

Journal of Hyperstructures, 14 (1) (2025), 25-35

Journal Homepage: https://jhs.uma.ac.ir/

Research Paper

ON THE GENERALIZATION OF PSEUDO P-CLOSURE IN PSEUDO BCI-ALGEBRAS

PADENA PIRZADEH AHVAZI¹, HABIB HARIZAVI^{2,*} D AND TAYEBEH KOOCHAKPOOR³ D

ARTICLE INFO

Article history:

Received: 26 October 2024 Accepted: 10 December 2024

Communicated by Mahmood Bakhshi

Keywords: BCI-algebra pseudo BCI-algebra minimal elements nilpotent elements closure operation

MSC:

16D25; 16Y20

ABSTRACT

In this paper, the notion of generalization of pseudo p-closure, denoted by gcl, is introduced and its related properties are investigated. The gcl of subalgebras and pseudo-ideals is discussed. Also, a necessary and sufficient condition for an element to be minimal; and for pseudo BCI-algebra to be nilpotent are given. It is proved that the set of all nilpotent elements of a pseudo BCI-algebra A, denoted by \mathcal{N}_A , is the least closed pseudo-ideal with the property $gcl(\mathcal{N}_A) = \mathcal{N}_A$. Finally, it is shown that the mentioned notion, as a function, defines a closure operation on pseudo-ideals.

1. Introduction

The notion of BCK/BCI-algebras was introduced by Y. Imai and K. Iséki in 1966 as a generalization of the concept of set-theoretic difference and propositional calculi [7]. In 2008, W. A. Dudek and Y. B. Jun extended the idea of BCI-algebras to introduce pseudo BCI-algebras [5]. Y. B. Jun et al. introduced the idea of pseudo-ideal and pseudo-homomorphism in a pseudo BCI-algebra, and then they investigated several related properties. G. Dymek introduced the idea of p-semisimple pseudo BCI-algebras and established its characterizations [3]. For example, it is shown the p-semisimple pseudo BCI-algebras and the groups

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Copyright © 2024 The Author(s). Published by University of Mohaghegh Ardabili.

 $^{^{1}} Department \ of \ Mathematics, \ Shahid \ Chamran \ University \ of \ Ahvaz, \ Ahvaz, \ Iran, \ padenapirzadeh@gmail.com$

 $^{^2 \\} Department of Mathematics, Shahid Chamran University of Ahvaz, Ahvaz, Iran, harizavi@scu.ac.ir$

³Department of Mathematics, Payame noor University, Tehran, Iran, Koochakpoor.T@pnu.ac.ir

^{*}Address correspondence to H. Harizavi; Department of Mathematics, Faculty of Mathematics Sciences and Computer, Shahid Chamran University of Ahvaz, Ahvaz, Iran, E-mail: harizavi@scu.ac.ir.

are categorically equivalent. The idea of minimal elements in a pseudo BCI-algebras was defined by Y. H. Kim and K. S. So [10]. Furthermore, it was shown that the collection of all minimal elements of a pseudo BCI-algebra form a subalgebras of A. In [12], H. Moussei et al. introduced the idea of p-closure in BCI-algebras and investigated some related properties. In the sequel, H. Harizavi introduced the notion of p-closure in pseudo BCI-algebras and discussed several related properties [6]. In this paper, following [6], we defined the generalization of p-closure, denoted by gcl(C) for a non-empty subset of a pseudo BCI-algebra, and discuss several related properties. We determined the gcl of subalgebras and pseudo-ideals. We discus the relationship between the gcl and the minimal elements. Also, using the notion of gcl, we give a necessary and sufficient condition for a pseudo BCI-algebra to be nilpotent. Moreover, we prove that the set of all nilpotent elements of a pseudo BCI-algebra A, denoted by \mathcal{N}_A , is the least closed pseudo-ideal with the property $gcl(\mathcal{N}_A) = \mathcal{N}_A$. Finally, we showed that the gcl, as a function, acts on closed pseudo-ideals as the same as a closure operation.

2. Preliminaries

In this section, we present some fundamental results which are useful in this paper, and for additional details, the reader is referred to [5, 11].

By a BCI-algebra, we mean an algebra (A, *, 0) of type (2, 0) satisfying the following axioms for all $r, s, t \in A$:

BCI-1: ((r*s)*(r*t))*(t*s) = 0,

BCI-2: r * r = 0,

BCI-3: r * s = 0 and s * r = 0 imply r = s.

A BCI-algebra $(A, *, \diamond)$ that satisfies the property 0 * r = 0 for all $r \in A$ is known as a BCK-algebra [13].

Definition 2.1. [5] A pseudo BCI-algebra is the structure $A = (A, \leq, *, \diamond, 0)$ consists of \leq as a binary relation on set A, * and \diamond as binary operations on A, and 0 as an element of A satisfying the following axioms: for all $r, s, t \in A$,

- (a_1) $(r*s) \diamond (r*t) \leq t*s$, $(r \diamond s) * (r \diamond t) \leq t \diamond s$,
- (a_2) $r * (r \diamond s) \preceq s$, $r \diamond (r * s) \preceq s$,
- (a_3) $r \leq r$,
- (a_4) $r \leq s$, $s \leq r \Longrightarrow r = s$,
- (a_5) $r \leq s \iff r * s = 0 \iff r \diamond s = 0.$

A pseudo BCI-algebra $A=(A, \leq, *, \diamond, 0)$ satisfying the property $0*a=0=0 \diamond a$ for all $a \in A$ is known as a pseudo BCK-algebra. It is clear that every pseudo BCI-algebra (respectively, pseudo BCK-algebra) satisfying the property $r*s=r \diamond s$ for any $r,s \in A$ is a BCI-algebra (respectively, BCK-algebra).

