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ABSTRACT

This study investigates the efficacy of a novel PDα-type
fractional-order iterative learning control (FOILC) ap-
proach for a class of fractional-order linear continuous-
time delaying switched systems. The approach is evalu-
ated in terms of Lp norm performance, aiming to miti-
gate the challenges associated with time delays in repet-
itive regulation of fractional-order linear systems. The
generalized Young inequality of the convolution inte-
gral is used to leverage the resilience of the PDα-type
approach in the iteration domain when the systems are
perturbed by constrained external disturbances. We
next analyze the convergence of the techniques for noise-
free systems. The results demonstrate that it is feasi-
ble to guarantee both convergence and robustness over
the duration of the experiment in certain situations.
We study the convergence of error for the proposed
class of fractional-order linear continuous-time delay-
ing switched systems.
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1. Introduction

Iterative learning control (ILC), among the most efficient intelligent control techniques,

is Iteratively generating a series of deal with commands over a definite, finite time dura-

tion or interval, this invention dates back to the 1980s. ILC’s main goal is to create an
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enhanced command and management as the following operation that takes into account any

proportional, integral, or derivative tracking mistakes from the preceding operation. As the

operation moves closer to infinity, the goal is for the successive ILC inputs, a mechanism to

promote following a targeted trajectory that is as flawless as humanly feasible.

The fractional-order ILC (FOILC) schemes have emerged in recent years. For this reason,

the observation of fractional-order systems as indicated above. With the use of fractional

calculus, many real-world energizing systems, like colored noise, may be precisely repre-

sented. The switching signal could be state-driven or time-driven; it might be a member of

a particular set with a variety of members, and it might be diverse. A switching sequence,

a limited number of discrete-time or continuous-time subsystems, and hybrid systems are

called switched systems. The switching sequence, which determines which subsystem is en-

abled for a brief period of time, is typically random. Switched systems are widely used in

engineering for a variety of purposes, including the management of chemical processes, power

systems, process control, traffic systems, and many more sectors [21]-[19].

In 2001, Chen et al. [4] studied the frequency domain and proposed a fractional-order

D-type ILC algorithm, examining its convergence using the recursively direct discretization

method. However, according to FOILC guidelines, one issue with the existing convergence

criteria is that it does not guarantee that the true tracking error monotonically decreases.

This suggests that, although the iteration-wise tracking error may sporadically approach

engineering precision, it is not always assured to decrease monotonically because the FOILC

updating method terminates after a finite number of operations (see [7]-[12] for details).

In 2013, Bu et al. [3] studied an assortment of linear discrete-time switched systems with

unspecified switching signals. It is expected that the switched system is repeatedly operated

over a finite time period, after which a first-order P-type ILC method can be utilized to

provide flawless tracking throughout the entire time interval.

In 2013, Lan et al. examined fractional-order Dα-type ILC for non-linear time-delay

systems and developed the convergence criteria. In 2014, Xuan et al. [23] utilized the super

vector technique to discuss convergence under noise-free conditions and analyzed resilience

under limited noise disturbance of a controlled system. In 2016, Lan et al. [9] analyzed the

ILC design challenge, which is transformed into a stability problem for a discrete system by

understanding the mechanisms of control and instruction, and created a discrete system for

P-type fractional-order ILC.

The accompanying theorem and its proof establish the necessary conditions for the con-

vergence of the proposed PD-alpha type ILC in the time domain, applicable to a class of

fractional-order singular systems. Independently, Chenchen and Jing [5] derived the conver-

gence requirements for closed-loop PDα-type ILC in fractional-order systems with nonlinear

time delay. In 2018, Yan et al. [15] investigated PDα-type ILC for fractional delay sys-

tems. Meanwhile, Lazarevic et al. [14] examined state-space forms of fractional-order linear

singular time-delay systems. Most recently, in 2023, Dewangan [6] conducted a conver-

gence analysis of proportional-derivative-type ILC for linear continuous constant time delay

switched systems with observation noise and state uncertainties, yielding significant results.

The remainder of this research paper is organized as follows: Section 2 provides an update

on related mathematical definitions, preliminaries, and mathematical formulation. The main

analysis of the proposed PDα-type FOILC algorithm is presented in Section 3, which includes
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robustness and convergence results for fractional-order linear continuous-time delay switched

systems with state uncertainties and measurement disturbances. Finally, Section 4 presents

the conclusions.

2. Preliminaries

Firstly, we present key definitions and lemmas that are essential for proving our result and

underpin the proposed methodology.

