

Research Paper

ON *d*-PRIME HYPERIDEALS OF HYPERRINGS

MARYAM AKHOUNDI^{1,*} (D) AND SABER OMIDI² (D)

¹ Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran, maryam.akhoundi@mubabol.ac.ir

² Department of Education, Ministry of Education Iran, Tehran, Iran, omidi.saber@yahoo.com

ARTICLE INFO

ABSTRACT

Article history: Received: 05 August 2024 Accepted: 16 October 2024 Communicated by Ahmad Yousefian Darani

Keywords: hyperring hyperideal homo-derivation

MSC: 16Y99; 13N15 For Krasner hyperrings, we study *d*-prime hyperideals where *d* is a homo-derivation. Furthermore, we show that every maximal *d*-hyperideal and *d*-prime hyperideal is a prime hyperideal of a commutative hyperring. Finally, we prove that if *W* is a *d*-prime hyperrideal of a hyperring *R* and $d(q^n) \in W$ for some $q \in R$, then $d^2(q) \in W$.

1. INTRODUCTION

The notion of Krasner hyperrings was introduced by Krasner [10]. Marty [11] proposed the idea of the hypergroup in 1934. Heidari and Davvaz [7] proposed hyperideals for ordered semihypergroups in 2011. In [4, 20, 17, 19, 6, 15, 18], several new concepts and results of ordered hyperstructures are described.

Derivation in rings was first explored by Posner [14] and later (2013) on hyperrings by Asokkumar [1] and some fundamental properties were investigated in [9]. The notion of derivations appeared on the ordered semihyperrings in [16]. Also, see [13, 5, 3, 2, 8].

^{*}Address correspondence to M. Akhoundi, Clinical Research Development Unit of Rouhani Hospital, Babol University of Medical Sciences, Babol, Iran, maryam.akhoundi@mubabol.ac.ir.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Copyright © 2024 The Author(s). Published by University of Mohaghegh Ardabili.

In this note, we establish some theorems on *d*-prime hyperideals and obtain several results about homo-derivations on hyperrings.

Definition 1.1. The triple (R, \oplus, \odot) is a hyperring if

- (1) (R, \oplus) is a canonical hypergroup [12];
- (2) (R, \odot) is a semigroup and $c \odot 0 = 0 = 0 \odot c, \forall c \in R$;
- (3) The multiplication \odot is distributive with respect to the hyperaddition \oplus .

A subset $\emptyset \neq K \subseteq R$ is a *hyperideal* if

- (1) (K, \oplus) is a canonical subhypergroup;
- (2) for every $k \in K$ and $c \in R$, $c \odot k$, $k \odot c \in K$.

Definition 1.2. Let (R, \oplus, \odot) be a hyperring. A function $d : R \to R$ is a *derivation* [9] if $\forall c, c' \in R$,

- (1) $d(c \oplus c') \subseteq d(c) \oplus d(c');$
- (2) $d(c \odot c') \in d(c) \odot c' \oplus c \odot d(c'),$

Example 1.3. Consider the hyperring $R = \{0, 1, -1\}$:

\oplus	0	1	-1	
0	0	1	-1	
1	1	1	R	
-1	-1	R	-1	
\odot	0	1	-1	
0	0	0	0	
1 °		0	0	
1	0	1	-1	
			Ŭ	

Define $d: R \to R$ by

$$d(x) = \begin{cases} 0, & x = 0\\ -1, & x = 1\\ 1, & x = -1 \end{cases}$$

Then, d is a derivation on R.

2. *d*-prime hyperideals

Definition 2.1. Let (R, \oplus, \odot) be a hyperring. A function $\Lambda : R \to R$ is a homomorphism if $\forall c, c' \in R$,

- (1) $\Lambda(c \oplus c') \subseteq \Lambda(c) \oplus \Lambda(c');$
- (2) $\Lambda(c \odot c') = \Lambda(c) \odot' \Lambda(c').$

A derivation d is called a *homo-derivation* if

$$d(c \odot c') = d(c) \odot d(c')$$

Theorem 2.2. Let d be a homo-derivation of R. If K is a subhyperring of R, then $d^{-1}(K) = \{x \in R \mid d(x) \in K\}$ is a subhyperring of R.

Proof. For any $c, c' \in d^{-1}(K)$, we get $d(c), d(c') \in K$. So, $d(c \ominus c') \subseteq d(c) \ominus d(c') \subseteq K.$

Thus, $c \ominus c' \subseteq d^{-1}(K)$. On the other hand,

$$d(c \odot c') = d(c) \odot d(c') \in K$$

Hence, $c \odot c' \in d^{-1}(K)$.

Definition 2.3. Let d be a homo-derivation of R. A hyperideal K of R, such that $K \neq R$, is called a *d-prime hyperideal* if

$$c \odot c' \in K \Rightarrow c \in K \text{ or } d(c') \in K, \forall c, c' \in R.$$

Remark 2.4. [8] For a hyperideal K of R,

$$\sqrt{K} := \{ x \in R \mid \exists n \in \mathbb{N} \text{ such that } x^n \in K \}$$

is a hyperideal of R.