Example 2.2. [3] Consider $A = [0, \infty)$ with the usual order \leq . Define binary operations * and \circ on A as:

$$r * s = \begin{cases} 0 & \text{if } r \leqslant s \\ \frac{2r}{\pi} \arctan(\ln(\frac{r}{s})) & \text{if } s < r, \end{cases}$$

$$r \circ s = \begin{cases} 0 & \text{if } r \leqslant s \\ re^{-\tan(\frac{\pi s}{2r})} & \text{if } s < r, \end{cases}$$

for all $r, s \in A$. Then $(A, \leq, *, \circ, 0)$ is a pseudo BCK-algebra, and hence it is a pseudo BCI-algebra.

Proposition 2.3. [5] Any pseudo BCI-algebra A satisfies the following conditions: for any $r, s, t \in A$,

- (p_1) $r \leq 0 \Longrightarrow r = 0$,
- (p_2) $r \leq s \Longrightarrow r * t \leq s * t, r \diamond t \leq s \diamond t,$
- (p_3) $r \leq s \Longrightarrow t * s \leq t * r, t \diamond s \leq t \diamond r,$
- (p_4) $r \leq s, s \leq t \Longrightarrow r \leq t,$
- $(p_5) (r*s) \diamond t = (r \diamond t) *s,$
- $(p_6) r * s \leq t \Leftrightarrow r * t \leq s,$
- (p_7) $(r*s)*(t*s) \leq r*t, (r\diamond s) \diamond (t\diamond s) \leq r\diamond t,$
- (p_8) $r * (r \diamond (r * s)) = r * s$ and $r \diamond (r * (r \diamond s)) = r \diamond s$,
- $(p_9) r * 0 = r = r \diamond 0,$
- $(p_{10}) r * r = 0 = r \diamond r,$
- $(p_{11}) \ 0 * (r \diamond s) \leq s \diamond r \ and \ 0 \diamond (r * s) \leq s * r,$
- $(p_{12}) \ 0 * r = 0 \diamond r,$
- $(p_{13}) \ 0 * (r * s) = (0 * r) \diamond (0 * s) \ and \ 0 \diamond (r \diamond s) = (0 \diamond r) * (0 \diamond s).$

Notation 2.4. For any elements r, s of a pseudo BCI-algebra A and a natural number p, we denote

$$r * s^{(\diamond,p)} = ((...(r * \underbrace{s) \diamond s) \diamond s)...) \diamond \underline{s}}_{p-times}.$$

$$r * s^{(\diamond,*,p)} = ((...(r * \underbrace{s) \diamond s) \diamond s) \diamond ...)}_{p-times}.$$

Let $(A, \preceq, *, \circ, 0)$ be a pseudo BCI-algebra and S a non-empty subset of A. Then S is called a subalgebra of A if $r * s \in S$ and $r \diamond s \in S$ for any $r, s \in S$. It can be checked that $K(A) := \{r \in A \mid 0 * r = 0 = 0 \circ r\}$ is a subalgebra of A, which implies that $(K(A), \preceq, *, \diamond, 0)$ forms a pseudo BCK-algebra.

In a pseudo BCI-algebra A, an element m is called minimal if the following condition holds:

$$(\forall r \in A) \ r \leq m \Longrightarrow r = m.$$

The set of all minimal elements of A will be denoted by M(A). Clearly, $0 \in M(A)$. In [8], it has showed that $m \in M$ if and only if $m = 0 * (0 \diamond m)$.

Hence $M(A) = \{m \in A \mid m = 0 * (0 \diamond m)\}$. It can be shown that $K(A) \cap M(A) = \{0\}$.

A pseudo BCI-algebra A is called p-semisimple if every element in A is minimal, that is M(A) = A.

Proposition 2.5. [2] Considering a pseudo BCI-algebra A and elements $r, s \in A$, the following conditions are equivalent:

- (i) A is p-semisimple,
- (ii) $r * (r \diamond s) = s = r \diamond (r * s)$,
- (*iii*) $0 * (0 \diamond r) = r = 0 \diamond (0 * r)$.

An element a of a pseudo BCI-algebra A is said to be nilpotent if $0 * a^{(*,p)} = 0$ (or equivalently $0 \diamond a^{(\diamond,p)} = 0$) for some $p \in \mathbb{N}$. The set of all nilpotent elements of A is denoted by \mathcal{N}_A . A pseudo BCI-algebra A is called nilpotent if all its elements are nilpotent, that is $\mathcal{N}_A = A$.

If m is a minimal element of A, then the set $V(m) := \{a \in A \mid m \leq a\}$ is called the branch of m. It has proved that for any pseudo BCI-algebra $A, A = \bigcup_{m \in M(A)} V(m)$ [4].