Definition 2.1. [8] Let h : [0, T ] → Rn, be continuous time varying vector valued function

defined by

h(t) = [h1(t), h2(t), · · · , hn(t)]T ,

its Lp-norm and λ-norm are given by∥h(t)∥p =
[∫ T

0

(
max1≤i≤n |hi(t)|

)p
dt
]1/p

, 1 ≤ p ≤ ∞.

∥h(t)∥λ = sup0≤t≤T e−λt
(
max1≤i≤n(|hi(t)|)

)
, λ > 0,

Definition 2.2. [18] For a function f , The Riemann-Liouville’s fractional integral of order

α > 0 is defined as

t0D
−α
t f(t) =

1

Γ(α)

∫ t

t0

(t− s)α−1f(s)ds,

where Γ(α) is the Gamma function.

Lemma 2.3. [20] Let g(t) ∈ Lq and h(t) ∈ Lp, t ∈ [0, T ], be Lebesgue integrable functions.

If the convolution integral of g and h exists, then

(g ∗ h)(t) =
∫ T

0
g(t− s)h(s)ds.

The generalized Young inequality for the convolution integral is

∥(g ∗ h)(t)∥r ≤ ∥g(t)∥q∥h(t)∥p,

where 1 ≤ p, q, r ≤ ∞ and 1
r = 1

p +
1
q −1. In particular, when r = p, the inequality becomes

∥(g ∗ h)(t)∥p ≤ ∥g(t)∥1∥h(t)∥p.

Due to its similarity in form to integer-order differential equations in initial conditions, the

Caputo formulation is most frequently employed in engineering. Consequently, the Caputo

fractional definition was selected as the primary instrument for investigation. The definition

of the function was comparable to that in [22].

C
t0D

α
t f(t) =

 1
Γ(n−α)

∫ t
t0

f (n)(τ)
(t−τ)α+1−ndτ, if n− 1 < α < n,

dnf(t)
dtn , α = n

where t0 is the starting time, C
t0Dt represents a fractional-order integral operator on [t0, t],

and Γ(·) denotes the Gamma function. Specifically, if 0 < α < 1, then

C
t0Dtf(t) =

1

Γ(n− α)

∫ t

t0

f ′(τ)

(t− τ)α
dτ.

Here, α ∈ R+, and [α] indicates the integral part of α.”
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Lemma 2.4. [7] Consider a continuous function f(u(t), t). Then, the initial value problemC
t0D

α
t u(t) = f(u(t), t),

u(t0) = u0,

where 0 < α < 1, is equivalent to the following nonlinear Volterra integral equation:

u(t) = u0 +
1

Γ(α)

∫ t

t0

(t− s)α−1f(u(s), s)ds.

3. Problem statement and analysis

Consider the fractional-order linear continuous-time delay switching system with the fol-

lowing state uncertainties and measurement disturbances:

(3.1)

C
0 D

α
t xk(t) = Aσ(i)xk(t) +Dσ(i)xk(t− τ) +Bσ(i)uk(t) + ξk(t),

yk(t) = Cσ(i)xk(t) + ηk(t),

where t ∈ [0, T ], and

(a) α ∈ (0, 1), and ·(α) denotes the Caputo derivative. C
0 D

α
t : xk(t) ∈ Rn is the state

vector for the k that belongs to the set of natural numbers.

(b) uk(t) ∈ Rp is the input vector.

(c) yk(t) ∈ Rq is the output vector.

(d) Aσ(t) ∈ Rn×n, Bσ(t) ∈ Rn×p, Cσ(t) ∈ Rq×n, and Dσ(t) ∈ Rn×n are the state matrices,

input matrices, output matrices, and state matrices with delay term, respectively.

(e) σ(t) is defined as σ(t) : [0, T ] → G = {1, 2, 3, · · · ,m}, where m is the number of sub-

systems in the switched system. Alternatively, the matrices group (Aσ(t), Bσ(t), Cσ(t), Dσ(t))

is a random component of the following set

{(A1, B1, C1, D1), (A2, B2, C2, D2), · · · , (Am, Bm, Cm, Dm)}

(f) ξk(t) ∈ Rn and ηk ∈ Rn are bounded state disturbance and bounded measurement

noise, respectively, with ∥ξk(t)∥p ≤ bξ, ∥ηk(t)∥p ≤ bη, and ∥η(α)k (t)∥p ≤ bηα, where

bξ, bη, and bηα are positive constants. Here η
(α)
k (t) denotes the derivative of ηk(t) of

fractional order α ∈ (0, 1) with respect to t.

Here are some fundamental presumptions of the switching system:

Assumption 1 System (3.1) can operate respectively on the limited time period [0, T ], and

the initial state can be reset for all iterations, that is,

xk(0) = xd(0), k = 1, 2, 3, 4, 5, 6, ...

where the desired state’s starting value is xd(0).

