

**Research** Paper

# ON GENERALIZED BERWALD $(\alpha, \beta)$ -MANIFOLDS WITH RELATIVELY ISOTROPIC LANDSBERG CURVATURE

## AKBAR TAYEBI¹ D

ABSTRACT

<sup>1</sup>Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran, akbar.tayebi@gmail.com

### ARTICLE INFO

Keywords:

S-curvature

53C60, 53C25

MSC:

Article history: Received: 15 December 2024 Accepted: 8 February 2025 Communicated by Dariush Latifi

Generalized Berwald manifold

relatively isotropic Landsberg curvature

The class of generalized Berwald metrics contains the class of Berwald metrics as a special case. Let  $F = \alpha\phi(s)$ ,  $s = \beta/\alpha$ , be a generalized Berwald  $(\alpha, \beta)$ -metric on manifold M. We show that F has vanishing S-curvature  $\mathbf{S} = 0$  and is of relatively isotropic Landsberg curvature  $\mathbf{L} + cF\mathbf{C} = 0$  if and only if  $\mathbf{B} = 0$ , where c = c(x) is a scalar function on M.

# 1. INTRODUCTION

A Finsler metric F on a  $C^{\infty}$  manifold M is called a generalized Berwald metric if there exists a covariant derivative  $\nabla$  on M such that the parallel translations induced by  $\nabla$  preserve the Finsler function F [11][14]. In this case, (M, F) is called a generalized Berwald manifold. If  $\nabla$  is also torsion-free, then F reduces to a Berwald metric. Also, one can define a Berwald metric during the spray coefficients. Let (M, F) be a Finsler manifold. The Finsler metric F on M induced a spray

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$$

<sup>\*</sup>Address correspondence to A. Tayebi; Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran, E-mail: akbar.tayebi@gmail.com

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili.

which determines the geodesics, where  $G^i = G^i(x, y)$  are called the spray coefficients of **G**. A Finsler metric F is called a Berwald metric if  $G^i = \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k$  are quadratic in  $y \in T_xM$ for any  $x \in M$ . The Berwald curvature **B** of Finsler metrics is an important non-Riemannian quantity constructed by L. Berwald. Then, every Berwald metric is a trivially generalized Berwald metric. The main interesting point about the class of generalized Berwald manifolds lies in the fact that these manifolds may have a rich isometry group [9][10]. For the recent progress about the class of generalized Berwald manifolds, see [11], [16] and [14].

Beside the Berwald curvature, there is another interesting non-Riemannian quantity that is close to the Berwald curvature, namely, S-curvature. The S-curvature **S** is constructed by Shen for given comparison theorems on Finsler manifolds [8]. An interesting problem in Finsler geometry is to study and characterize Finsler metrics of vanishing S-curvature. It is known that some of Randers metrics are of vanishing S-curvature [7][13]. This is one of our motivations to consider Finsler metrics with vanishing S-curvature. Shen proved that every Berwald metric satisfies  $\mathbf{S} = 0$  [8].

There are two basic tensors on Finsler manifolds: fundamental metric tensor  $\mathbf{g}_y$  and the Cartan torsion  $\mathbf{C}_y$ , which are second and third order derivatives of  $\frac{1}{2}F_x^2$  at  $y \in T_x M_0$ , respectively. It is easy to see that every Finsler metric with vanishing Cartan torsion is a Riemannian metric. The rate of change of  $\mathbf{C}$  along Finslerian geodesics is called Landsberg curvature  $\mathbf{L}_y$ . A Finsler metric with vanishing Landsberg curvature is called a Landsberg metric. In [15], Vincze et al. studied generalized Berwald surface with vanishing Landsberg curvature and proved the following.

**Theorem 1.1.** ([15]) Every connected generalized Berwald surface is a Landsberg surface if and only if it is a Berwald surface.