Definition 2.6. [9] In a pseudo BCI-algebra A, a subset I of A is called a pseudo-ideal if it satisfies the following conditions:

- $(I1) \ 0 \in I,$
- (I2) $(\forall s \in I)(*(s, I) \subseteq I \text{ and } \diamond(s, I) \subseteq I)$, where $*(s, I) := \{r \in A \mid r * s \in I\}$ and $\diamond(s, I) := \{r \in A \mid r \diamond s \in I\}$.

Theorem 2.7. [9] Let A be a pseudo BCI-algebra and I a pseudo-ideal of A. Then, the following statements hold:

- (i) $(\forall r, s \in A)$ $s * r \in I$ (or $s \diamond r \in I$) and $r \in I \Longrightarrow s \in I$,
- (ii) $(\forall r, s \in A)$ $s \leq r$ and $r \in I \Longrightarrow s \in I$,
- (ii) I is closed if and only if $0 * r = 0 \diamond r \in I$ for any $r \in I$.

A mapping $p: E \to E$ is said to be a closure operation on an ordered set (E, \leq) if it satisfies the following properties: for all $x, y \in E$,

- (i) $x \leq p(x)$,
- (ii) $x \le y \Rightarrow p(x) \le p(y)$,
- (iii) p(p(x)) = p(x).

3. On the generalization of pseudo p-closure

We will start by defining the concept of gcl(C) for a non-empty subset C of a pseudo BCI-algebra A, and then investigate some related properties. Throughout, let A be a pseudo BCI-algebra unless specified otherwise.

Definition 3.1. Assuming C is a non-empty subset of A, the generalization of pseudo p-closure of C, represented by gcl(C), is defined as follows:

$$\gcd(\mathbf{C}) := \{ a \in A \mid c * a^{(*,p)}, \ c \diamond a^{(\diamond,p)} \in C \text{ for some } c \in C \text{ and } p \in \mathbb{N} \}.$$

Example 3.2. [1] Let $A = \{0, a, b, x, y, g\}$ be a pseudo BCI-algebra in which * and \diamond are binary operations that defined by the following Cayley's tables:

*	0	a	b	x	y	g	♦	0	a	b	\boldsymbol{x}	y	g
0	0	0	0	g	g	g	0	0	0	0	g	g	\overline{g}
a	a	0	a	g	y	y	a	$\mid a$	0	a	\boldsymbol{x}	g	x
b	b	b	0	\boldsymbol{x}	g	\boldsymbol{x}	b		b	0	g	y	y
\boldsymbol{x}	x	g	\boldsymbol{x}	0	b	b	x	a	x	g	0	a	a
y	y	y	g	a	0	a	y	9	g	y	b	0	b
g	g	g	g	0	0	0	g	$\mid g$	g	g	0	0	0

By taking $C := \{a\}$, it is straightforward to verify that $gcl(C) = \{0, b, g\}$.

From Definition 3.1 and Proposition $2.3(p_9), (p_{10})$, the following lemma is clear.

Lemma 3.3. If C, D are non-empty subsets of A, then we have:

- $(i) \ 0 \in gcl(C),$
- (ii) if $C \subseteq D$, then $gcl(C) \subseteq gcl(D)$,
- (iii) if $0 \in C$, then $C \subseteq gcl(C)$.

The next theorem characterizes the minimal elements within A.

Theorem 3.4. $m \in A$ is minimal if and only if $gcl(\{m\}) = \mathcal{N}_A$.

Proof. Assume that $a \in \operatorname{gcl}(\{m\})$ for an element minimal m of A. Then there exists $p \in \mathbb{N}$ such that $m * a^{(*,p)} = m = m \diamond a^{(\diamond,p)}$. Consequently, by Proposition 2.3 (p_5) , we get $0 = (m * a^{(*,p)}) \diamond m = (m \diamond m) * a^{(*,p)} = 0 * a^{(*,p)}$, that is $0 * a^{(*,p)} = 0$ which yield $a \in \mathcal{N}_A$. Hence $\operatorname{gcl}(\{m\}) \subseteq \mathcal{N}_A$. To prove the reverse inclusion, let $a \in \mathcal{N}_A$. Thus $0 * a^{(*,q)} = 0$ for some $q \in \mathbb{N}$, and so, we have

by the minimality of
$$m$$

$$m*a^{(*,q)} = (0 \diamond (0*m))*a^{(*,q)}$$
 by Proposition 2.3 (p_5)
$$= (0*a^{(*,q)}) \diamond (0*m)$$

$$= 0 \diamond (0*m)$$
 by the minimality of m
$$= m$$
,

that is $m * a^{(*,q)} = m$. Similarly, we have $m \diamond a^{(\diamond,q)} = m$ which yield $a \in \gcd(\{m\})$ and so $\mathcal{N}_A \subseteq \gcd(\{m\})$. Therefore $\gcd(\{m\}) = \mathcal{N}_A$.