Assumption 2 The desired outcome, yd(t), is specified and remains invariant throughout

the iteration process.

Assumption 3 The switching sequence σ(t) remains iteration-invariant once it is randomly

specified at the initial iteration.

Assumption 4 Only the intended control inputs, ud(t) and xd(t), exist for the specified
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desired output yd(t), such thatC
0 D

α
t xd(t) = Aσ(i)xd(t) +Dσ(i)xd(t− τ) +Bσ(i)ud(t) + ξd(t),

yd(t) = Cσ(i)xd(t).

Here, τ denotes the delay time, such that each subsystem’s stay time is larger than its delay

time. Therefore

τ < ti − ti−1, ∀i ∈ M = {1, 2, 3, . . . ,m}.

Assumption 5 CiBi, i = 1, 2, 3, 4, 5, ...,m, are full rank matrices.

Assumption 6 For any t belonging to [0, T ], the value of ∆xk(−t) is always zero.

We regard the PDα-type FOILC method in this article as

(3.2) uk+1(t) = uk(t) + Γpek(t) + Γde
(α)
k (t),

where Γp ∈ Rp×q and Γd ∈ Rp×q are, respectively, the gain learning matrix and the propor-

tional learning matrix, and

ek+1(t) = yd(t)− yk+1(t),

represents the tracking error at the (k + 1)th iteration, where yd(t) denotes the system’s

expected, targeted, or desired output. The following fundamental switching system assump-

tions are possible.

Figure 1. Block diagram of the open- and closed-loop PDα-type ILC algorithm

For the sake of simplicity, let’s assume each subsystem operates only once during the time

interval [0, T ], and the switching rule σ(t) can be characterised as

(3.3) σ(t) = i =



1, t belong to [0, t1),

2, t belong to [t1, t2),
...

m, t belong to [tm−1, T ].

The sequence suggests that each subsystem is activated only once throughout the interval

[0, T ].
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As a result, the system (3.1) with the m subsystem is rewritten as

(3.4)

C
0 D

α
t xk(t) = Aixk(t) +Dixk(t− tM ) +Biuk(t) + ξk(t),

yk(t) = Cixk(t) + ηk(t),

where i belongs to the set {1, 2, ...,m}. Considering the initial time t0 = 0 and the final time

tm = T , and in accordance with Lemma 2.4 and Equation 3.4, the system is in the following

state:

xk(t) = xk(ti−1) +
1

Γ(α)

∫ t

ti−1

(t− s)α−1Aixk(s)ds

+
1

Γ(α)

∫ t

ti−1

(t− s)α−1Dixk(t− τ)ds

+
1

Γ(α)

∫ t

ti−1

(t− s)α−1Biuk(s)ds

+
1

Γ(α)

∫ t

ti−1

(t− s)α−1ξk(s)ds, t ∈ [ti−1, ti], 1 ≤ i ≤ m.(3.5)

Remark 3.1. The initial conditions specified in Assumption 1 are applicable only to the first

subsystem, but not to the subsequent subsystems; specifically, the condition xk(ti) ̸= xd(ti)

holds for i = 1, 2, ...,m.

4. Main results

Now, we discuss the asymptotic convergence of the proposed system.

Theorem 4.1. Assume the system (3.4) satisfied the assumption 1 − 6 when control law

(3.2) is applied to the system (3.4); if

(i) Mi = (Γ(α)− ∥(t)α−1Ai∥1 − ∥(t)α−1Di∥1) > 0, i = 1, 2, 3, ...,m.

(ii) ρi = (∥I − ΓdCiBi∥+ βi) < 1, where

βi =
(∥ΓpCi + γpCiAi∥+ ∥ΓdCiDi∥)∥(t)α−1Bi∥1

Mi
,

(iii) γi =
(∥ΓpCi+ΓdCiAi∥)∥(t)α−1∥1

Mi
+ ∥ΓdCi∥, i ∈ G = {1, 2, 3, ...m}.

Then, the tracking error is bounded uniformly, and during the range [0, T ] as k → ∞,

the system’s output asymptotically falls into a tiny neighbourhood of the targeted or desired

output.

