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1. Introduction

Algebraic structures play a significant role in the study and analysis of many-valued logics,

so that the nature of these logics becomes clearer with the help of algebraic tools. Various

logical algebras have been presented and worked on as semantic systems for non-classical

logical systems, among which two important structures called BL-algebras and MV -algebras

can be mentioned.

In 1958, C. C. Chang [2] introduced MV -algebras in order to provide an algebraic proof

for the completeness of  Lukasiewicz many-valued logic. This algebraic structure quickly
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attracted the attention of many researchers, and interesting results were obtained in this

field.

In 1998, Hájek introduced a generalization of many-valued logic called ”basic logic” (BL,

for short). This logic clarified the common connection between important many-valued logics

such as  Lukasiewicz and Gödel. He had two motivations for introducing basic logic from an

algebraic point of view:

One is to work on logical propositions from an algebraic point of view, and the other is to

obtain an algebraic concept for the study of continuous triangular norms on real unit interval

[0, 1]. Since the double negation law (x−− = x) does not hold in BL-algebras, these algebraic

structures are the generalization of MV -algebras.

The notion of ideals plays a fundamental and key role in many algebraic structures, such

as commutative rings and MV -algebras, while in some other algebraic structures, such as

BL-algebras and residuated lattices, due to the lack of a suitable additional operation, the

focus is on the filters.

In 2013, C. Lele [7] et al. introduced the notion of ideals in BL-algebras and showed that

filters and ideals behave quite differently. They proved that unlike MV -algebras, filters and

ideals in BL-algebras are not dual of each other. They showed that quotient BL-algebras

which are constructed via ideals are MV -algebras. Also, they demonstrated that x ∈ I if

and only if x−− ∈ I for every ideal I, whereas if we replaced the ideals with filters, both of

these corollaries does not hold in the case of filters in BL-algebras.

In 2019, N. Dolatabadi and J. Moghaderi [9] introduced σ-filters, where σ is a

BL-homomorphism of A. They investigated some properties of σ-filters and obtained re-

sults in this context. For example, they mentioned the relation between special filters and

σ-filters in BL-algebras.

In this paper, based on the above explanations and the fact that the behavior of ideals

and filters is completely different in BL-algebras and that these two concepts are not dual to

each other, we consider σ as a BL-homomorphism and define σ-ideals and primary ideals in

BL-algebras. Then we introduce the σ-prime, σ-primary and σ-invariant ideals and obtain

some results about them.

The structure of the paper is as follows:

In Section 2, we recall some definitions and results about BL-algebras that we use in the

sequel. In Section 3, we introduce the notion of σ-ideals, primary ideals in BL-algebras

and investigate some propositions about them. In Section 4, after introducing the σ-prime,

σ-primary and σ-invariant, we obtain some relations between them.

2. Preliminaries

In this section, we review some definitions and properties about the BL-algebras and

related topics that will be used in this paper. For more details, refer to the references.

Definition 2.1. [5]. An algebra A = (A,∧,∨,�,−→, 0, 1) of type (2, 2, 2, 2, 0, 0) is called a

BL-algebra, if it satisfying the following conditions:

(BL1) (A,∧,∨, 0, 1) is a bounded lattice,

(BL2) (A,�, 1) is a commutative monoid,

(BL3) (�,−→) forms an add joint pair; that is x � y ≤ z, if and only if x ≤ y −→ z, for

all x, y, z ∈ A,



Some results on ideals via homomorphisms in BL-algebras 169

(BL4) x ∧ y = x� (x −→ y),

(BL5) (x −→ y) ∨ (y −→ x) = 1.

For any BL-algebra A, L(A) = (A,∧,∨, 0, 1) is a bounded distributive lattice, which is

called lattice reduct of A.

Theorem 2.2. [5, 12]. Let A be a BL-algebra. Then the following hold for all x, y, z ∈ A:

(1) x ≤ y, iff x −→ y = 1,

(2) x −→ (y −→ z) = (x� y) −→ z = y −→ (x −→ z),

(3) x� y ≤ x, y, hence x� y ≤ x ∧ y,

(4) x ∨ x− = 1 implies x ∧ x− = 0,

(5) 1 −→ x = x, x −→ x = 1, x ≤ y −→ x and x≡ = x−,

(6) 0− = 1 and 1− = 0,

(7) x� x− = 0, x� y = 0, iff x ≤ y− and x ≤ x=,

(8) (x� y)− = x −→ y−,

(9) (x −→ y)= = x= −→ y=, (x∧y)= = x=∧y=, (x∨y)= = x=∨y= and (x�y)= = x=�y=,

(10) if x ≤ y, then y −→ z ≤ x −→ z, z −→ x ≤ z −→ y and x� z ≤ y � z,

(11) x� (y −→ z) ≤ (x� y) −→ z,

(12) (x ∧ y)− = x− ∨ y− and (x ∨ y)− = x− ∧ y−.

Definition 2.3. [5]. Let A be a BL-algebra and F be a non-empty subset of A. Then F is

called a filter of A, if it satisfies:

(F1) For every x, y ∈ F , x� y ∈ F ,

(F2) For every x, y ∈ A, if x ≤ y and x ∈ F , then y ∈ F .

Definition 2.4. [5, 12]. Let A be a BL-algebra. Then the order of an element x ∈ A is the

smallest integer n such that xn = 0, where x0 = 1, xn = xn−1 � x, denoted by ord(x) = n,

and if no such n exists, then ord(x) = ∞. An element 0 6= a ∈ A is called a zero divisor

element, if a� b = 0, for some 0 6= b ∈ A.

An element a ∈ A is called a nilpotent element if an = 0, for some n ∈ N.

Proposition 2.5. [13]. A BL-algebra A is local if and only if for all x ∈ A, ord(x) <∞ or

ord(x−) <∞.

Definition 2.6. [2]. An algebra (M,⊕,−, 0) of type (2, 1, 0) is an MV -algebra, if satisfying

the following conditions:

(MV1) (M,⊕, 0) is an abelian monoid,

(MV2) (x−)− = x= = x,

(MV3) 0− ⊕ x = 0−,

(MV4) (x− ⊕ y)− ⊕ y = (y− ⊕ x)− ⊕ x.

A BL-algebra A is called Gödel algebra, if x� x = x2 = x, for any x ∈ A. A BL-algebra

A is an MV -algebra, if x= = x, for any x ∈ A [5].

A non-empty subset I of an MV -algebra A is called an ideal, if the following properties

are satisfied:

(i) for any a, b ∈ I, a⊕ b ∈ I,

(ii) if a ≤ b and b ∈ I, then a ∈ I [2].