Conversely, suppose that $gcl(\{m\}) = \mathcal{N}_A$ for $m \in A$. Let $d \in A$ with $d \leq m$. Hence, by Proposition 2.3 (p_2) we get $0 \leq m * d$, therefore, this implies that $m * d \in K(A)$. It is not difficult to see that $K(A) \subseteq \mathcal{N}_A$. Hence $m * d \in \mathcal{N}_A$, and so, by hypothesis, $m * d \in gcl(\{m\})$ which implies $m * (m * d)^{(*,p)} = m = m \diamond (m * d)^{(\diamond,p)}$ for some $p \in \mathbb{N}$. Thus, we have

by Proposition 2.3(
$$p_5$$
)
$$m*d = (m \diamond (m*d)^{(\diamond,p)})*d = (m*d) \diamond (m*d)^{(\diamond,p)}$$
$$= ((m*d) \diamond (m*d)) \diamond (m*d)^{(\diamond,p-1)}$$
$$= 0 \diamond (m*d)^{(\diamond,p-1)}$$
$$= (0 \diamond (m*d)) \diamond (m*d)^{(\diamond,p-2)}$$
by Proposition 2.3(p_{11})
$$\preceq (d*m) \diamond (m*d)^{(\diamond,p-2)}$$
$$= 0 \diamond (m*d)^{(\diamond,p-2)} = \dots = 0 \diamond (m*d) \preceq d*m = 0.$$

Consequently, we have m * d = 0, which implies $m \leq d$. Therefore m = d, and so m is a minimal element of A.

Proposition 3.5. If C is a subset of A containing a minimal element of A, then $\mathcal{N}_A \subseteq gcl(C)$.

Proof. Let m be an arbitrary minimal element of C. By Lemma 3.3, $gcl(\{m\}) \subseteq gcl(C)$. On other hand, by Theorem 3.4, we have $\mathcal{N}_A = gcl(\{m\})$. Therefore $\mathcal{N}_A \subseteq gcl(C)$.

Theorem 3.6. For any pseudo BCI-algebra A, gcl(M(A)) = A.

Proof. Suppose initially that $a \in A$. It follows from $A = \bigcup_{m \in M(A)} V(m)$ that $a \in V(m)$ for some $m \in M(A)$, and therefore $m \leq a$. Consequently, $m * a = 0 \in M(A)$, which implies $a \in gcl(M(A))$. Hence, A = gcl(M(A)).

Corollary 3.7. For any subset C of A, if $M(A) \subseteq C$, then gcl(C) = A.

Proof. This is a direct consequence of Lemma 3.3(ii) and Theorem 3.6.

The converse of Corollary 3.7 is not universally true as shown in the following example.

Example 3.8. Consider $A = \{0, a, b, x, y, g\}$ as a pseudo BCI-algebra in Example 3.2. By taking $C = \{a, b, x, y, g\}$, it can be checked that $M(A) = \{0, g\}$ and gcl(C) = A, but $M(A) \nsubseteq C$.

Theorem 3.9. If A is a pseudo BCK-algebra, then $gcl(\{0\}) = A$.

Proof. The proof is straightforward by using Proposition 2.3(p_{12}).

The following example show that the converse of Theorem 3.9 is not true in general.

Example 3.10. Consider $A = \{0, a, b, x, y, g\}$ as a pseudo BCI-algebra in Example 3.2. With a simple calculation, we get $gcl(\{0\}) = A$, but A is not a pseudo BCK-algebra.

Theorem 3.11. A pseudo BCI-algebra A is nilpotent if and only if $gcl(\{0\}) = A$.

Proof. The proof is straightforward by using Definition 3.1.

The following lemma is useful for the proof of the next theorems.

Lemma 3.12. For any $a, d \in A$ and $p, q \in \mathbb{N}$, the following conditions hold:

- (i) $0 * a^{(*,p)} = 0 \diamond a^{(\diamond,p)}$,
- (ii) $0 * (0 * a^{(*,p)}) = 0 * (0 * a)^{(*,p)}$,
- (iii) If $0 \diamond (0 * a^{(\diamond,p)}) = 0$, then $0 * a^{(*,p)} = 0$,
- $(iv) \ 0 * (d \diamond a^{(\diamond,p)}) = (0 * d) * (0 * a^{(*,p)}),$
- $(v) \ 0 * (d * a^{(*,p)}) = (0 * d) \diamond (0 * a)^{(\diamond,p)},$
- $(vi) \ 0 * (0 * a^{(*,p)})^{(*,q)} = 0 \diamond (0 \diamond a)^{(\diamond,pq)} = 0 * (0 * a^{(*,pq)}).$

Proof. (i)-(iii) The proofs are straightforward by using the induction method and proposition $2.3(p_5)$.

(iv) We proceed by induction on $p \ge 1$. For p = 1, the result holds by Proposition 2.3(p_{13}). Suppose that the statement is true for p, that is

$$(3.1) 0 * (d \diamond a^{(\diamond,p)}) = (0 * d) * (0 * a^{(*,p)}),$$

and prove it for p + 1. For this purpose, we have

$$0*(d \diamond a^{(\diamond,p+1)}) = 0*((d \diamond a^{(\diamond,p)}) \diamond a)$$
by Proposition 2.3(p₁₃)
$$= (0*(d \diamond a^{(\diamond,p)})) * (0*a)$$
by (1)
$$= ((0*d)*(0*a^{(*,p)})) * (0*a)$$
by Proposition 2.3(p₁₃) and (ii)
$$= ((0*(0*a)^{(*,p)}) * (0*a)) \diamond d$$

$$= (0*(0*a)^{(*,p+1)}) \diamond d$$
by (ii)
$$= (0*(0*a^{(*,p+1)})) \diamond d$$
by Proposition 2.3(p₅)
$$= (0*d)*(0*a^{(*,p+1)})$$

This completes the proof.