Proof. We know that ∆xk(t) and ∆uk(t) at a time t are defined as follows:

∆xk(t) = xd(t)− xk(t),

and

∆uk(t) = ud(t)− uk(t),

and y
(α)
k (t) and y

(α)
d (t) can be formulate as follows:

y
(α)
k (t) = Cix

(α)
k (t) + η

(α)
k (t),

y
(α)
d (t) = Cix

(α)
d (t).
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Using the concept of tracking error, we have the following

e
(α)
k (t) = y

(α)
d (t)− y

(α)
k (t)

= Cix
(α)
d (t)− Cix

(α)
k (t)− η

(α)
k (t)

= Ci(x
(α)
d (t)− x

(α)
k (t))− η

(α)
k (t)

= Ci∆x
(α)
k (t)− η

(α)
k (t)

= Ci[Ai∆xk(t) +Di∆xk(t− τ) +Bi∆uk(t)− ξk(t)]− η
(α)
k (t)

= CiAi∆xk(t) + CiDi∆xk(t− τ)

+ CiBi∆uk(t)− Ciξk(t)− η
(α)
k (t).(4.1)

Now, from using equation (3.2), we get as follows:

∆uk+1(t) = ud(t)− uk+1(t)

= ud(t)− uk(t)− Γpek(t)− Γde
(α)
k (t)

= ∆uk(t)− Γpek(t)− Γde
(α)
k (t),(4.2)

Putting the value of (4.1) into (4.2), we can write as follows:

∆uk+1(t) = ∆uk(t)− Γp(Ci∆xk(t)− ηk(t))

− Γd[CiAi∆xk(t) + CiDi∆xk(t− tM )

+ CiBi∆uk(t)− Ciξk(t)− η
(α)
k (t)],

= (I − ΓdCiBi)∆uk(t)− (ΓpCi + ΓdCiAi)∆xk(t)

− ΓdCiDi∆xk(t− tM ) + ΓdCiξk(t) + Γdη
(α)
k (t) + Γpηk(t)(4.3)

where t ∈ [ti−1, ti], the Lp norm of the function f defined by f [ti−1, ti], t ∈ [0, tm], and

t ∈ [ti−1, ti] ⊂ [0, T ] =⇒ ∥f [ti, ti+1]∥p ≤ ∥f∥p.
Step 1: Assume that t firstly lies in the first sub-interval, i.e., t ∈ [0, t1]. In this case, the

first subsystem is active. The system’s state can be represented by the following equation

(3.4):

xk+1(t) = xk+1(0) +
1

Γ(α)

∫ t

0
(t− s)α−1A1xk+1(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1D1xk+1(t− tM )ds

+
1

Γ(α)

∫ t

0
(t− s)α−1B1uk+1(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1ξk+1(s)ds.(4.4)
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Under the assumption stated in Assumption 1, we derive

∆xk+1(t) = xd(t)− xk+1(t)

= xd(t)− xk+1(0)−
1

Γ(α)

∫ t

0
(t− s)α−1A1xk+1(s)ds

− 1

Γ(α)

∫ t

0
(t− s)α−1D1xk+1(s− τ)ds

− 1

Γ(α)

∫ t

0
(t− s)α−1B1uk+1(s)ds

− 1

Γ(α)

∫ t

0
(t− s)α−1ξk+1(s)d.

Consequently, we obtain:

∆xk+1(t) =
1

Γ(α)

∫ t

0
(t− s)α−1A1∆xk+1(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1D1∆xk+1(s− τ)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1B1∆uk+1(s)ds

+
1

Γ(α)

∫ t

0
(t− s)α−1ξk+1(s)ds.(4.5)

Now, we observe that, for the case when 0 < t < τ , we get∫ t

0
∥∆xk+1(s− τ)∥ds =

∫ t−τ

−τ
∥∆xk+1(s)∥ds

≤
∫ 0

−τ
∥∆xk+1(s)∥ds.(4.6)

and, when tM < t < t1, we have∫ t

0
∥∆xk+1(s− τ)∥ds =

∫ t−τ

−τ
∥∆xk+1(s)∥ds

=

∫ 0

−τ
∥∆xk+1(s)∥ds+

∫ t−τ

0
∥∆xk+1(s)∥ds

≤
∫ 0

−τ
∥∆xk+1(s)∥ds+

∫ t

0
∥∆xk+1(s)∥ds,(4.7)

and assumption 6 gives as

(4.8)

∫ 0

−τ
∥∆xk+1(s)∥ds = 0,

From (4.6),(4.7) and (4.8), we derive∫ t

0
∥∆xk+1(s− τ)∥ds ≤

∫ t

0
∥∆xk+1(s)∥.ds
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Similarly, we can obtain∫ T

0
∥(t− s)(α−1)D1∥1∥∆xk+1(s− τ)∥pds

≤
∫ T

0
∥(t− s)(α−1)D1∥1∥∆xk+1(s)∥pds,

that is,

∥∆xk+1(t− τ)∥p ≤ ∥∆xk+1(t)∥p.