An ideal P of an MV -algebra A is primary, if and only if for any a, b ∈ A, a� b ∈ P implies

an ∈ P or bn ∈ P , for some n ∈ N [1].
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Theorem 2.7. [3]. For an MV -algebra A and a proper ideal P ⊆ A, the following conditions

are equivalent:

(i) P is primary ideal,

(ii) A/P is a local MV -algebra,

(iii) a� b ∈ P implies an ∈ P or bn ∈ P , for some n ∈ N, where a� b = (a− ⊕ b−)−,

(iv) for any a ∈ A, there exists some n ∈ N such that an ∈ P or (a−)n ∈ P .

Proposition 2.8. [7]. If A is a BL-algebra, then the operation ”�” is associative and

compatible with the order relation, where x � y := x− −→ y, i.e., x ≤ y and z ≤ t imply

x� z ≤ y � t, for any x, y, z, t ∈ A.

Through the paper, we mean A is a BL-algebra. C. Lele and et al. in [7], introduced the

notion of ideals in BL-algebra as follows:

A non-empty subset I of A is an ideal, if it satisfying the following conditions:

(i) x� y ∈ I, for every x, y ∈ I,

(ii) If x ≤ y and y ∈ I, then x ∈ I, for every x, y ∈ A.

The set of all ideals of A is denoted by Id(A).

Remark 2.9. [7]. For every ideal I of A, x ∈ I if and only if x= ∈ I, for every x ∈ A.

We recall that [5] if A and B are two BL-algebras, then a mapping f : A −→ B is called

a BL-homomorphism, if the following conditions hold, for all x, y ∈ A:

(i) f(0A) = 0B,

(ii) f(x −→ y) = f(x) −→ f(y),

(iii) f(x� y) = f(x)� f(y).

Also, f(x∧ y) = f(x)∧ f(y), f(x∨ y) = f(x)∨ f(y), f(x−) = (f(x))−, and if x ≤ y, then

f(x) ≤ f(y), for any x, y ∈ A.

The kernel of f is defined by Kerf = {x ∈ A : f(x) = 0B}.

Proposition 2.10. [7]. Let I be an ideal of A. Then the quotient BL-algebra A/I is always

an MV -algebra.

Remark 2.11. [7]. If I is an ideal of A, then A/I = {a/I = [a] : a ∈ A} and [a] = [b] iff

a� b− ∈ I and a− � b ∈ I. Therefore, a/I = 0/I iff a ∈ I and a/I = 1/I iff a− ∈ I.

Theorem 2.12. [7]. A set I containing 0 of A is an ideal, if and only if for every x, y ∈ A,

x− � y ∈ I and x ∈ I imply y ∈ I.

From [7], for every subset X of A, the smallest ideal containing X is called the ideal

generated by X and it is denoted by 〈X〉, i.e., 〈X〉 = ∩{I : I is an ideal of A, X ⊆ I}.
Also, the authors in [7] proved that 〈∅〉 = {0} and if X 6= ∅, then 〈X〉 = {a ∈ A : a ≤
(. . . ((x1 � x2)� x3) . . .)� xn, for some x1, x2, . . . , xn ∈ X}.

Theorem 2.13. [8]. Let X be a non-empty subset of A. Then 〈X〉 = {a ∈ A : (x−1 � . . .�
x−n )→ a− = 1, for some x1, x2, . . . , xn ∈ X}, where 〈X〉 is the ideal generated by X.

Definition 2.14. Let I be a proper ideal of A. Then

(i) I is a prime ideal, if it satisfies for every x, y ∈ A, (x −→ y)− ∈ I or (y −→ x)− ∈ I
[7],
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(ii) I is a maximal ideal, if it does not properly contained in any other proper ideal of A,

[7],

(iii) I is called an obstinate ideal, if x, y /∈ I, then x � y− ∈ I and y � x− ∈ I, for all

x, y ∈ A, [10].

Corollary 2.15. [7]. I is a prime ideal of A, if and only if for every x, y ∈ A, x ∧ y ∈ I
implies that x ∈ I or y ∈ I.

Definition 2.16. [11]. Let I be a proper ideal of A. The intersection of all maximal ideal

of A that contain I is called the radical of I and it is denoted by rad(I). rad(I) is an ideal

of A and I ⊆ rad(I).

Theorem 2.17. [11]. Let I be a proper ideal of A. Then rad(I) = {x ∈ A : (x −→
(x−)n)− ∈ I, ∀ n ∈ N}.

Lemma 2.18. [4]. The following statements are equivalent, for all x, y, z ∈ A:

(a) ((x −→ y) −→ y) −→ x = y −→ x,

(b) (x −→ y) −→ y = (y −→ x) −→ x,

(c) If x −→ z ≤ y −→ z, z ≤ x, then y ≤ x,

(d) If x −→ z ≤ y −→ z, z ≤ x, y, then y ≤ x,

(e) If y ≤ x, then (x −→ y) −→ y ≤ x,

(f) A is an MV -algebra.

Theorem 2.19. [11]. Let M be a proper ideal of A. Then the following conditions are

equivalent:

(1) M is a maximal ideal of A,

(2) for all x /∈M , there exists n ∈ N, (x−)n ∈M ,

(3)
A

M
is a locally finite MV -algebra.

Proposition 2.20. [7]. An ideal I of A is a prime ideal, if and only if the quotient BL-

algebra
A

I
is an MV -chain.

Definition 2.21. [13]. A proper filter F is called a primary filter, if for all x, y ∈ A,

(x� y)− ∈ F implies (xn)− ∈ F or (yn)− ∈ F , for some n ∈ N ∪ {0}.

Proposition 2.22. [14]. Let f : A → B be a BL-homomorphism and I ∈ Id(B). Then

f←(I) ∈ Id(A).

Proposition 2.23. [14]. Let f : A→ B be a BL-epimorphism and I be an ideal of A. Then

f(I) ∈ Id(B).

3. σ-ideals and primary ideals in BL-algebra

In this section, by considering the mapping σ : A −→ A as a BL-homomorphism, we

introduce the notion of σ-ideals and primary ideals in BL-algebras and derive some results

about them.

Lemma 3.1. Let Y be an ideal of A. Then M(Y ), K(A) and E(Y ) are ideals of A, where

K(A) = {a ∈ A : a= = 0}, M(Y ) = {y ∈ A : y= ∈ Y } and E(Y ) = {t ∈ A : s− ≤
t−, for some s ∈ Y }.
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Proof. (i) K(A) 6= ∅ (since 0 ∈ K(A)). Suppose that r, s ∈ K(A). Then r= = 0 and s= = 0.