It is obvious that  $\mathbf{L}/\mathbf{C}$  can be regarded as the relative rate of change of Cartan torsion  $\mathbf{C}$  along Finslerian geodesics. Then F is said to be relatively isotropic Landsberg metric if  $\mathbf{L} + cF\mathbf{C} = 0$ , where c = c(x) is a scalar function on M. If c = 0, then F reduces to a Landsberg metric. In order to find some Finsler metrics of relatively isotropic Landsberg curvature, one can consider the class of  $(\alpha, \beta)$ -metrics. An  $(\alpha, \beta)$ -metric is a Finsler metric on M defined by  $F := \alpha \phi(s)$ , where  $s = \beta/\alpha$ ,  $\phi = \phi(s)$  is a  $C^{\infty}$  function on the  $(-b_0, b_0)$  with certain regularity,  $\alpha = \sqrt{a_{ij}(x)y^iy^j}$  is a positive-definite Riemannian metric and  $\beta = b_i(x)y^i$ is a 1-form on M. The simplest  $(\alpha, \beta)$ -metrics are the Randers metrics  $F = \alpha + \beta$  which were discovered by G. Randers when he studied 4-dimensional general relativity. In [14], Vincze proved that a Randers metric  $F = \alpha + \beta$  is a generalized Berwald metric if and only if dual vector field  $\beta^{\sharp}$  is of constant Riemannian length. In [11], Tayebi-Barzegari showed that an  $(\alpha, \beta)$ -metric satisfying the so-called sign property is a generalized Berwald metric if and only if  $\beta^{\sharp}$  is of constant Riemannian length. Then, Vincze showed that an  $(\alpha, \beta)$ -metric satisfying  $\phi'(0) \neq 0$  is a generalized Berwald metric if and only if  $\beta^{\sharp}$  is of constant Riemannian length [16]. In this paper, we study the class of generalized Berwald  $(\alpha, \beta)$ -metrics with relatively isotropic Landsberg curvature and vanishing S-curvature. We find that such metrics must be Berwaldian. More precisely, we prove the following.

**Theorem 1.2.** Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be a generalized Berwald  $(\alpha, \beta)$ -metric on manifold M such that  $\phi'(0) \neq 0$ . Then F has vanishing S-curvature  $\mathbf{S} = 0$  and is of relatively isotropic

Landsberg curvature, namely  $\mathbf{L}/\mathbf{C}$  is isotropic,

(1.1) 
$$\mathbf{L} + c(x)F\mathbf{C} = 0,$$

where c = c(x) is a scalar function on M if and only if  $\mathbf{B} = 0$ .

Theorem 1.2 can be considered as a local extension of Theorem 1.1. Also, by using Theorem 1.2, one can conclude the following.

**Corollary 1.3.** Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be a non-Randers type generalized Berwald  $(\alpha, \beta)$ metric on manifold M of dimension  $n \ge 3$  such that  $\phi'(0) \ne 0$ . Then F has vanishing E-curvature  $\mathbf{E} = 0$  and is of relatively isotropic Landsberg curvature  $\mathbf{L} + c(x)F\mathbf{C} = 0$  if and only if  $\mathbf{B} = 0$ , where c = c(x) is a scalar function on M.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a Finsler tensor field are denoted by " | " and ", " respectively [5].

## 2. Preliminary

A Finsler metric on a manifold M is a nonnegative function F on TM having the following properties

- (a) F is  $C^{\infty}$  on  $TM_0 := TM \setminus \{0\};$
- (b)  $F(\lambda y) = \lambda F(y), \forall \lambda > 0, y \in TM;$
- (c) for each  $y \in T_x M$ , the following quadratic form  $\mathbf{g}_y$  on  $T_x M$  is positive definite,

$$\mathbf{g}_{y}(u,v) := \frac{1}{2} \Big[ F^{2}(y + su + tv) \Big] \Big|_{s,t=0}, \qquad u,v \in T_{x}M.$$

Then the pair (M, F) is called a Finsler manifold.

At each point  $x \in M$ ,  $F_x := F|_{T_xM}$  is an Euclidean norm if and only if  $\mathbf{g}_y$  is independent of  $y \in T_x M_0$ . To measure the non-Euclidean feature of  $F_x$ , define  $\mathbf{C}_y : T_x M \times T_x M \times T_x M \to \mathbb{R}$  by

$$\mathbf{C}_{y}(u,v,w) := \frac{1}{2} \frac{d}{dt} \Big[ \mathbf{g}_{y+tw}(u,v) \Big] \Big|_{t=0}, \qquad u,v,w \in T_{x}M.$$

The family  $\mathbf{C} := {\mathbf{C}_y}_{y \in TM_0}$  is called the Cartan torsion.