(v) The proof is similar to the proof of (iv).

(vi) We proceed by induction on $p \ge 1$. For p = 1, the result clear for any $q \in \mathbb{N}$. Suppose that the statement is true for p and any $q \in \mathbb{N}$ and prove it for p + 1. We have

$$0 * (0 * a^{(*,q)})^{(*,p+1)} = (0 * (0 * a^{(*,q)})^{(*,p)}) * (0 * a^{(*,q)})$$
 by the induction hypothesis
$$= (0 \diamond (0 \diamond a)^{(\diamond,pq)}) * (0 * a^{(*,q)})$$
 by Proposition 2.3(p₅)
$$= (0 * (0 * a^{(*,q)})) \diamond (0 \diamond a)^{(\diamond,(pq))}$$
 by (ii)
$$= (0 \diamond (0 \diamond a)^{(\diamond,q)}) \diamond (0 \diamond a)^{(\diamond,(pq))}$$

$$= 0 \diamond (0 \diamond a)^{(\diamond,(p+1)q)}.$$

Therefore the statement holds for every $p, q \in \mathbb{N}$.

Lemma 3.13. For any subalgebra C of A, we have

$$a \in gcl(C) \iff 0 * a^{(*,q)} \in C \text{ for some } q \in \mathbb{N}$$

Proof. (\Rightarrow) Assume that $a \in gcl(C)$. Then, there exist $c \in C$ and $q \in \mathbb{N}$ such that $c * a^{(*,q)} \in C$. By closedness of C, we get $(c * a^{(*,q)}) \diamond c \in A$. Then it follows from Proposition 2.3 (p_5) that $(c \diamond c) * a^{(*,q)} \in A$, and consequently $0 * a^{(*,q)} \in C$.

$$(\Leftarrow)$$
 It is clear by Definition 3.1 and Lemma 3.12(i).

In the sequel, we introduce a condition on pseudo BCI-algebras and obtain several results about gcl.

Definition 3.14. A pseudo BCI-algebra A is called a pseudo BCI-algebra with condition (Z) if it satisfies the following equation:

$$(0*a)*d = (0*a) \diamond d$$
 for all $a, d \in A$.

Example 3.15. Consider $(A = \{0, a, b, x, y, g\}, *, \diamond, 0)$ as a pseudo BCI-algebra in Example 3.2. Some routine calculations show that $0 * (u * t) = 0 * (u \diamond t)$ for any $u, t \in A$. Therefore A satisfies condition (Z).

Some pseudo BCI-algebras does not satisfy the condition (Z) as shown in the following example.

Example 3.16. Consider $(A = \{0, a, b, c, d, e\}, *, \diamond, 0)$ as a pseudo BCI-algebra [1] in which the operations $*, \diamond$ are given by the following Cayley's tables:

			_	-			 -						
*	0	a	b	c	d	e	\Diamond	0	a	b	c	d	
0	0	a	b	d	c	e	0	0	a	b	d	c	-
a	a	0	c	e	b	d	a	a	0	d	b	e	
b	b	d	0	a	e	c	b	b	c	0	e	a	
c	c	e	a	0	d	b	c	c	b	e	0	d	
d	d	b	e	c	0	a	d	d	e	a	c	0	
e	e	c	d	b	a	0	e	e	d	c	a	b	(

The pseudo BCI-algebra A doesn't satisfy condition (Z), because (0*a)*b = c, but $(0*a)\diamond b = d$.

Lemma 3.17. Let A be a pseudo BCI-algebra with condition (Z). Then, for any $a, d \in A$ and $p \in N$,

$$0 * (a * d)^{(*,p)} = (0 * a^{(*,p)}) \diamond (0 * d^{(*,p)})$$

Proof. We proceed by induction on $p \ge 1$. For p = 1, the result holds by Proposition 2.3(p_{13}). Suppose that the statement is true for p and prove it for p + 1. For this purpose, we have

$$0*(a*d)^{(*,p+1)} = (0*(a*d)^{(*,p)})*(a*d)$$
 by the induction hypothesis
$$= ((0*a^{(*,p)}) \diamond (0*d^{(*,p)}))*(a*d)$$

$$= ((0*(a*d)) \diamond a^{(\diamond,p)}) \diamond (0*d^{(*,p)})$$
 by Proposition 2.3(p₁₃)
$$= ((0*a) \diamond (0*d)) \diamond a^{(\diamond,p)} \diamond (0*d^{(*,p)})$$
 by Proposition 2.3(p₁₃)
$$= ((0*a^{(\diamond,p+1)}) * (0*d)) \diamond (0*d^{(*,p)})$$
 by Proposition 2.3(p₁₃)
$$= ((0*(0*d^{(*,p)})) * a^{(\diamond,p+1)}) * (0*d)$$
 by condition (Z)
$$= ((0*(0*d^{(*,p)})) \diamond a^{(\diamond,p+1)}) * (0*d)$$
 by Lemma 3.10(ii)
$$= ((0*(0*d)^{(*,p)}) * (0*d)) \diamond a^{(\diamond,p+1)}$$
 by Lemma 3.10(ii)
$$= (0*(0*d)^{(*,p+1)}) \diamond a^{(\diamond,p+1)}$$
 by Proposition 2.3(p₁₃)
$$= (0*(0*d)^{(*,p+1)}) \diamond a^{(\diamond,p+1)}$$
 by Proposition 2.3(p₁₃)
$$= (0*a^{(*,p+1)}) \diamond (0*d^{(*,p+1)}).$$

This completes the proof.