We have (r � s)= = (r− −→ s)= = r≡ −→ s= = (r− −→ s=) = (r− −→ 0) = r= = 0, i.e.,

r � s ∈ K(A). Suppose that r, s ∈ A with r ≤ s and s ∈ K(A). Since r= ≤ s= and s= = 0,

r= = 0. This means that r ∈ K(A).

(ii) Let Y be an ideal of A. 0 ∈ M(Y ) and M(Y ) 6= ∅. If r, s ∈ M(Y ), then r=, s= ∈ Y .

Therefore, by Remark 2.9, r, s ∈ Y . Consider r=�s= = r≡ −→ s= = (r− −→ s)= = (r�s)=.

Since r � s ∈ Y , (r � s)= ∈ Y . Therefore, r � s ∈ M(Y ). If r, s ∈ A, r ≤ s and s ∈ M(Y ),

then r= ≤ s=. As s= ∈ Y and Y is an ideal of A, we get r= ∈ Y and r ∈M(Y ).

(iii) E(Y ) 6= ∅ (since 0 ∈ E(Y )). If s, t ∈ E(Y ), then a−1 ≤ s−, a−2 ≤ t−, for some a1, a2 ∈ Y .

We have s= ≤ a=1 , t= ≤ a=2 . By the compatibility of the operation ”�”, we get that

(s� t)= = s=� t= ≤ a=1 �a=2 = (a1�a2)=, i.e., (a1�a2)≡ = (a1�a2)− ≤ (s� t)≡ = (s� t)−.

Therefore, (a1 � a2)− ≤ (s � t)−. Since a1, a2 ∈ Y and Y is an ideal, a1 � a2 ∈ Y . This

means that s � t ∈ E(Y ). Now, let s, t ∈ A, s ≤ t and t ∈ E(Y ). Then a− ≤ t−, for some

a ∈ Y . Since t− ≤ s−, we conclude that s ∈ E(Y ). �

Theorem 3.2. If I is an ideal of A and M is a non-empty subset of A, then the following

statements hold:

(i) σ(E(Y )) ⊆ E(σ(Y )) and the equality holds, if σ is a BL-isomorphism,

(ii) σ(M(Y )) ⊆M(σ(Y )) and the equality holds, if σ is a BL-isomorphism,

(iii) M(σ(I)) ⊆M(σ(M(I))),

(iv) σ(Yl) ⊆ σ(Y )l, where Yl = {a ∈ A : a −→ y = y, for all y ∈ Y },
(v) If σ is surjective, and ∀ y ∈ A ∃ n ∈ N; σ(y) ≤ yn, then σ(Il) = (σ(I))l.

Proof. (i) Let α ∈ σ(E(Y )). There exists y ∈ E(Y ) such that α = σ(y). We have a− ≤ y−,

for some a ∈ Y and a− −→ y− = 1. So σ(a− −→ y−) = σ(1) = 1 and σ(a−) = (σ(a))− ≤
σ(y−) = σ(y)− = α−. This means that α ∈ E(σ(Y )). For the equality, if t ∈ E(σ(Y )),

there exist a1 ∈ σ(Y ), y1 ∈ Y such that a−1 ≤ t− and a1 = σ(y1). It is enough to show that

t = σ(y2), for some y2 ∈ E(Y ). We take a2 = σ−1(a1) and y2 = σ−1(t) (σ is isomorphism).

Therefore,

a−2 ≤ y
−
2 ⇐⇒ (σ−1(a1))

− ≤ (σ−1(t))−

⇐⇒ (σ−1(a1))
− −→ (σ−1(t))− = 1

⇐⇒ σ(σ−1(a1))
− −→ σ(σ−1(t))− = 1

⇐⇒ a−1 −→ t− = 1

⇐⇒ a−1 ≤ t
−.

The last relation is true by the fact that t ∈ E(σ(Y )). Therefore, t ∈ σ(E(Y )).

(ii) Let α ∈ σ(M(Y )). Then α = σ(y), for some y ∈M(Y ). Since α = σ(y), α− = (σ(y))− =

σ(y−). Therefore, α= = σ(y)= = σ(y=) and α= = σ(y=) ∈ σ(Y ). For the equality, let

t ∈ M(σ(Y )). Then t= ∈ σ(Y ). We show that t = σ(y), for some y ∈ M(Y ). Take

y = σ−1(t), so y= = (σ−1(t))= = σ−1(t=) ∈ σ−1(σ(Y )) = Y (where σ isomorphism). This

means that y ∈M(Y ) and hence t ∈ σ(M(Y )).

(iii) Let t ∈M(σ(I)). Then t= ∈ σ(y), for some y ∈ I. Based on Remark 2.9, y= ∈ I and so

y ∈M(I). Therefore, t ∈M(σ(M(I)).

(iv) Let t ∈ σ(Yl). Then there exists z ∈ Yl such that t = σ(z). We have z −→ y = y, for

any y ∈ Y . Therefore, σ(z) −→ σ(y) = σ(y) and σ(z) ∈ (σ(Y ))l. Thus, t ∈ (σ(Y ))l.
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(v) Since σ is onto, I ⊆ σ(I) and I = σ(I). Therefore, for the proof of (σ(I))l ⊆ σ(Il),

we show that Il ⊆ σ(Il). Let t ∈ Il, then t −→ y = y, for all y ∈ I. Since σ is onto,

σ(z) = t, for some z ∈ A. Therefore, there exists n ∈ N, σ(z) ≤ zn. Based on Theorem 2.2,

zn −→ y ≤ σ(z) −→ y = y. But zn ≤ z, so z −→ y ≤ zn −→ y. Then z −→ y = y. This

means that z ∈ Il, i.e., t = σ(z) ∈ σ(Il). By (iv), the proof of the other side is clear. �

From now until the end of the paper, σ : A −→ A is considered as a BL-homomorphism.

Definition 3.3. An ideal I of A is σ-ideal, if σ(I) ⊆ I.

Example 3.4. Let A = {0, a, b, 1}. Define ”� ” and ” −→ ” as follows:

� 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

−→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b 0 a 1 1

1 0 a b 1

Then it is easy to see that A is a BL-algebra and I = {0, a} is an ideal of A. If we consider

σ : A −→ A by σ(a) = 1, σ(b) = 0, then σ(I) = {0, 1} * I. So I is not a σ-ideal. Also, we

consider A in [7, Example 3 · 5], σ = idA and the ideal J = {0, d} of A. Then J is a σ-ideal.

Theorem 3.5. Let I be an ideal of A and σ : A −→ A be a BL-homomorphism. Then I is a

σ-ideal of A, if and only if σ− is a well define map, where σ− :
A

I
−→ A

I
, by σ−([y]) = [σ(y)].

