime hyperideal of R and

d(qn) ∈ W for some q ∈ R, then d2(q) ∈ W . In our future work, we study fuzzy d-prime

hyperideals in hyperrings.
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