Taking the Lp norm over the interval t ∈ [0, t1] on both sides of the above inequality, we get:

∥∆xk+1[0, t1 − τ ]∥p ≤ ∥∆xk+1[0, t1]∥p.

Applying the generalised Young inequality to the convolution integral on both sides of (4.5),

we obtain

∥∆xk+1[0, t1]∥p =
[∫ T

0
max |xik+1(t)|p

] 1
p

≤ 1

Γ(α)
∥(t− s)(α−1)A1∥1∥∆xk+1[0, t1]∥p

+
1

Γ(α)

∫ T

0
∥(t− s)(α−1)D1∥1∥∆xk+1[0, t− tM ]∥pds

+
1

Γ(α)
∥(t)α−1B1∥1∥∆uk+1[0, t1]∥+

1

Γ(α)
∥(t)α−1∥1bξ

≤ 1

Γ(α)
∥(t)α−1A1∥1∥∆xk+1[0, t1]∥p

+
1

Γ(α)
∥(t)α−1D1∥1∥∆xk+1[0, t1 − τ ]∥p

+
1

Γ(α)
∥(t)α−1B1∥1∥∆uk+1[0, t1]∥+

1

Γ(α)
∥(t)α−1∥1bξ

≤ 1

Γ(α)
∥(t)α−1A1∥1∥∆xk+1[0, t1]∥p

+
1

Γ(α)
∥(t)α−1D1∥1∥∆xk+1[0, t1]∥p

+
1

Γ(α)
∥(t)α−1B1∥1∥∆uk+1[0, t1]∥+

1

Γ(α)
∥(t)α−1∥1bξ.

(4.9)

So, we have

∥∆xk+1[0, t1]∥p ≤
∥(t)α−1B1∥1∥∆uk+1[0, t1]∥p + ∥(t)α−1∥1bξ

Γ(α)− ∥(t)α−1A1∥1 − ∥(t)(α−1)D1∥

≤
∥(t)α−1B1∥1∥∆uk+1[0, t1]∥p + ∥(t)α−1∥1bξ

M1
,(4.10)

where M1 = (Γ(α)− ∥(t)α−1A1∥1 − ∥(t)(α−1)D1∥1) > 0.

From (4.3), we have

∆uk+1(t) = (I − ΓdC1B1)∆uk(t)− (ΓdC1 + ΓdC1A1)∆xk(t)

− ΓdC1D1∆xk(t− τ) + ΓdC1ξk(t) + Γpηk(t) + Γdη
(α)
k (t).(4.11)
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Computing the Lp norm over the interval t ∈ [0, t1] on both sides of (4.11), we observe that

∥∆uk+1[0, t1]∥ ≤ ∥I − ΓdC1B1∥1∥∆uk[0, t1]∥p
+ ∥ΓpC1 + ΓdC1A1∥1∥∆xk[0, t1]∥p
+ ∥ΓdC1D1∥1∥∆xk[0, t1 − tM ]∥p + ∥ΓdC1∥bξ
+ ∥Γp∥bη + ∥Γd∥bηα,(4.12)

Substituting (4.10) into (4.12) yields

∥∆uk+1[0, t1]∥1 ≤ (∥I − ΓdC1B1∥)∥∆uk[0, t1]∥p
+ (∥ΓpC1 + ΓdC1A1∥+ ∥ΓdC1D1∥)[
[∥(t)α−1B1∥∥∆uk+1[0, t1]∥p + ∥(t)α−1∥bξ]

M1

]
+ ∥ΓdC1∥bξ + ∥Γp∥bη + ∥Γd∥bηα

≤
(
∥I − ΓdC1B1∥1 +

(∥ΓpC1 + ΓdC1A1∥1 + ∥ΓdC1D1∥)∥(t)α−1B1∥
M1

)
∥∆uk+1[0, t1]∥p

+

(
[∥ΓpC1 + ΓdC1A1∥1 + ∥ΓdC1D1∥]∥(t)α−1∥

M1
+ ∥ΓdC1∥

)
bξ

+ ∥Γp∥bη + ∥Γd∥bηα
≤ (∥I − ΓdC1B1∥+ β1)∥∆uk+1[0, t1]∥p + γ1bξ + ∥Γp∥bη + ∥Γd∥bηα,(4.13)

where

β1 =
(∥ΓpC1 + ΓdC1A1∥+ ∥ΓdC1D1∥)∥(t)α−1B1∥

M1
,

γ1 =
[∥ΓpC1 + ΓdC1A1∥+ ∥ΓdC1D1∥]∥(t)α−1∥

M1
+ ∥ΓdC1∥1,

and we have

∥∆uk+1[0, t1]∥p ≤ (∥I − ΓdC1B1∥+ β1)∥∆uk[0, t1]∥p + γ1bξ+

+ ∥Γp∥bη + ∥Γd∥bηα
= ρ1∥∆uk[0, t1]∥p + γ1bξ + ∥Γp∥bη + ∥Γd∥bηα,(4.14)

where ρ1 = (∥I − ΓdC1B1∥+ β1). using (4.14), we have

∥∆uk[0, t1]∥ ≤ ρk1∥∆u1[0, t1]∥p −
ρk1

1− ρ
(γ1bξ + ∥Γp∥bη + ∥Γd∥bηα)