Proof. We suppose that I is a σ-ideal of A. Let [y], [z] ∈ A

I
such that [y] = [z]. Then

y− � z ∈ I and z− � y ∈ I. We have σ(y− � z) ∈ σ(I) ⊆ I, i.e., σ(y−) � σ(z) ∈ I. Also,

σ(z−)�σ(y) ∈ I. Therefore, σ(y) ∼ σ(z) and hence [σ(y)] = [σ(z)]. Conversely, let t ∈ σ(I).

Then t = σ(x), for some x ∈ I. Since x ∈ I, we have [x] = [0]. Therefore, σ−[x] = σ−[0].

This means that [σ(x)] = [σ(0)], and hence t = σ(x) ∈ I. �

Remark 3.6. We note that, if the σ-ideal property of Theorem 3.5 is drop, then in general, σ−

is not well define. If we consider A in Example 3.4, I = {0, a} as an ideal which is not σ-ideal

(σ(I) = {0, 1} * I) and σ : A −→ A by σ(a) = 1, σ(b) = 0 as a BL-homomorphism, we have

a ∈ I and [a] = [0]. We know that 1 /∈ I, i.e., [1] 6= [0], in other words, [σ(a)] 6= [σ(0)]. This

means that σ−[a] 6= σ−[0] and hence σ− is not well define.

Lemma 3.7. If I and J are σ-ideals of A, then the following conditions are satisfied:

(i) If σn(I) is an ideal, then for every n ∈ N, σn(I) is a σ-ideal,

(ii) I ∩ J is a σ-ideal,

(iii) 〈I ∪ J〉 is a σ-ideal,

(iv) M(I) and rad(I) are σ-ideals of A,

(v) E(I) is a σ-ideal.

Proof. (i) By induction, let n = 2. Then σ2(I) = σ(σ(I)) ⊆ σ(I) ⊆ I. Now, we suppose that

for n = k. σk(I) ⊆ I, then σk+1(I) = σ(σk(I)) ⊆ σ(I) ⊆ I.

(ii) It is clear by the fact that I ∩ J ⊆ I, J .

(iii) Let t ∈ σ(〈I ∪ J〉). Then there exists l ∈ 〈I ∪ J〉 such that t = σ(l). Since l ∈
〈I ∪ J〉, (a−1 � . . . � a−n ) −→ l− = 1, for some a1, a2, . . . , an ∈ I ∪ J , n ∈ N. Therefore,

σ(a−1 )� . . .� σ(a−n ) −→ σ(l−) = 1. In other words, (σ(a−1 )� . . .� σ(a−n )) −→ t− = 1. Now,
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the proof is complete, since each σ(ai) ∈ I ∪ J , 1 ≤ i ≤ n.

(iv) Let I be a σ-ideal of A. We show that σ(M(I)) ⊆ M(I). Let α ∈ σ(M(I)). Then

α = σ(a), for some a ∈ M(I). Since a ∈ M(I), a= ∈ I and σ(a=) ∈ σ(I) ⊆ I. Therefore,

(σ(a))= = σ(a=) ∈ I, i.e., α= ∈ I, and hence α ∈ M(I). Now, let t ∈ σ(rad(I)). Then

t = σ(b), for some b ∈ rad(I). By Theorem 2.17, [b −→ (b−)n]− ∈ I, for every n ∈ N. We

get σ[b −→ (b−)n] ∈ σ(I) ⊆ I, for every n ∈ N. This means that [σ(b) −→ (σ(b))−)n]− ∈ I.

Therefore, [t −→ (t−)n]− ∈ I and hence t ∈ rad(I).

(v) Let t ∈ σ(E(I)). Then t = σ(y), for some y ∈ E(I). We have a− ≤ y−, for some a ∈ I.

Also, σ(a−) ≤ σ(y−), i.e., (σ(a))− ≤ (σ(y))−. In other words, σ((a))− ≤ t−. Since a ∈ I,

σ(a) ∈ σ(I) ⊆ I, so t ∈ E(I). �

Corollary 3.8. The structure 〈Iσ(A),∧,∨, {0}, A〉 is a bounded lattice, where

Iσ(A) = {I : I is a σ − ideal of A}
denotes the set of all σ-ideals of A.

Proof. Let K and J be two σ-ideals of A. Then K ∨ J = 〈K ∪ J〉, K ∧ J = K ∩ J . By

Lemma 3.7, both K ∨ J , K ∧ J are σ-ideals of A. As for every I ∈ Iσ(A), {0} ⊆ I ⊆ A, we

conclude the lattice is bounded. �

Lemma 3.9. Let A be an MV -algebra, and M(I) a σ-ideal of A. Then I is a σ-ideal of A.

Proof. Let I be an ideal of A and t ∈ σ(I). Then t = σ(a), for some a ∈ I. We know that

I ⊆M(I). From Remark 2.9, for every a ∈ I, a= ∈ I, i.e., a ∈M(I). So σ(I) ⊆ σ(M(I)) ⊆
M(I). By hypothesis, t ∈M(I). Therefore, we get t= ∈ I and hence t ∈ I. �

Proposition 3.10. Let A1, A2 be two BL-algebras and I1, I2 ideals of A1 and A2 respectively.

If α : A1 −→ A1, β : A2 −→ A2 and f : A1 × A2 −→ A1 × A2 by f(x, y) = (α(x), β(y)) are

BL-homomorphisms, for all (x, y) ∈ A1 × A2, then I1 × I2 is an f -ideal of A1 × A2, if and

only if I1 is an α-ideal of A1 and I2 is a β-ideal of A2.

Proof. Consider that (t, s) ∈ f(I1× I2). Then (t, s) = f(x, y), for some (x, y) ∈ I1× I2. This

means that (t, s) = (α(x), β(y)). Since I1 and I2 are α and β-ideal, respectively, we have

α(x) ∈ α(I1) ⊆ I1 and β(y) ∈ β(I2) ⊆ I2, i.e., (t, s) = (α(x), β(y)) ∈ I1 × I2.
Conversely, we show that I1 and I2 are α and β-ideals, respectively. Let x ∈ α(I1) and

y ∈ β(I2), then x = α(a1) and y = β(a2), for some a1 ∈ I1 and a2 ∈ I2. We know that

(x, y) = (α(a1), β(a2)) = f(a1, a2) ∈ f(I1 × I2) ⊆ I1 × I2. Therefore, (x, y) ∈ I1 × I2 and

hence x ∈ I1, y ∈ I2. �

Theorem 3.11. If I is an ideal of A, then the following statements are equivalent:

(i) I is a σ-ideal of A,

(ii) For any x ∈ I, x� σ(x) ∈ I,

(iii) σ− :
A

I
−→ A

I
, by σ−[a] = [σ(a)] is a BL-homomorphism.