Theorem 2.5. Let d be a homo-derivation of R. If K is a d-prime hyperideal of R, then \sqrt{K} is a d-prime hyperideal of R.

Proof. Let $c \odot c' \in \sqrt{K}$ and $c \notin \sqrt{K}$ for $c, c' \in R$. We show that $d(c') \in \sqrt{K}$. Since $c \odot c' \in \sqrt{K}$, we get

 $(c \odot c')^n \in K$ for some $n \in \mathbb{N}$.

So, $c^n \odot c'^n \in K$. Since K is a d-prime hyperideal and $c^n \notin K$, we have $d(c'^n) \in K$. So, $(d(c'))^n = d(c'^n) \in K$. Thus, $d(c') \in \sqrt{K}$.

Example 2.6. Let $R = \{0, q, r, c\}$ and

\oplus	0	q		r		С
0	0	q		r		c
q	q	$\{0,r\}$		$\{q,c\}$		r
r	r	$\{q,c\}$		$\{0,r\}$		q
c	c	r		q		0
	\odot	0	q	r	c	
	0	0	0	0	0	
	q	0	q	r	c	
	r	0	r	r	0	
	c	0	c	0	c	
		(0.	x :	= 0.	С

Clearly,

$$d(x) = \begin{cases} 0, & x = 0, c \\ \\ r, & x = q, r \end{cases}$$

is a homo-derivation on a hyperring (R, \oplus, \odot) . Clearly, $K_1 = \{0, r\}$ and $K_2 = \{0, c\}$ are *d*-prime hyperideals of *R*.

Definition 2.7. A hyperideal K of R is said to be a *d*-hyperideal if

$$d(x) \in K, \forall x \in K.$$

Theorem 2.8. Let d be a homo-derivation of a commutative hyperring (R, \oplus, \odot) . If K is a maximal d-hyperideal and d-prime, then K is prime.

Proof. Let $q \odot b \in K$ with $q \notin K$ and $b \notin K$ for $q, b \in R$. Let $x \in y \oplus z \subseteq K \oplus \langle q \rangle$ for $y \in K$ and $z \in \langle q \rangle$. Then

$$\begin{array}{l} \odot b & \in (y \oplus z) \odot b \\ \\ & = (y \oplus (r \odot q)) \odot b \\ \\ & = (y \odot b) \oplus (r \odot q \odot b) \\ \\ & \subseteq (K \odot R) \oplus (R \odot K) \\ \\ & \subseteq K \oplus K \\ \\ & \subseteq K. \end{array}$$

where $r \in R$. So, $b \odot x \in K$ with $b \notin K$. Since K is d-prime, we get

x

$$d(x) \in K \subseteq K \oplus \langle q \rangle.$$

As K is a maximal d-hyperideal, $K = K \oplus \langle q \rangle$. Hence, $q \in K$, a contradiction. Therefore, K is a prime hyperideal of R.

Theorem 2.9. Let d be a homo-derivation of a hyperring (R, \oplus, \odot) . Then K is a d-prime hyperideal of R iff for any hyperideals V and W of R, $V \odot W \subseteq K$ implies $V \subseteq K$ or $d(W) \subseteq K$.

Proof. (\Rightarrow) : Let K be a d-prime hyperideal of R, $V \odot W \subseteq K$ and $V \nsubseteq K$, where V, W are hyperideals of R. We prove that $d(W) \subseteq K$. As $V \nsubseteq K$, there exists $v \in V$ such that $v \notin K$. Take any $w \in W$. Then,

$$v \odot w \in V \odot W \subseteq K.$$

Since K is a d-prime hyperideal and $v \notin K$, we get $d(w) \in K$ for all $w \in W$. Thus, $d(W) \subseteq K$.

(\Leftarrow): Suppose that $v \odot w \in K$ for some $v, w \in R$. Then $\langle v \odot w \rangle \subseteq K$. So,

$$< v > \odot < w > \subseteq < v \odot w > \subseteq K.$$

Hence, $\langle v \rangle \subseteq K$ or $d(\langle w \rangle) \subseteq K$. Thus, $v \in K$ or $d(w) \in K$. Thus, K is a d-prime hyperideal.

Theorem 2.10. Let d be a homo-derivation of a hyperring $(R, \oplus, \odot, 0, 1)$. If K is a d-prime hyperideal and $d(q^n) \in K$ for some $q \in R$, then $d^2(q) \in K$.