+
γ1bξ + ∥Γp∥bη + ∥Γd∥bηα

1− ρ1
.(4.15)

Utilising conditions (ii) and (iii) of Theorem 4.1 and taking the supremum over t ∈ [0, t1],

we derive

lim
k→∞

sup
0≤t≤t1

∥∆uk[0, t1]∥p ≤
γ1bξ + ∥Γp∥bη + ∥Γd∥bηα

1− ρ
.(4.16)
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Combining (4.10) and (4.16), we have

lim
k→∞

sup
0≤t≤t1

∥∆xk+1[0, t1]∥p

≤
∥(t)α−1B1∥∥∆uk+1[0, t1]∥p ++∥(t)α−1∥1bξ

M1

≤ ∥(t)α−1B1∥
[γ1bξ + ∥Γp∥bη + ∥Γd∥bηα]

M1(1− ρ1)
+

∥(t)α−1∥bξ
M1

.(4.17)

Now, we observe that

ek+1 = yd(t)− yk(t)

= C1(xd(t)− xk+1(t))− ηk+1(t)

= C1∆xk+1(t)− ηk+1(t).(4.18)

Taking the Lp norm on t ∈ [0, t1] on both sides of equation (4.18) and computing the

supremum, substituting (4.17) into (4.18), we derive

lim
k→∞

sup
0≤t≤t1

∥ek+1[0, t1]∥p

≤ ∥C1∥
(
∥(t)α−1B1∥γ1
M1(1− ρ1)

+
∥(t)α−1∥

M1

)
bξ

+

(
∥C1∥∥(t)α−1B1∥∥Γp∥

M1(1− ρ1)
+ 1

)
bη

+

(
∥C1∥∥(t)α−1B1∥∥Γd∥1

M1(1− ρ1)

)
bηα

+ ∥C1∥∥(t)α−1D1∥∥∆xk+1[0, t1 − tM ]∥p.(4.19)

this implies

(4.20) ∥∆xk+1[0, t1]∥ ≤
∥(t)α−1B1∥∥∆uk+1[0, t1]∥p + ∥(t)(α−1)∥bξ

M1(1− ∥(t)α−1∥)
.

From (4.20) and (4.16), we have

lim
k→∞

sup
0≤t≤t1

∥∆xk+1[0, t1]∥p ≤
∥(t)α−1B1∥(γ1bξ + ∥Γp∥bη + ∥Γd∥bηα)

M1(1− ρ)

+
∥(t)α−1∥bξ

M1
(4.21)

According to (3.4), we have

ek+1 = yd(t)− yk(t)

= C1(xd(t)− xk+1)− ηk+1(t)

= C1∆xk+1(t)− ηk+1(t).(4.22)
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Taking supremum Lp norm t ∈ [0, t1], we obtain

lim
k→∞

sup
0≤t≤t1

∥∆ek+1[0, t1]∥p

≤ ∥C1∥
(
∥(t)α−1B1∥

[γ1bξ + ∥Γp∥bη + ∥Γd∥bηα]
1− ρ

+
∥(t)α−1∥bξ

M1

)
+ ∥ηk+1[0, t1]∥

≤
(
∥C1∥∥(t)α−1B1∥γ1

M1(1− ρ1)
+

∥C1∥∥(t)α−1∥
M1

)
bξ

+

(
∥C1∥∥(t)α−1B1∥∥Γp∥

M1(1− ρ)
+ 1

)
bη +

(
∥C1∥∥(t)α−1B1∥∥Γd∥

M1(1− ρ1)

)
bηα,(4.23)

Clearly, the RHS of equation (4.23) is bounded as k → ∞; this shows that the tracking error

of the subsystem (3.1) is bounded uniformly on the interval [0, t1].