Proof. (i)=⇒ (ii) Let x ∈ I. Then σ(x) ∈ σ(I) ⊆ I and σ(x) ∈ I. Since I is an ideal of A,

we get x� σ(x) ∈ I, for any x ∈ I.

(ii)=⇒ (i) Let t ∈ σ(I). Then t = σ(a), for some a ∈ I. Based on (ii), we conclude

a�σ(a) ∈ I. We know that σ(a)�a− ≤ σ(a). Therefore, σ(a) ≤ a− −→ σ(a) = a�σ(a) ∈ I,

i.e., t = σ(a) ∈ I.

(iii)⇐⇒ (i) The proof is clear from Theorem 3.5. �
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Proposition 3.12. If I, J are ideals of A and J ⊆ I, then
I

J
is σ−-ideal of

A

J
if and only

if I is a σ-ideal of A.

Proof. Let t ∈ σ(I). Then t = σ(a), for some a ∈ I and [a] ∈ I

J
. Therefore, σ−[a] ∈

σ−
[ I
J

]
⊆ I

J
. Since [σ(a)] ∈ I

J
, σ(a) ∈ I, i.e., t ∈ I. Hence σ(I) ⊆ I.

Conversely, let [x] ∈ σ−
[ I
J

]
. Then there exists [y] ∈ I

J
, [x] = σ−([y]) = [σ(y)]. Since

[y] ∈ I

J
, we have [y] =

y

J
∈ I

J
and y ∈ I. Therefore, σ(y) ∈ σ(I) ⊆ I and σ(y) ∈ I. This

means that [x] = [σ(y)] =
σ(y)

J
∈ I

J
. Therefore, [x] ∈ I

J
and hence σ(y) ∈ I. �

Corollary 3.13. If A is a Gödel algebra, then any ideal of A is a σ-ideal, if and only if for

all x ∈ A, x− ≤ σ−(x).

Proof. Let I be an ideal of A and for every x ∈ A, x− ≤ σ−(x). We show that σ(I) ⊆ I.

If t ∈ σ(I), we have t = σ(s), for some s ∈ I. Since s ∈ I, s ∈ A and s− ≤ (σ(s))− = t−.

Therefore, t ≤ t= ≤ s=. From Remark 2.9 and the fact that s ∈ I, we get t ∈ I.

Conversely, let x ∈ A. We know that x ∈ 〈x〉 and by hypothesis, σ(x) ∈ σ(〈x〉) ⊆ 〈x〉, i.e.,

σ(x) ∈ 〈x〉. Therefore, (x− � . . . � x−) −→ σ(x−) = 1, for some n ∈ N. This means that

(x−)n = x− −→ σ−(x) = 1, i.e., x− ≤ (σ(x))−. �

Theorem 3.14. Let σ : A −→ A be a BL-homomorphism such that (x− � σ−(x)) −→
(x−)n = (x−)n, for every x ∈ A and n ∈ N. If x= = x, for every x ∈ A, then x− ≤ σ−(x).

Proof. We know that x ∈ 〈x〉, for every x ∈ A. Then σ(x) ∈ σ(〈x〉) ⊆ 〈x〉 and by Theorem

2.13, we get (x−)n −→ (σ(x))− = 1, for some n ∈ N. This means that (x−)n ≤ (σ(x))−. By

Theorem 2.2 (11), we obtain x−�((σ(x))− −→ (x−)n) ≤ (x−�(σ(x))−) −→ (x−)n = (x−)n.

Therefore, (σ(x))− −→ (x−)n ≤ x− −→ (x−)n. As (x−)n ≤ (σ(x))− and (σ(x))− −→
(x−)n ≤ x− −→ (x−)n, we apply Lemma 2.18 (c)⇐⇒ (f), so x− ≤ (σ(x))−. �

Proposition 3.15. If g : A1 −→ A2, σ : A1 −→ A1 and α : A2 −→ A2 are BL-

homomorphism and αg = gσ, then the following statements hold:

(i) If g is an epimorphism and I is a σ-ideal of A1, then g(I) is a σ-ideal of A2,

(ii) g−1(J) is a σ-ideal of A1, for every α-ideal J of A2.

Proof. (i) Let t ∈ α(g(I)). Then there exists s ∈ g(I) such that t = α(s). Since α(g(I)) =

g(σ(I)) and σ(I) ⊆ I, we get α(g(I)) ⊆ g(I) and t ∈ g(I).

(ii) Let y ∈ σ(g−1(J)). Then y = σ(x), for some x ∈ g−1(J). Since αg = gσ, we have

g(σ(x)) = α(g(x)) ∈ α(J) ⊆ J . Thus, g(σ(x)) ∈ J and σ(x) ∈ g−1(J). This means that

g−1(J) is a σ-ideal of A. �

Definition 3.16. An ideal P of A is called primary if for every x, y ∈ A, x= ∧ y= ∈ P

implies xn ∈ P or yn ∈ P , for some n ∈ N.

Example 3.17. (i) If we consider the BL-algebra A in [7, Example 3 · 5], then the ideal

I = {0, d} is primary, but J = {0} is not primary, since a= ∧ d= = c ∧ d = c � (c → d) =

c� d = 0 ∈ J , but for any n ∈ N, an = a /∈ J , dn = d /∈ J .

(ii) In Example 3.4, I = {0, a} is a primary ideal of A.
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Theorem 3.18. An ideal P of A is primary if and only if the quotient BL-algebra A/P is

local.

Proof. Let P be a primary ideal of A and x ∈ A. Then (x≡∧x=) = (x−∧x=) = 0 ∈ P . Since

P is primary, we get (x−)n ∈ P or xn ∈ P , for some n ∈ N. Therefore, (x−)n/P = (x−/P )n =

0/P or xn/P = (x/P )n = 0/P . This means that ord(x−/P ) < ∞ or ord(x/P ) < ∞ and

hence A/P is a local BL-algebra.

Conversely, let A/P be a local BL-algebra and x, y ∈ A, x= ∧ y= ∈ P . Then x � y ≤
x= � y= ≤ x= ∧ y=. We get x � y ∈ P . From Proposition 2.10, since P is an ideal of

A, A/P is a local MV-algebra and by Theorem 2.7, there exists n ∈ N such that xn ∈ P
or yn ∈ P . Therefore, P is a primary ideal of MV -algebra A. Now, we conclude P is a

primary ideal in BL-algebra A by the fact that P is a primary ideal of MV -algebra A and

x� y ≤ x= � y= ≤ x= ∧ y=. �

It is easy to see that any prime ideal is primary. Indeed, let P be a prime ideal of A and

x, y ∈ A such that x= ∧ y= ∈ P . By the fact that x ∧ y ≤ x= ∧ y=, we conclude x ∧ y ∈ P .