Given a Finsler manifold (M, F), then a global vector field **G** is induced by F on  $TM_0$ , which in a standard coordinate  $(x^i, y^i)$  for  $TM_0$  is given by

$$\mathbf{G} = y^i \frac{\partial}{\partial x^i} - 2G^i(x, y) \frac{\partial}{\partial y^i}$$

where  $G^{i}(x, y)$  are local functions on  $TM_{0}$  satisfying  $G^{i}(x, \lambda y) = \lambda^{2}G^{i}(x, y), \lambda > 0$ . **G** is called the associated spray to (M, F). The projection of an integral curve of G is called a geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates  $(c^{i}(t))$  satisfy

$$\ddot{c}^i + 2G^i(\dot{c}) = 0.$$

Using the spray of F, one can define  $\mathbf{B}_y : T_x M \times T_x M \times T_x M \to T_x M$  by  $\mathbf{B}_y(u, v, w) := B^i_{jkl}(y) u^j v^k w^l \partial / \partial x^i |_x$ , where

$$B^{i}{}_{jkl} := \frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}$$

**B** is called the Berwald curvature.

Define the mean of Berwald curvature by  $\mathbf{E}_y: T_x M \times T_x M \to \mathbb{R}$ , where

$$\mathbf{E}_{y}(u,v) := \frac{1}{2} \sum_{i=1}^{n} g^{ij}(y) \mathbf{g}_{y} \Big( \mathbf{B}_{y}(u,v,\partial_{i}), \partial_{j} \Big).$$

The family  $\mathbf{E} = {\mathbf{E}_y}_{y \in TM_0}$  is called the mean Berwald curvature or E-curvature of F. In a local coordinates,  $\mathbf{E}_y(u, v) := E_{ij}(y)u^iv^j$ , where

$$E_{ij} := \frac{1}{2} B^m_{\ mij}.$$

A Finsler metric F is called a weakly Berwald metric if  $\mathbf{E} = 0$ .

Let U(t) be a vector field along a curve c(t). The canonical covariant derivative  $D_{\dot{c}}U(t)$  is defined by

$$\mathbf{D}_{\dot{c}}U(t) := \left\{ \frac{dU^{i}}{dt}(t) + U^{j}(t)\frac{\partial G^{i}}{\partial y^{j}}(\dot{c}(t)) \right\} \frac{\partial}{\partial x^{i}}|_{c(t)}.$$

U(t) is said to be parallel along c if  $D_{\dot{c}(t)}U(t) = 0$ .

To measure the changes of the Cartan torsion **C** along geodesics, we define  $\mathbf{L}_y : T_x M \times T_x M \to \mathbb{R}$  by

$$\mathbf{L}_{y}(u, v, w) := \frac{d}{dt} \Big[ \mathbf{C}_{\dot{c}(t)}(U(t), V(t), W(t)) \Big] \big|_{t=0}$$

where c(t) is a geodesic and U(t), V(t), W(t) are parallel vector fields along c(t) with  $\dot{c}(0) = y, U(0) = u, V(0) = v, W(0) = w$ . The family  $\mathbf{L} := {\mathbf{L}_y}_{y \in TM \setminus {0}}$  is called the Landsberg curvature. A Finsler metric is called a Landsberg metric if  $\mathbf{L} = 0$ . An important fact is that if F is Berwaldian, then it is Landsbergian.  $\mathbf{L}/\mathbf{C}$  is regarded as the relative rate of change of  $\mathbf{C}$  along Finslerian geodesics. Then F is said to be isotropic Landsberg metric if  $\mathbf{L} = cF\mathbf{C}$ , where c = c(x) is a scalar function on M.