Step 2:Let t ∈ [t1, t2],

In this case, the subsystem 2 is active. Similar to (4.5), we have

∆xk+1(t) = xd(t)− xk+1(t)

= ∆xk+1(t1) +
1

Γ(α)

∫ t

t1

(t− s)α−1A2∆xk+1(s)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1D2∆xk+1(s− τ)ds

+
1

Γ(α)

∫ t

t1

(t− s)α−1B2∆uk+1(s)ds

− 1

Γ(α)

∫ t

t1

(t− s)α−1A2ξk+1(s)ds,(4.24)

When M2 = (Γ(α) − ∥(t)α−1A2∥ − ∥(t)α−1D2∥) > 0. Using similar manipulation as step 1,

we have

∥∆xk+1[t1, t2]∥p ≤
∥(t)α−1B2∥1∥∆uk+1[t1, t2]∥p + ∥(t)α−1∥1bξ

M2

+
Γ(α)∥∆xk+1[t1, t2]∥p

M2
,(4.25)
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and

∥∆uk+1[t1, t2]∥p ≤ (∥I − ΓdC2B2∥1)∥∆uk[t1, t2]∥p
+ ∥ΓpC2 + ΓdC2A2∥∥∆xk[t1, t2]∥p
+ ∥ΓdC2D2∥p∥∆xk[t1, t2 − tM ]∥p + ∥ΓdC2∥1bξ + ∥Γp∥bη + ∥Γd∥bηα
≤ (∥I − ΓdC2B2∥1)∥∆uk[t1, t2]∥p + (∥ΓpC2 + ΓdC2A2∥+ ∥ΓdC2D2∥)(

∥(t)α−1B2∥1∥∆k[t1, t2]∥p + ∥(t)α−1∥bξ
M2

+
Γ(α)∥∆xk+1(t1)∥p

M2

)
+ ∥ΓdC2∥1bξ + ∥Γp∥bη + ∥Γd∥bηα

≤
(
∥I − ΓdC2B2∥1 +

(
[∥ΓpC2 + ΓdC2A2∥1 + ∥ΓdC2D2∥]∥(t)α−1B2∥

M2

))
∥∆uk[t1, t2]∥p +

(
[∥ΓpC2 + ΓdC2A2∥1 + ∥ΓdC2D2∥]∥(t)α−1∥

M2

)
bξ

+ ∥Γp∥bη + ∥Γd∥bηα

+

(
[∥ΓpC2 + ΓdC2A2∥1 + ∥ΓdC2D2∥]Γ(α)

M2

)
∥∆xk+1(t1)∥p.

So, we have

∥∆uk+1[t1, t2]∥p ≤ (∥I − ΓdC2B2∥+ β2)∥∆uk[t1, t2]∥p + γ2bξ + ∥Γp∥bη
+∥Γd∥ηα + c2∥∆xk(t1)∥p,(4.26)

where

β2 =

(
∥I − ΓdC2B2∥1 +

(
[∥ΓpC2 + ΓdC2A2∥1 + ∥ΓdC2D2∥]∥(t)α−1B2∥

M2

))
,

γ2 =

(
[∥ΓpC2 + ΓdC2A2∥1 + ∥ΓdC2D2∥]∥(t)α−1∥

M2

)
,

c2 =

(
[∥ΓpC2 + ΓdC2A2∥1 + ∥ΓdC2D2∥]Γ(α)

M2

)
.

Now, from (4.26), we have

∥∆uk+1∥p ≤ ρk2∥∆uk[t1, t2]∥p − ρk2

(
γ2bξ + ∥Γd∥bη + ∥Γd∥bηα + c2∥∆xk(t1)∥p

(1− ρ2)

)
+

(
γ2bξ + ∥Γd∥bη + ∥Γd∥bηα + c2∥∆xk(t1)∥p

(1− ρ2)

)
.(4.27)

Now, we have from (4.17)

lim
k→∞

∥∆xk+1(t1)∥p ≤ ∥(t)α−1B1∥
γ1bξ + ∥Γd∥bη + ∥Γd∥bηα

M1(1− ρ1)
+

∥(t)α−1∥bξ
M1

.(4.28)

Computing supremum on both side of (4.27) and taking k → ∞, we have

lim
k→∞

sup
t1≤t≤t2

∥∆uk+1[t1, t2]∥p ≤
γ2bξ + ∥Γp∥bη + ∥Γd∥bηα

1− ρ2

+
c2∥(t)α−1B1∥1(γ1bξ + ∥Γp∥bη + ∥Γd∥bηα)

M1(1− ρ)(1− ρ2)

+

(
c2∥(t)α−1∥
M1(1− ρ2)

)
.(4.29)
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Combining (4.25),(4.28) and (4.29), we derive

lim
k→∞

sup
t1≤t≤t2

∥∆xk+1[t1, t2]|p

≤

[
γ2∥(t)α−1B2∥1
M2(1− ρ2)