Since P is a prime ideal, we get x ∈ P or y ∈ P and hence P is primary.

Let f : A −→ B be a BL-homomorphism. One can see that the f←(J) is a primary ideal,

for every primary ideal J ∈ Id(B) and f(I) is a primary ideal of B, if I ∈ Id(A) is a primary

ideal and f is surjective.

Recall [7] for every filter F of A, N(F ) is an ideal of A, where N(F ) = {x ∈ A : x− ∈ F}.
Now, let F be a primary filter of A and x, y ∈ A, such that x= ∧ y= ∈ N(F ). Then

(x=∧y=)− ∈ F . We get x≡∨y≡ = x−∨y− ∈ F . Also, x−∨y− = (x∧y)− ≤ (x�y)−. Since

F is a filter, (x� y)− ∈ F . This means that (xn)− ∈ F or (yn)− ∈ F , for some n ∈ N ∪ {0}
and hence xn ∈ N(F ) or yn ∈ N(F ), for some n ∈ N∪{0}. Therefore, we have the following

corollary:

Corollary 3.19. If F is a primary filter of A, then N(F ) is a primary ideal of A.

Proposition 3.20. Let P be a proper ideal of A such that A/P does not contain any non-

nilpotent zero divisor elements. Then P is a primary ideal.

Proof. Let x, y ∈ A; x=∧y= ∈ P . Then x=�y= ∈ P , as x=�y= ≤ x=∧y=. By Remark 2.11,

(x= � y=)/P = 0/P . This means that (x=/P ) � (y=/P ) = 0/P . Now we are considering

the two following cases:

(i) A/P does not contain any zero divisor elements. Therefore, x=/P = 0/P or y=/P = 0/P ,

i.e., x= ∈ P or y= ∈ P . By Remark 2.9, x ∈ P or y ∈ P . Thus P is Primary.

(ii) A/P contains some zero divisor element. Then x=/P 6= 0/P and y=/P 6= 0/P .

This means that x=/P and y=/P are zero divisor. Therefore, by hypothesis, we conclude

(x=/P )n = 0/P or (y=/P )m = 0/P , for some m,n ∈ N. We get (x=)n ∈ P or (y=)m ∈ P .

By Theorem 2.2 (7), xn ∈ P or ym ∈ P and hence P is primary. �

Theorem 3.21. Let A be a Gödel algebra and I be a primary ideal of A. Then rad(I) is

primary.

Proof. Let x, y ∈ A; x= ∧ y= ∈ rad(I). Then by Theorem 2.17, [(x= ∧ y=) → ((x= ∧
y=)−)n]− ∈ I, for any n ∈ N. Take n = 1, we get [(x= ∧ y=) → (x= ∧ y=)−]− ∈ I. From
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Theorem 2.2(8), [((x=∧y=)�(x=∧y=))−]− = ((x=∧y=)2)= ∈ I. Since A is a Gödel algebra,

we conclude (x= ∧ y=)= = (x= ∧ y=) ∈ I. Therefore, xn ∈ I or yn ∈ I, for some n ∈ N, as I

is a primary ideal. Now, the proof is completed by the fact that I ⊆ rad(I). �

Theorem 3.22. Every obstinate ideal of A is primary.

Proof. Let I be an obstinate ideal of A and x= ∧ y= ∈ I such that xn /∈ I, for every n ∈ N.

We show that ym ∈ I, for some m ∈ N. We obtain x /∈ I by the fact that xn ≤ x, xn /∈ I
and I is an ideal. Since I is an obstinate ideal and 1 /∈ I and x /∈ I, we get x� 1− ∈ I and

x− � 1 ∈ I. Therefore, x− ∈ I. Now, if we apply the ideal property, so x− � (x= ∧ y=) ∈ I,

i.e., x= → (x= ∧ y=) ∈ I. From BL3 and Theorem 2.2 (3), we conclude y= ≤ x= → x= ∧ y=.

As x= → x= ∧ y= ∈ I, we get y= ∈ I and by Remark 2.9, y ∈ I. This means that, there

exists m = 1, y = y1 ∈ I and hence I is primary. �

Now, we give an example to conclude that the converse of the above theorem does not

hold.

Example 3.23. We consider A = {0, a, b, c, d, 1}, with the following operations on A, where

0 < a < b < 1, 0 < a < d < 1, 0 < c < d < 1.

� 0 a b c d 1

0 0 0 0 0 0 0

a 0 0 a 0 0 a

b 0 a b 0 a b

c 0 0 0 c c c

d 0 0 a c c d

1 0 a b c d 1

→ 0 a b c d 1

0 1 1 1 1 1 1

a d 1 1 d 1 1

b c d 1 c d 1

c b b b 1 1 1

d a b b d 1 1

1 0 a b c d 1

Then (A,∧,∨,�,→, 0, 1) is a BL-algebra [6].

It is easy to see that I = {0, c} is a primary ideal but, is not obstinate, since a, b /∈ I,

a� b− = a� c = 0 ∈ I but a− � b = d� b = a /∈ I.

Definition 3.24. Let Y be a subset of A. We say that Y holds in maximal property, if for

any y /∈ Y , there exists n ∈ N such that (yn)− ∈ Y .

Lemma 3.25. If I is a σ-ideal of A and σn(I) hold in maximal property, for some n ∈ N,

then I is a maximal ideal.

Proof. Since I is a σ-ideal, σn(I) ⊆ I, for some n ∈ N. If x /∈ I, then x /∈ σn(I). Now from

hypothesis, we get (xm)− ∈ σn(I) ⊆ I, for some m ∈ N. This means that (xm)− = (x−)m ∈
I. Therefore, the proof is complete by Theorem 2.19. �

Proposition 3.26. Let I be a σ-ideal of A and there exists n ∈ N, with (x −→ y)− ∈ σn(I)

or (y −→ x)− ∈ σn(I), for every x, y ∈ I. Then
A

I
is an MV -chain.

Proof. At first, we show that I is a prime ideal of A. Let (x −→ y)− /∈ I, since I is a

σ-ideal, so (x −→ y)− /∈ σn(I). By hypothesis, we get (y −→ x)− ∈ σn(I) ⊆ I. Therefore,

(y −→ x)− ∈ I and I is a prime ideal. The proof is complete by Proposition 2.20. �

We note that if σ is onto and I is a prime σ-ideal of A, then the converse of Proposition

3.26 is hold, for every x, y ∈ A and n ∈ N. Since let x, y ∈ I, (x −→ y)− /∈ σn(I) = I (σ is

onto). Then, by Definition 2.14(i), (y −→ x)− ∈ I = σn(I).
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Corollary 3.27. If I is a σ-ideal of A, then I is a prime ideal, if the following property

holds:

There exists m ∈ N such that x ∧ y ∈ σm(I) implies x ∈ σm(I) or y ∈ σm(I), for every

x, y ∈ A.