For a Finsler metric F on an *n*-dimensional manifold M, the Busemann-Hausdorff volume form  $dV_F = \sigma_F(x)dx^1 \cdots dx^n$  is defined by

$$\sigma_F(x) := \frac{\operatorname{Vol}B^n(1)}{\operatorname{Vol}\left\{(y^i) \in \mathbb{R}^n \mid F\left(y^i \frac{\partial}{\partial x^i}|_x\right) < 1\right\}}$$

In general, the local scalar function  $\sigma_F(x)$  can not be expressed in terms of elementary functions, even F is locally expressed by elementary functions.

Let  $G^{i}(x, y)$  denote the geodesic coefficients of F in the same local coordinate system. The S-curvature is defined by

$$\mathbf{S}(\mathbf{y}) := \frac{\partial G^i}{\partial y^i}(x, y) - y^i \frac{\partial}{\partial x^i} \Big[ \ln \sigma_F(x) \Big].$$

where  $\mathbf{y} = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$ . It is proved that  $\mathbf{S} = 0$  if F is a Berwald metric [7]. There are many non-Berwald metrics satisfying  $\mathbf{S} = 0$  [1].

Given a Riemannian metric  $\alpha$ , a 1-form  $\beta$  on a manifold M, and a  $C^{\infty}$  function  $\phi = \phi(s)$ on  $[-b_o, b_o]$ , where  $b_o := \sup_{x \in M} \|\beta\|_x$ , one can define a function on TM by

$$F := \alpha \phi(s), \qquad s = \frac{\beta}{\alpha}.$$

If  $\phi$  and  $b_o$  satisfy (2.1) and (2.2) below, then F is a Finsler metric on M. Finsler metrics in this form are called  $(\alpha, \beta)$ -metrics. Randers metrics are special  $(\alpha, \beta)$ -metrics.

Now we consider  $(\alpha, \beta)$ -metrics. Let  $\alpha = \sqrt{a_{ij}y^iy^j}$  be a Riemannian metric and  $\beta = b_iy^i$  a 1-form on a manifod M. Let

$$\|\beta\|_x := \sqrt{a^{ij}(x)b_i(x)b_j(x)}.$$

For a  $C^{\infty}$  function  $\phi = \phi(s)$  on  $[-b_o, b_o]$ , where  $b_o = \sup_{x \in M} \|\beta\|_x$ , define

$$F := \alpha \phi(s), \quad s = \frac{\beta}{\alpha}.$$

By a direct computation, we obtain

$$g_{ij} = \rho a_{ij} + \rho_0 b_i b_j - \rho_1 (b_i \alpha_j + b_j \alpha_i) + s \rho_1 \alpha_i \alpha_j$$

where  $\alpha_i := a_{ij} y^j / \alpha$ , and

$$\rho := \phi(\phi - s\phi'),$$
  

$$\rho_0 := \phi\phi'' + \phi'\phi',$$
  

$$\rho_1 := s(\phi\phi'' + \phi'\phi') - \phi\phi'$$

By further computation, one obtains

$$\det(g_{ij}) = \phi^{n+1} \left( \phi - s\phi' \right)^{n-2} \left[ (\phi - s\phi') + (\|\beta\|_x^2 - s^2)\phi'' \right] \det(a_{ij}).$$

Using the continuity, one can easily show that

**Lemma 2.1.** Let  $b_o > 0$ .  $F = \alpha \phi(\beta/\alpha)$  is a Finsler metric on M for any pair  $\{\alpha, \beta\}$  with  $\sup_{x \in M} \|\beta\|_x \leq b_o$  if and only if  $\phi = \phi(s)$  satisfies the following conditions:

(2.1)  $\phi(s) > 0, \qquad (|s| \le b_o)$ 

(2.2) 
$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \qquad (|s| \le b \le b_o)$$

Let

$$\begin{aligned} r_{ij} &:= \frac{1}{2} (b_{i;j} + b_{j;i}), \quad s_{ij} := \frac{1}{2} (b_{i;j} - b_{j;i}), \quad r_{i0} := r_{ij} y^j, \quad r_{00} := r_{ij} y^i y^j, \quad r_j := b^i r_{ij}, \\ s_{i0} &:= s_{ij} y^j, \quad s_j := b^i s_{ij}, \quad s^i{}_j = a^{im} s_{mj}, \quad s^i{}_0 = s^i{}_j y^j, \quad r_0 := r_j y^j, \quad s_0 := s_j y^j. \end{aligned}$$