Theorem 3.18. Let A be a pseudo BCI-algebra with condition (Z). If C is a subalgebra of A, then so is gcl(C).

Proof. Let $c, d \in gcl(C)$. Then, there exist $s, t, r \in C$ and $q \in \mathbb{N}$ such that $s * c^{(*,q)} = t$, $s \diamond c^{(\diamond,q)} = r$. So $(s \diamond t) * c^{(*,q)} = 0 = (s * r) \diamond c^{(\diamond,q)}$. By taking, $s \diamond t = a$, s * r = b, we obtain

(3.2)
$$a * c^{(*,q)} = 0 \text{ and } 0 * c^{(*,q)} = 0 * a,$$

$$(3.3) b \diamond c^{(\diamond,q)} = 0 \text{ and } 0 \diamond c^{(\diamond,q)} = 0 \diamond b.$$

Thus, we have

$$0*c^{(*,kq)} = ((a \diamond a)*c^{(*,q)})*c^{(*,(k-1)q)}$$
by Proposition 2.3(p₅)
$$= ((a*c^{(*,q)})*c^{(*,(k-1)q)}) \diamond a$$
by (3.2)
$$= (0*c^{(*,(k-1)q)}) \diamond a = ((0*c^{(*,q)})*c^{(*,(k-2)q)}) \diamond a$$
by (3.2)
$$= ((0 \diamond a)*c^{(*,(k-2)q)}) \diamond a = (0*c^{(*,(k-2)q)}) \diamond a^{(\diamond,2)}$$
...
$$= (0*c^{(*,q)}) \diamond a^{(\diamond,k-1)} = 0 \diamond a^{(\diamond,k)} \in C,$$

for any $k \in \mathbb{N}$. Thus

$$(3.4) 0 * c^{(*,kq)}, \ 0 \diamond c^{(\diamond,kq)} \in C \ for \ any \ k \in \mathbb{N}.$$

Similarly, from $d \in gcl(C)$, we get

$$(3.5) 0 * d^{(*,kp)}, 0 \diamond d^{(\diamond,kp)} \in C \text{ for any } k \in \mathbb{N}.$$

Combining, (3.4), (3.5) and Lemma 3.17, by closedness of C, we get $0 * (c * d)^{(*,pq)} = (0 * c^{(*,pq)}) \diamond (0 * d^{(*,pq)}) \in C$, which implies $c * d \in gcl(C)$. Therefore gcl(C) is a subalgebra of A.

The converse of Theorem 3.18 may not hold as seen in the following example.

Example 3.19. Consider $A = \{0, a, b, x, y, g\}$ as a pseudo BCI-algebra with property (Z) in Example 3.2. By taking $C = \{0, a, x\}$, it can be checked that gcl(C) = A. But C is not a subalgebra of A because $a * x = g \notin C$.

Proposition 3.20. The following hold:

- (i) if $0 \in C \subseteq K(A)$, then $gcl(C) = \mathcal{N}_{A}$,
- (ii) for all $d \in A$, $gcl(\{A(d)\}) = \mathcal{N}_{\mathcal{A}}$, where $A(d) = \{a \in A | a \leq d\}$.

Proof. (i) By Theorem 3.5, $\mathcal{N}_A \subseteq \operatorname{gcl}(C)$. To prove the reverse inclusion, assume that $d \in \operatorname{gcl}(C)$. Then there exist $a, b, c \in C$ and $q \in \mathbb{N}$ such that $a * d^{(*,q)} = b$ and $a \diamond d^{(\diamond,q)} = c$. Then we have

by
$$b \in K(A)$$

$$0 = 0 * b = 0 * (a * d^{(*,q)})$$
 by Lemma 3.12(iv)
$$= (0 * a) \diamond (0 * d^{(\diamond,q)})$$
 by $a \in K(A)$
$$= 0 \diamond (0 * d^{(\diamond,q)}).$$

Then from Lemma 3.12(iii), we obtain $0 * d^{(\diamond,q)} = 0$, and so by Lemma 3.12(i), we have $0 * d^{(*,q)} = 0$. Thus, $d \in \mathcal{N}_A$. Therefore $gcl(C) = \mathcal{N}_A$.