Proof. Let $q \in R$ and $d(q^n) \in K$. Then,

$$d(q^{n}) \in K$$

$$\Rightarrow d(\underline{q \odot q \odot \cdots \odot q}) \in K$$

$$\Rightarrow \underline{d(q) \odot d(q) \odot \cdots \odot d(q)}_{n\text{-copies}} \in K$$

$$\Rightarrow (d(q))^{n} \in K.$$

So,

$$(d(q))^{n-1} \odot d(q) \in K.$$

As K is a d-prime hyperideal,

$$(d(q))^{n-1} \in K \text{ or } d(d(q)) \in K.$$

Thus,

$$(d(q))^{n-1} \in K \text{ or } d^2(q) \in K.$$

If $(d(q))^{n-1} \in K$, then

$$(d(q))^{n-2} \odot d(q) \in K.$$

As K is a d-prime hyperideal,

$$(d(q))^{n-2} \in K \text{ or } d(d(q)) \in K.$$

By continuing this process, we get

$$d(q) \in K$$
 or $d(d(q)) \in K$.

If $d(q) \in K$, then $1 \odot d(q) = d(q) \in K$. Since K is a d-prime hyperideal and $1 \notin K$, we obtain $d(d(q)) \in K$, i.e., $d^2(q) \in K$.

3. Conclusions

This study was conducted to investigate the significant relationship between homoderivations and prime hyperideals in hyperrings. We have shown that every maximal homoderivation-hyperideal and homo-derivation-prime hyperideal is a prime hyperideal of a commutative hyperring R. Furthermore, we proved that if W is a d-prime hyperideal of R and $d(q^n) \in W$ for some $q \in R$, then $d^2(q) \in W$. In our future work, we study fuzzy d-prime hyperideals in hyperrings.

Acknowledgments

The authors wish to thank the anonymous referees for their suggestions and comments which significantly improved the presentation of results in this manuscript.

References

- A. Asokkumar, Derivations in hyperrings and prime hyperrings, Iran. J. Math. Sci. Inform., 8 (2013), 1-13.
- [2] D. Boucher and F. Ulmer, Linear codes using skew polynomials with automorphisms and derivations, Des. Codes. Cryptogr., 70(3) (2014), 405-431.
- [3] L. Creedon and K. Hughes, Derivations on group algebras with coding theory applications, Finite Fields Appl., 56 (2019), 247-265.
- [4] B. Davvaz, P. Corsini and T. Changphas, Relationship between ordered semihypergroups and ordered semigroups by using pseudoorder, European J. Combin., 44 (2015), 208-217.
- [5] M. M. Ebrahimi and H. Pajoohesh, Inner derivations and homo-derivations on l-rings, Acta Math. Hungar., 100(1-2) (2003), 157-165.
- [6] Z. Gu and X. Tang, Ordered regular equivalence relations on ordered semihypergroups, J. Algebra, 450 (2016), 384-397.
- [7] D. Heidari and B. Davvaz, On ordered hyperstructures, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 73(2) (2011), 85-96.
- [8] J. Jun, Algebraic geometry over hyperrings, Adv. Math., 323 (2018), 142-192.
- [9] L. Kamali Ardekani and B. Davvaz, Some notes on differential hyperrings, Iranian Journal of Science and Technology, 39(1)(2015), 101-111.
- [10] M. Krasner, A class of hyperrings and hyperfields, International J. Math. and Math. Sci., 6(2) (1983), 307-312.
- [11] F. Marty, Sur une generalization de la notion de groupe, in: Proceedings of the 8th Congress Math. Scandinaves, Stockholm, Sweden, (1934), 45-49.
- [12] J. Mittas, Hypergroups canoniques, Mathematica Balkanica, (1972), 165-179.
- [13] S. Omidi and B. Davvaz, Fundamentals of derivations on (ordered) hyper(near)-rings, Beitr Algebra Geom., 60(3) (2019), 537-553.
- [14] E. C. Posner, *Derivations in prime rings*, Proc. Amer. Math. Soc., 8 (1957), 1093-1100.
- [15] Y. Rao, S. Kosari, H. Guan, M. Akhoundi and S. Omidi, A short note on the left A-Γ-hyperideals in ordered Γ-semihypergroups, AKCE International Journal of Graphs and Combinatorics, 19(1) (2022), 49-53.
- [16] Y. Rao, S. Kosari, Z. Shao and S. Omidi, Some properties of derivations and m-k-hyperideals in ordered semihyperrings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 83(3) (2021), 87-96.
- [17] Y. Rao, S. Kosari, Z. Shao, M Akhoundi and S. Omidi, A study on A-I-Γ-hyperideals and (m, n)-Γhyperfilters in ordered Γ-Semihypergroups, Discrete Dyn. Nat. Soc., 2021 (2021), 10 pages.
- [18] Z. Shao, X. Chen, S. Kosari and S. Omidi, On some properties of right pure (bi-quasi-)hyperideals in ordered semihyperrings, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 83(4) (2021), 95-104.
- [19] J. Tang, X. Feng, B. Davvaz and X. Y. Xie, A further study on ordered regular equivalence relations in ordered semihypergroups, Open Math., 16 (2018), 168-184.
- [20] N. Tipachot and B. Pibaljommee, Fuzzy interior hyperideals in ordered semihypergroups, Ital. J. Pure Appl. Math., 36 (2016), 859-870.