Suppose that  $G^i = G^i(x, y)$  and  $\overline{G}^i = \overline{G}^i(x, y)$  denote the coefficients of F and  $\alpha$  respectively in the same coordinate system. By definition, we obtain the following identity

(2.3) 
$$G^i = \bar{G}^i + Py^i + Q^i,$$

where

$$P = \alpha^{-1}\Theta \Big[ r_{00} - 2Q\alpha s_0 \Big]$$

$$Q^i = \alpha Q s^i{}_0 + \Psi \Big[ r_{00} - 2Q\alpha s_0 \Big] b^i,$$

$$Q = \frac{\phi'}{\phi - s\phi'}$$

$$\Theta = \frac{\phi \phi' - s(\phi \phi'' + \phi' \phi')}{2\phi \Big( (\phi - s\phi') + (b^2 - s^2) \phi'' \Big)}$$

$$\Psi = \frac{1}{2} \frac{\phi''}{(\phi - s\phi') + (b^2 - s^2) \phi''}.$$

Clearly, if  $\beta$  is parallel with respect to  $\alpha$  ( $r_{ij} = 0$  and  $s_{ij} = 0$ ), then P = 0 and  $Q^i = 0$ . In this case,  $G^i = \overline{G}^i$  are quadratic in y, and F is a Berwald metric.

## 3. Proof of Theorem 1.2

In this section, we will prove a generalized version of Theorem 1.2. Indeed, we study generalized Berwald  $(\alpha, \beta)$ -metric with relatively isotropic mean Landsberg curvature and isotropic S-curvature. More precisely, we prove the following.

**Theorem 3.1.** Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be an non-Riemannian generalized Berwald  $(\alpha, \beta)$ metric on manifold M such that  $\phi \neq c_1\sqrt{1+c_2s^2} + c_3s$  and  $\phi'(0) \neq 0$  for any constant  $c_1 > 0, c_2, c_3$ . Then F has isotropic S-curvature  $\mathbf{S} = (n+1)\lambda F$  and is of relatively isotropic mean Landsberg curvature, namely  $\mathbf{J}/\mathbf{I}$  is isotropic,

$$\mathbf{J} + c(x)F\mathbf{I} = 0,$$

where  $\lambda = \lambda(x)$  and c = c(x) are scalar functions on M if and only if  $\mathbf{B} = 0$ .

To prove Theorem 1.2, we need the following key lemma.

**Lemma 3.2.** ([16]) An  $(\alpha, \beta)$ -metric satisfying  $\phi'(0) \neq 0$  is a generalized Berwald manifold if and only if  $\beta$  has constant length with respect to  $\alpha$ .

A Finsler metric F on an n-dimensional manifold M is called of isotropic S-curvature, if  $\mathbf{S} = (n+1)cF$ , where c = c(x) is a scalar function on M. In [4], Cheng-Shen characterized  $(\alpha, \beta)$ -metrics with isotropic S-curvature on a manifold M of dimension  $n \ge 3$ . Soon, they found that their result holds for the class of  $(\alpha, \beta)$ -metrics with constant length one-forms, only. In [12], we give a new characterization of the class of generalized Berwald metrics with vanishing S-curvature and prove the following.

**Lemma 3.3.** ([12]) Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be a generalized Berwald  $(\alpha, \beta)$ -metric on an *n*-dimensional manifold M. Suppose that  $\phi'(0) \neq 0$ . Then  $\mathbf{S} = 0$  if and only if  $\beta$  is a Killing form with constant length, namely

(3.2) 
$$r_{ij} = 0, \quad s_j = 0$$

Remark 3.4. Let  $\phi = \phi(s)$  be a positive  $C^{\infty}$  function on  $(-b_0, b_0)$ . For a number  $b \in [0, b_0)$ , let

(3.3) 
$$\Phi := -(Q - sQ') \Big\{ n\Delta + 1 + sQ \Big\} - (b^2 - s^2)(1 + sQ)Q'',$$

where

(3.4) 
$$\Delta := 1 + sQ + (b^2 - s^2)Q'.$$

By a direct computation, one can obtain a formula for the mean Cartan torsion of  $(\alpha, \beta)$ metrics as follows