Proof. It is clear from Corollary 2.15 and the fact that σm(I) ⊆ I. �

4. σ-invariant, σ-prime and σ-primary ideals in BL-algebras

In this section, we define the notion of σ-invariant, σ-prime and σ-primary ideals in

BL-algebras and we derive some results about them.

Definition 4.1. If σ : A −→ A is a BL-homomorphism, then the ideal I is called an

σ-invariant ideal, if σ−1(I) = I.

It is easy to see that the ideal {0} of A is a σ-invariant ideal.

Lemma 4.2. If I is a σ-invariant ideal, then the following conditions hold:

(i) I is a σ-ideal,

(ii) Ker(σ) ⊆ I.

Proof. (i) Let I be a σ-invariant ideal of A. Then σ−1(I) = I and σ(I) = σ(σ−1(I)) ⊆ I,

(ii) Let t ∈ Ker(σ). Then σ(t) = 0 ∈ I and hence t ∈ σ−1(I) = I. �

One should note that the converse of the above Lemma holds, if we add the condition

σ2 = σ. In fact, it is enough to show that σ−1(I) = I. Let a ∈ σ−1(I). Then σ(a) ∈ I.

Consider σ((σ(a))− � a) = (σ(σ(a)))− � σ(a) = (σ2(a))− � σ(a) = σ−(a) � σ(a) = 0. This

means that (σ(a))− � a ∈ Ker(σ) ⊆ I, i.e. σ−(a) � a ∈ I. Now, by applying Theorem 2.12

and the fact that σ(a) ∈ I, we obtain a ∈ I. Hence, σ−1(I) ⊆ I. Also, since I is a σ-ideal,

σ(I) ⊆ I. Therefore, I ⊆ σ−1(I).

Proposition 4.3. If I and J are σ-invariant ideals, then the following conditions hold:

(i) I ∩ J is a σ-invariant ideal,

(ii) 〈I ∪ J〉 is a σ-invariant ideal, when σ is an epimorphism,

(iii) rad(I) is a σ-invariant ideal.

Proof. (i) It is clear that by the fact that I ∩ J ⊆ I, J . So σ−1(I ∩ J) ⊆ σ−1(I) = I and

σ−1(I ∩ J) ⊆ σ−1(J) = J . Thus, σ−1(I ∩ J) ⊆ I ∩ J . Since I ⊆ σ−1(I), J ⊆ σ−1(J).

Therefore, I ∩ J ⊆ σ−1(I ∩ J), and hence I ∩ J is a σ-invariant ideal.

(ii) By Lemma 3.7 (iii), σ(〈I ∪ J〉) ⊆ 〈I ∪ J〉. So 〈I ∪ J〉 ⊆ σ−1(〈I ∪ J〉). We show

that σ−1(〈I ∪ J〉) ⊆ 〈I ∪ J〉. Let t ∈ σ−1(〈I ∪ J〉). Then there exists l ∈ 〈I ∪ J〉 such

that t = σ−1(l) for some a1, . . . , an ∈ I ∪ J . We have (a−1 � . . . � a−n ) −→ l− = 1. So

σ−1(a−1 ) � . . . � σ−1(a−n ) −→ σ−1(l−) = 1. Consider that there exist b1, . . . , bn ∈ I ∪ J ,

such that (b−1 � . . . � b−n ) −→ t− = 1. We take b1 = σ−1(a1), . . . , bn = σ−1(an), then

b−1 � . . .� b−n −→ t− = 1, i.e., t ∈ 〈I ∪ J〉.
(iii) By Lemma 3.7 (iv), σ(rad(I)) ⊆ rad(I). So rad(I) ⊆ σ−1(rad(I)). We show that

σ−1(rad(I)) ⊆ rad(I). Let t ∈ σ−1(rad(I)). Then there exists a ∈ rad(I) such that t =

σ−1(a). As a ∈ rad(I), by Theorem 2.17, for any n ∈ N, [a −→ (a−)n]− ∈ I, then σ−1[a −→
(a−)n]− ∈ σ−1(I) = I. Therefore, [σ−1(a) −→ σ−1(a−)n]− ∈ I. Since t = σ−1(a), then

[t −→ (t−)n]− ∈ I. Hence t ∈ rad(I) and σ−1(rad(I)) = rad(I). �
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Proposition 4.4. If σ is onto and σ2 = σ, then for any σ-ideal I of A, Ker(σ) ⊆ I implies

that σ(rad(I)) = rad(I).

Proof. Let t ∈ rad(I). Then by Theorem 2.17 [t −→ (t−)n]− ∈ I for all n ∈ N. Since

t ∈ rad(I) ⊆ A and σ : A −→ A is onto, there exists b ∈ A such that σ(b) = t. Therefore,

[σ(b) −→ ((σ(b))−)n]− ∈ I. So σ[b −→ (b−)n]− ∈ I. In other words, [b −→ (b−)n]− ∈
σ−1(I) = I, i.e., b ∈ rad(I). Thus, σ(b) ∈ σ(rad(I)). This means that t ∈ σ(rad(I)).

Conversely, we show that σ(rad(I)) ⊆ rad(I). Since σ2 = σ and I is a σ-invariant ideal.

Also, by Proposition 4.3 (iii), rad(I) is a σ-invariant ideal. Then rad(I) is a σ-ideal, and

hence σ(rad(I)) ⊆ rad(I). �

Definition 4.5. If I is a prime ideal of A, then I is called a σ-prime ideal, when for each

a ∈ I, there exists b /∈ I such that a ∧ b ∈ Ker(σ).

Example 4.6. Let A be a BL-algebra in [7, Example 3 · 5], σ = idA and I = {0, d}. Then I

is a σ-prime ideal of A, as by [7, Example 3 · 5], I is a prime ideal of A and if x = 0 ∈ I,

then for every y /∈ {0, d}, 0 = x ∧ y ∈ Ker(σ). Also, if x = d, then there exists a /∈ I,

d ∧ a = d� (d −→ a) = d� c = 0 ∈ Ker(σ).

Proposition 4.7. Let I be a σ-prime σ-invariant ideal of A. Then I is a minimal prime

σ-invariant ideal.