(ii) Let $a \in \mathcal{N}_A$. Then $0 * a^{(*,q)} = 0 = 0 \diamond a^{(\diamond,q)}$ for some $q \in \mathbb{N}$ and so $(d * a^{(*,q)}) \diamond d = (d \diamond d) * a^{(*,q)} = 0 * a^{(*,q)} = 0$. It follows that $d * a^{(*,q)} \leq d$, and consequently $d * a^{(*,q)} \in A(d)$. Similarly, we have $d \diamond a^{(\diamond,q)} \in A(d)$. But, $d \in A(d)$. Hence, $a \in \operatorname{gcl}(A(d))$ and so $\mathcal{N}_A \subseteq \operatorname{gcl}(A(d))$. To prove the reverse inclusion, suppose that $a \in \operatorname{gcl}(A(d))$. Then there exists $t \in A(d)$ such that $t * a^{(*,q)} \leq d$, that is $(t * a^{(*,q)}) \diamond d = 0$ and so $(t \diamond d) * a^{(*,q)} = 0$. On other hand, from $t \in A(d)$ we have $t \diamond d = 0$. Hence, $0 * a^{(*,q)} = 0$, and so, by Lemma 3.12(i) we get $0 \diamond a^{(\diamond,q)} = 0$. Consequently, $a \in \mathcal{N}_A$. Therefore $\operatorname{gcl}(A(d)) \subseteq \mathcal{N}_A$. This completes the proof of (ii).

In the following theorem, we introduce a sufficient condition for pseudo BCI-algebra to be p-semisimple.

Theorem 3.21. For any pseudo BCI-algebra A, if $gcl(\{0\}) = \{0\}$, then A is p-semisimple.

Proof. Assume that $gcl(\{0\}) = \{0\}$. Then by Theorem 3.20, $\mathcal{N}_A = \{0\}$. Since $K(A) \subseteq \mathcal{N}_A$, we get $K(A) = \{0\}$. Using Proposition 2.3 $(p_{13}), (p_8)$, we obtain, for any $a \in A$

$$0*(a \diamond (0*(0*a))) = (0*a)*(0*(0*(0*a))) = (0*a)*(0*a) = 0$$

This implies that $a \diamond (0 * (0 * a)) \in K(A)$ and so $a \diamond (0 * (0 * a)) = 0$. On other hand, $(0 * (0 * a)) \diamond a = 0$ for any $a \in A$. Therefore, 0 * (0 * a) = a, and so, by Proposition 2.5, A is p-semisimple.

Lemma 3.22. Let A be a pseudo BCI-algebra and $a, c \in A$. If 0 * a = 0 * c, then $0 * a^{(*,q)} = 0 * c^{(*,q)} = 0 * c^{(\diamond,q)}$, for all $q \in \mathbb{N}$.

Proof. The proof is straightforward.

Theorem 3.23. Let A be a pseudo BCI-algebra with condition (Z). If C is a closed pseudo-ideal of A, then so is gcl(C). Moreover, $\mathcal{N}_A \subseteq gcl(C)$.

Proof. Clearly, $0 \in \operatorname{gcl}(C)$. Let $a, c * a \in \operatorname{gcl}(C)$. Then there exist $b, d \in C$ and $q \in \mathbb{N}$ such that $b * a^{(*,q)}$, $b \diamond a^{(\diamond,q)} \in C$ and $d * (c * a)^{(*,p)}$, $d \diamond (c * a)^{(\diamond,p)} \in C$. Thus, similar to the argument in Theorem 3.18, we get $0 * a^{(*,pq)}$, $0 * (c * a)^{(*,pq)} \in C$. It follows from Definition 2.1(a_2) that $c \diamond (c * a) \leq a$ and so, by Proposition 2.3(a_2), we get $0 * a \leq 0 * (c \diamond (c * a))$. Then, by the minimality of $0 * (c \diamond (c * a))$, we have $0 * (c \diamond (c * a)) = 0 * a$. From this, by Lemma 3.22, we obtain $0 * (c \diamond (c * a))^{(*,pq)} = 0 * a^{(*,pq)}$. Now, by Lemma 3.17, we have

$$(0*c^{(*,pq)}) \diamond (0*(c*a)^{(*,pq)}) = 0*(c*(c*a))^{(*,pq)} = 0*a^{(*,pq)} \in C.$$

Thus, since C is a pseudo-ideal of A and $0*(c*a)^{(*,pq)} \in C$, we get $0*c^{(*,pq)} \in C$ and so $c \in \gcd(C)$. Therefore $\gcd(C)$ is a pseudo-ideal of A. Moreover, due to Theorem 3.18, $\gcd(C)$ is closed. Finally, using Theorem 3.4 and Lemma 3.3(ii), we get $\mathcal{N}_A = \gcd(\{0\}) \subseteq \gcd(C)$, and so the proof is completed.

The converse of Theorem 3.23 may not hold as seen in the following example.

Example 3.24. Let $A = (\mathbb{Q} - \{0\}, *, \diamond, 1)$ be the pseudo BCI-algebra and \div be the usual division, which $a * c = a \diamond c = a \div c$, [12]. By taking $C = \{2^{-n} | n = 0, 1, 2, ...\}$, it can be easily seen that $gcl(C) = \{2^n | n \in \mathbb{Z}\}$. Clearly, gcl(C) is closed but C is not closed.

Theorem 3.25. Let A be a pseudo BCI-algebra with condition (Z). If C is a closed pseudo-ideal of A, then gcl(C) = gcl(gcl(C)).