(3.5) 
$$I_i = -\frac{\Phi}{2\Delta\phi\alpha^2} \Big(\phi - s\phi'\Big) \Big(\alpha b_i - sy_i\Big).$$

According to Deickes theorem, a Finsler metric is Riemannian if and only if  $\mathbf{I} = 0$ . By (3.5), an  $(\alpha, \beta)$ -metric  $F = \alpha \phi(s)$  is Riemannian if and only if  $\Phi = 0$ .

In [3], Cheng consider regular  $(\alpha, \beta)$ -metrics with isotropic S-curvature and prove the following.

**Theorem 3.5.** ([3]) A regular  $(\alpha, \beta)$ -metric  $F := \alpha \phi(\beta/\alpha)$ , of non-Randers type on an ndimensional manifold M is of isotropic S-curvature,  $\mathbf{S} = (n+1)\sigma F$ , if and only if  $\beta$  satisfies  $r_{ij} = 0$  and  $s_j = 0$ . In this case,  $\mathbf{S} = 0$ , regardless of the choice of a particular  $\phi = \phi(s)$ .

Now, we are ready to consider generalized Berwald  $(\alpha, \beta)$ -metrics with isotropic S-curvature and prove the following.

**Lemma 3.6.** Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be an non-Riemannian generalized Berwald  $(\alpha, \beta)$ metric on manifold M such that  $\phi \neq c_1 \sqrt{1 + c_2 s^2} + c_3 s$  for any constant  $c_1 > 0$ ,  $c_2$ . Then  $\mathbf{S} = (n+1)\lambda F$  and  $\mathbf{J} = 0$  if and only if  $\mathbf{B} = 0$ , where  $\lambda = \lambda(x)$  is a scalar function on M.

*Proof.* According to the definition of generalized Berwald metrics, a generalized Berwald  $(\alpha, \beta)$ -metric  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , is regular. Then, by Lemma 3.5, we have  $\mathbf{S} = 0$ .

In [6], Li-Shen found the mean Landsberg curvature of an  $(\alpha, \beta)$ -metric  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , as follows

$$J_{i} = -\frac{1}{\alpha^{2}\Delta(b^{2} - s^{2})} \Big[ \frac{\Phi}{\Delta} + (n+1)(Q - sQ') \Big] (r_{0} + s_{0})h_{i} \\ -\frac{h_{i}}{2\alpha^{3}\Delta(b^{2} - s^{2})} \Big( \Psi_{1} + s\frac{\Phi}{\Delta} \Big) \Big( r_{00} - 2\alpha Qs_{0} \Big) - \frac{\Phi}{2\alpha^{3}\Delta^{2}} \Big[ \alpha Q(\alpha^{2}s_{i} - y_{i}s_{0}) \\ -\alpha Q's_{0}h_{i} + \alpha^{2}\Delta s_{i0} + \alpha^{2}(r_{i0} - 2\alpha Qs_{0}) - (r_{00} - 2\alpha Qs_{0})y_{i} \Big].$$

$$(3.6) \qquad -\alpha Q's_{0}h_{i} + \alpha^{2}\Delta s_{i0} + \alpha^{2}(r_{i0} - 2\alpha Qs_{0}) - (r_{00} - 2\alpha Qs_{0})y_{i} \Big].$$

where

$$h_i := \alpha b_i - sy_i$$

and

$$\Psi_1 := \sqrt{b^2 - s^2} \Delta^{\frac{1}{2}} \left[ \frac{\sqrt{b^2 - s^2}}{\Delta^{\frac{3}{2}}} \right]'.$$

By (3.2) and (3.6) we have:

(3.7) 
$$J_i = -\frac{\Phi}{2\alpha\Delta}s_{i0}.$$

Considering (3.7) and the assumption  $\mathbf{J} = 0$ , we obtain

$$(3.8) s_{ij} = 0.$$

Since  $r_{ij} = 0$ , then (3.8) tell us that  $\beta$  is parallel with respect to  $\alpha$  and F is a Berwald metric.