+
∥(t)α−1∥

M2
+

c2∥(t)α−1B2∥1
M1M2(1− ρ2)(

γ1∥(t)α−1B1∥1
(1− ρ1)

+ ∥(t)α−1∥1
)
+

Γ(α)

M1M2

(
γ1∥(t)α−1B1∥1

(1− ρ1)
+ ∥(t)α−1∥1

)]
bξ,

+

[
∥(t)α−1B2∥1∥Γp∥

M2(1− ρ2)
+

∥(t)α−1B1∥∥Γp∥
M1M2(1− ρ1)

(
c2∥(t)α−1B2∥

1− ρ2
+ Γ(α)

)]
bη

+

[
∥(t)α−1B2∥∥Γd∥

M2(1− ρ2)
+

∥(t)α−1B1∥∥Γd∥
M1M2(1− ρ1)

(
c2∥(t)α−1B2∥

1− ρ2
+ Γ(α)

)]
bηα.

So, We have

(4.30) lim
k→∞

sup
t1≤t≤t2

∥∆xk+1[t1, t2]∥p ≤ ω2bξ + ε2bη + λ2bηα.

where

ω2 =
γ2∥(t)α−1B2∥1
M2(1− ρ2)

+
∥(t)α−1∥

M2

+
c2∥(t)α−1B2∥1
M1M2(1− ρ2)

(
γ1∥(t)α−1B1∥1

(1− ρ1)
+ ∥(t)α−1∥1

)
+

Γ(α)

M1M2

(
γ1∥(t)α−1B1∥1

(1− ρ1)
+ ∥(t)α−1∥1

)
,

ε2 =
∥(t)α−1B2∥1∥Γp∥

M2(1− ρ2)
+

∥(t)α−1B1∥∥Γp∥
M1M2(1− ρ1)

(
c2∥(t)α−1B2∥

1− ρ2
+ Γ(α)

)
,

λ2 =
c2∥(t)α−1B2∥∥Γd∥

M2(1− ρ2)
+

∥(t)α−1B1∥∥Γd∥
M1M2(1− ρ1)

(
c2∥(t)α−1B2∥

1− ρ2
+ Γ(α)

)
.

Similar to (4.23), one can conclude that

(4.31) lim
k→∞

sup
t1≤t≤t2

∥∆ek+1[t1, t2]∥p ≤ ω2∥C2∥bξ + (ε2∥C2∥bη + 1) + λ2∥C2∥bηα

Thus, the proof indicates that additionally, uniformly bounded over the interval [t1, t2], the

tracking error of the subsystem 2.

Step 3: In this proof, we can also get that the tracking errors are also uniformly bounded

during the intervals [t2, t3], ..., [tm−1, T ]. □

Therefore, if the conditions of Theorem 1 are given, over the whole range of [0, T ], the

tracking error is uniformly bounded. That means, throughout the course of the whole interval

[0, T ], the output of the system asymptotically decreases into a tiny neighbourhood of the

intended, desired, or targeted output as the number of iterations increases.

Corollary 4.2. Assume that the systems (3.4) satisfy Assumptions 1−5. When the systems

(3.4) are subjected to the control rule (3.2) without any external noise, if

(i) Mi = (Γ(α)− ∥(t)α−1Ai∥ − ∥(t)α−1Di∥) > 0, i = 1, 2, 3, ...,m.
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(ii) ρi = (∥I − ΓdCiBi∥+ βi) < 1, where

βi =
(∥ΓpCi + γpCiAi∥+ ∥ΓdCiDi∥)∥(t)α−1Bi∥

Mi
,

(iii) γi =
(∥ΓpCi+ΓdCiAi∥)∥(t)α−1∥

Mi
+ ∥ΓdCi∥, i = 1, 2, 3, ...m.

Thus, throughout the period [0, T ] as k → ∞, the tracking error monotonically converges to

zero and the system output converges to the intended output.

0 10 20 30 40 50 60

time

0.5

1

1.5

2

2.5

3

3.5

S
w

itc
hi

ng
  r

ul
e

Figure 2. Switching rule

5. Conclusion

In this paper, we present for a class of fractional-order linear continuous-time delay

switched systems with an arbitrary switching sequence the performance of PDα type frac-

tional order ILC. In certain circumstances, when bounded external noises are present, the

PDα-type approach may guarantee that the tracking error is uniformly bound over the whole

interval, and when bounded external noises are missing, the tracking error converges mono-

tonically to zero. Further analyse the performance of FOILC algorithms for fractional-order

nonlinear switched systems with a time delay input signal.
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