Proof. By Lemma 3.3(iii), $gcl(C)\subseteq gcl(gcl(C))$. For the reverse inclusion, suppose $a\in gcl(gcl(C))$. By Theorem 3.23, gcl(C) forms a subalgebra of A. Therefore, applying Lemma 3.13, we get $0*a^{(*,q)}\in gcl(C)$ for some $q\in \mathbb{N}$. Thus $0*(0*a^{(*,q)})^{(*,p)}\in C$ for some $p\in \mathbb{N}$. Then it follows from Lemma 3.12(vi) that $0*(0*a)^{(*,pq)}=0*(0*a^{(*,q)})^{(*,p)}\in C$. Thus $0*a\in gcl(C)$ and so, by closedness of gcl(C), we get $0*(0*a)\in gcl(C)$. On other hand, by the similar argument in Theorem 3.21, we have 0*(0*a)=a. Therefore $a\in gcl(C)$ and so the proof is completed. □

Corollary 3.26. For any pseudo BCI-algebra A with condition (Z), we have

$$gcl(\mathcal{N}_{\mathcal{A}}) = \mathcal{N}_{\mathcal{A}}.$$

Proof. Using Theorems 3.20(i) and 3.25, we have

$$\mathcal{N}_{\mathcal{A}} = gcl(\{0\}) = gcl(gcl(\{0\})) = gcl(\mathcal{N}_{\mathcal{A}}).$$

This completes the proof.

Theorem 3.27. Let A be a pseudo BCI-algebra with condition (Z). Then, $\mathcal{N}_{\mathcal{A}}$ is the least closed pseudo-ideal of A satisfying $gcl(\mathcal{N}_{\mathcal{A}}) = \mathcal{N}_{\mathcal{A}}$.

Proof. By Theorem 3.4, $\mathcal{N}_{\mathcal{A}} = gcl(\{0\})$. Clearly, $\{0\}$ is a closed pseudo-ideal of A. Then, by Theorem 3.23, $\mathcal{N}_{\mathcal{A}}$ is a closed pseudo-ideal of A too. Also, by Corollary 3.26, $gcl(\mathcal{N}_{\mathcal{A}}) = \mathcal{N}_{\mathcal{A}}$. To complete the proof, assume that C is another closed pseudo-ideal of A satisfying gcl(C) = C. It follows from Theorem 3.23 that $\mathcal{N}_{\mathcal{A}} \subseteq gcl(C)$. Therefore $\mathcal{N}_{\mathcal{A}} \subseteq C$, which completes the proof.

Using the notion of the "gcl" on the set of all closed pseudo-ideals, denoted by $\mathcal{J}(A)$, we provide a closure operation as seen in the following theorem.

Theorem 3.28. For any pseudo BCI-algebra satisfying condition (Z), the mapping $p: \mathcal{J}(A) \to \mathcal{J}(A)$ defined by $p(C) = \gcd(C)$ for any $C \in \mathcal{J}(A)$, is a closure operation.

Proof. The proof is clear by Lemma 3.3 and Theorem 3.25.

4. Conclusions

In this work, we introduced several identities which was useful to prove more results. In the sequel, we defined the notion of generalization of pseudo p-closure (denoted by gcl), and study related properties. Using this notion, we gave a necessary and sufficient condition for an element to be minimal. Also, by using the mentioned notion, we gave a necessary and sufficient condition for pseudo BCI-algebra to be nilpotent. Moreover, the gcl of subalgebras and pseudo-ideals was determined. Finally, we showed that the gcl, as a function, acts on the closed pseudo-ideals as the same as a closure operation.

Acknowledgments The authors are deeply grateful to the referee for the valuable suggestions and comments.

REFERENCES

- [1] L. C. Ciungu *Pseudo BCI-algebras With Derivations*, Department of Mathematics, University of Iowa, USA. **14** (2019), 5–17.
- [2] G. Dymek, On pseudo BCI-algebras, Annales Universalistic Mariae Curie-Sklodowska Lublin Poloia., 1 (2015), 59–71.
- [3] G. Dymek, On two classes of pseudo BCI-algebras, Discussions Math, General Algebra and Application, 31 (2011), 217–229.
- [4] G. Dymek, p-semisimple pseudo BCI-algebras, J. Mult-Valued Logic Soft Comput., 19 (2012), 461-474.
- [5] W. A. Dudek, Y. B. Jun, Pseudo BCI-algebras, East Asian Math. J., 24 (2008), 187–190.
- [6] H. Hrizavi, P-closure in pseudo BCI-algebras, Journal of Algebraic Systems, 7 No.2 (2020), 155–165.
- [7] Y. Imai and K. Iséki, On axiom system of propositional calculi, Proc. Japan. Acad., 42 (1966), 19–22.
- [8] K. Iséki, An algebra related with a propositional calculus, Japan. Acad., 42 (1966), 26–29.
- [9] Y. B. Jun, H. S. Kim and J. Neggers, On pseudo-ideals of pseudo BCI-algebras, Matemat. Bech., 58 (2006), 39–46.
- [10] Y. H. Kim and K. S. So, On Minimality in pseudo BCI-algebras, Commun. Korean. Math. Soc., 1 (2012), No. 1, 7–13.
- [11] J. Meng and Y. B. Jun, BCK-Algebras, Kyung Moon Sa Co., Seoul, 1994.
- [12] H. Moussei, H. Harizavi and R. A. Borzooei, p-closure ideals in BCI-algebras, Soft Computing, 22, (2018), 7901–7908.
- [13] H. Yisheng, BCI-Algebra, Published by Science Press, 2006.