**Proof of Theorem 3.1:** Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be an  $(\alpha, \beta)$ -metric with relatively isotropic mean Landsberg curvature. The following holds

$$(3.9) J_k + cFI_k = 0.$$

The following holds

(3.10) 
$$J_i b^i = -\frac{\Delta}{2\alpha^2} \left[ (r_{00} - 2\alpha Q s_0) \Psi_1 + \alpha (r_0 + s_0) \Psi_2 \right].$$

where

$$\Psi_2 := 2(n+1)(Q - sQ') + 3\frac{\Phi}{\Delta}.$$

By assumption, F has vanishing S-curvature. Then, (3.2) and (3.10) imply that

$$(3.11) b_i J^i = 0.$$

Considering (3.11) and multiplying (3.9) with  $b^k$  gives us

$$(3.12) c(b^k I_k) = 0$$

Let  $c \neq 0, \forall x \in M$ . By (3.12), we get

$$b^k I_k = 0.$$

In this case, (3.5) implies that

(3.13) 
$$\frac{\Phi}{2\Delta\phi\alpha^3}(\phi - s\phi')(b^2\alpha^2 - \beta^2) = 0$$

Considering (3.13), one can get  $\Phi = 0$  or  $\phi - s\phi' = 0$ . By (3.5) it follows that  $\mathbf{I} = 0$  and then F reduces to a Riemannian metric, which contradicts with the assumption. Thus, we have c = 0. Putting it in (3.9) yields  $\mathbf{J} = 0$ . By Lemma 3.6, F is a Berwald metric. This completes the proof.

**Proof of Corollary 1.3:** Let  $F = \alpha \phi(s)$ ,  $s = \beta/\alpha$ , be a non-Randers type  $(\alpha, \beta)$ -metric on manifold M of dimension  $n \ge 3$  such that  $\phi'(0) \ne 0$ . In [2], it is proved that F satisfies  $\mathbf{E} = 0$  if and only if  $\beta$  is a killing 1-form with constant length with respect to  $\alpha$ . By Theorem 1.2, we get the proof.

### References

 D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S<sup>3</sup>, J. London. Math. Soc. 66(2002), 453-467. On Generalized Berwald Manifolds

- [2] G. Chen, Q. He and S. Pan, On weak Berwald (α, β)-metrics of scalar flag curvature, J. Geom. Phy. 86(2014), 112-121.
- [3] X. Cheng, The  $(\alpha, \beta)$ -metrics of scalar flag curvature, Differ. Geom. Appl. **35**(2014), 361-369.
- [4] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340.
- [5] M. Faghfouri and N. Jazer, Shen's L-Process on the Chern Connection, J. Finsler Geom. Appl. 4(1) (2023), 12-22.
- [6] B. Li and Z. Shen, On a class of weakly Landsberg metrics, Sci. China, Series A: Math. 50(2007), 75-85.
- [7] Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
- [8] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128(1997), 306-328.
- [9] Z. I. Szabó, Generalized spaces with many isometries, Geometria Dedicata, 11(1981), 369-383.
- [10] Sz. Szakál and J. Szilasi, A new approach to generalized Berwald manifolds I, SUT J. Math. 37(2001), 19–41.
- [11] A. Tayebi and M. Barzegari, Generalized Berwald spaces with  $(\alpha, \beta)$ -metrics, Indagationes. Math. (N.S.). **27**(2016), 670-683.
- [12] A. Tayebi and F. Eslami, On a class of generalized Berwald manifolds, Publ. Math. Debrecen, 105(2024), 379-402.
- [13] A. Tayebi and M. Rafie. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series A: Math. 51(2008), 2198-2204.
- [14] C. Vincze, On Randers manifolds with semi-symmetric compatible linear connections, Indagationes. Math. (N.S.). 26(2015), 363-379.
- [15] C. Vincze, T. R. Khoshdani, S. M. Z. Gilani, and M. Oláh, On compatible linear connections of twodimensional generalized Berwald manifolds: a classical approach, Commun. Math. 27(2019), 51-68.
- [16] C. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors, Europ. J. Math. 3(2017), 1098-1171.