Proof. Suppose that I is a σ-prime σ-invariant ideal of A and J is a prime σ-invariant ideal,

such that J ⊆ I, for a ∈ I and a /∈ J . By hypothesis, since I is σ-prime, there exists b /∈ I,

such that a ∧ b ∈ Ker(σ). On the other hand, J is σ-invariant. By Lemma 4.2, Ker(σ) ⊆ J

and a ∧ b ∈ J . As b /∈ I, we take b /∈ J . Thus, a ∧ b /∈ J ; this is a contradiction. Therefore,

I is a minimal prime σ-invariant ideal. �

Definition 4.8. Let A be BL-algebra and I an ideal. Then I is called σ-primary, if for

every x ∈ A, x= ∧ σ=(x) ∈ I, implies x ∈ I.

Example 4.9. (i) Let A = {0, a, b, c, 1}, 0 < a < c < 1, 0 < b < c < 1. Define � and → as

follow:

� 0 a b c 1

0 0 0 0 0 0

a 0 a 0 a a

b 0 0 b b b

c 0 a b c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a b 1 b 1 1

b a a 1 1 1

c 0 a b 1 1

1 0 a b c 1

Then it is easy to see that I = {0, a} is an ideal of A. If we consider the mapping σ : A→ A

by σ(0) = 0, σ(a) = b, σ(b) = a, σ(c) = c, σ(1) = 1, so I is not a σ-primary ideal of A.

(ii) Let A = {0, a, b, 1}, 0 < a, b < 1. Define � and → as follow:

� 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b a a 1 1

1 0 a b 1

Then it is easy to see that I = {0, a} with σ = idA is a σ-primary ideal of A.
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Proposition 4.10. If I, J are ideals of BL-algebras A, B respectively, then I × J is a

σ-primary ideal of A×B, if and only if I is a σ1-primary ideal of A and J be a σ2-primary

ideal of B, where σ : A×B −→ A×B by σ(a, b) = (σ1(a), σ2(b)) is a BL-homomorphism.

Proof. Let (a, b) ∈ A × B; ((a, b)= ∧ σ=(a, b)) ∈ I × J . Then ((a=, b=) ∧ (σ=1 (a), σ=2 (b)) =

((a=∧σ=1 (a)), (b=∧σ=2 (b)) ∈ I×J . This means that ((a=∧σ=1 (a)) ∈ I and (b=∧σ=2 (b)) ∈ J .

Since, I is a σ1-primary ideal of A and J is a σ2-primary ideal of B, we get a ∈ I and b ∈ J .

Therefore, (a, b) ∈ I × J .

Conversely, let a ∈ A and b ∈ B; (a= ∧ σ=1 (a)) ∈ I and (b= ∧ σ=2 (b)) ∈ J . Then

((a= ∧ σ=1 (a)), (b= ∧ σ=2 (b))) ∈ I × J . We get ((a=, b=) ∧ (σ=1 (a), σ=2 (b))) = ((a=, b=) ∧
σ=(a, b)) ∈ I × J . Since I × J is a σ-primary ideal of A×B, we conclude (a, b) ∈ I × J ,i.e.,

a ∈ I, b ∈ J . Therefore, I is a σ1-primary of A and J is a σ2-primary of B. �

Now, we have the following proposition, by considering Propositions 2.22 and 2.23.

Proposition 4.11. Let g : A1 −→ A2 be a BL-epimorphism, σ : A1 −→ A1, γ : A2 −→ A2

be BL-homomorphism and γg = gσ. Then the following statements hold:

(i) If I is a σ-primary ideal of A1 and Ker(g) ⊆ I, then g(I) is a γ-primary ideal of A2,

(ii) If J is a γ-primary ideal of A2, then g−1(J) is a σ-primary ideal of A1.

Proof. (i) Let b ∈ A2; (b= ∧ γ=(b)) ∈ g(I). Since g is onto, there exists a ∈ A1, such that

g(a) = b. Therefore, (g=(a) ∧ γg=(a)) ∈ g(I). By hypothesis, we get (g=(a) ∧ g(σ=(a)) =

g(a= ∧ σ=(a)) ∈ g(I). Therefore, g(a= ∧ σ=(a)) = g(c), for some c ∈ I and g(a= ∧ σ=(a)) ∧
g−(c) = g(c) ∧ g−(c) = 0. This means that g(a= ∧ σ=(a) ∧ c−) = 0 and a= ∧ σ=(a) ∧ c− ∈
Kerg ⊆ I. Since c− � (a= ∧ σ=(a)) ≤ c− ∧ (a= ∧ σ=(a)), we have c− � (a= ∧ σ=(a)) ∈ I.

By applying Theorem 2.12 and the fact that c ∈ I, we get (a= ∧ σ=(a)) ∈ I. Since I is a

σ-primary, a ∈ I and hence b = g(a) ∈ g(I).

(ii) Let a ∈ A1; (a= ∧ σ(a=)) ∈ g−1(J). Then g(a= ∧ σ(a=)) ∈ J . We get g(a=) ∧ gσ(a=) =

(g(a))= ∧ σ(g(a))=) ∈ J and by hypothesis, g(a=) ∧ γg(a=) ∈ J . Since J is a γ-primary, we

get g(a) ∈ J and hence a ∈ g−1(J). �

Proposition 4.12. If I is a σ-primary ideal of A, then M(I) is σ-primary.

Proof. Let (x= ∧ σ=(x)) ∈ M(I), then we show that x ∈ M(I). As (x= ∧ σ=(x)) ∈ M(I),

((x=∧σ=(x))= ∈ I. This means that (x≡∨σ≡(x))− ∈ I. By Theorem 2.2 (5), (x−∨σ−(x))− ∈
I, so (x= ∧ σ=(x)) ∈ I. Based on hypothesis, x ∈ I and by Remark 2.9, x= ∈ I and hence,

x ∈M(I).

�

Remark 4.13. K(A) is a σ-primary ideal of A, if {0} is a σ-primary. Indeed, let z=∧σ=(z) ∈
K(A), then (z= ∧ σ=(z))= = 0. This means that z= ∧ σ=(z) = 0 ∈ {0}. Since {0} is

σ-primary ideal, so z ∈ {0} and z = 0 = 0= = z=, therefore, z ∈ K(A).

5. Conclusion

The main results of this paper are related to the ideals that depend on aBL-homomorphism.

We note that the notions of ideals and filters in BL-algebras are not dual to each other. At

first, by considering σ as a BL-homomorphism, we introduced the notion of σ-ideals in BL-

algebras and obtained some new results about them. Also, while introducing the primary
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ideals in BL-algebras, we get some relationship between the primary ideals and obstinate

ideals. Finally, by introducing σ-prime, σ-primary and σ-invariant ideals, we derived some

new results related to them. As a future research, these concepts can be extended to other

algebraic structures such as residuated lattices and pseudo BL-algebras that they are exten-

sions of BL-algebras.
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