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ABSTRACT

In this paper, we are concerned with a new modification
of the well-known (p,q)-Bernstein novel type operators
with the gamma integral functions. The direct results
demonstrate several aspects of approximations. Such
as the rate of convergence theorem using Peetre’s K-
functional and Korovkin’s theorem, which also validates
the well-known Voronovskaja’s theorem and the conver-
gence theorem for Lipschitz continuous functions.
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1. Introduction

The Bernstein polynomial on the closed interval [0, 1] is a fascinating and well-known

polynomial introduced in 1912 by S.N. Bernstein [3]. Such as

Bn(f, x) =

n∑
k=0

bn,k(x)f(
k

n
)
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where

bn,k(x) =

(
n

k

)
xk(1− x)n−k.

and when k = 0, 1, 2.......n

q-Bernstein polynomials for f ∈ C[0, 1] proposed by G.M. Phillips [19].

Bn,q(f ;x) =
n∑

k=0

bn,k(q;x)f(
k

n
)

where

bn,k(q;x) =

(
n

k

)
xk(1− x)n−k

q .

In addition to the novel modification of the q-Bernstein operators and (p, q)-integers on

those operators with their limit and the Voronovskaja approximation with some properties,

for 0 < q < p ≤ 1 for all f ∈ C[0, 1] and x ∈ [0, 1] in ([6],[10],[11]), such that

Bn,p,q(f ;x) =
n∑

k=0

p{k(k−1)−n(n−1)}/2
(
n

k

)
p,q

xk(1− x)n−k
p,q f

(
pn

(
[k]

[n]

)
p,q

)
,

∀ n ∈ N and if p = 1 and 0 < q < 1, then bring to the point of q-Bernstein operator.

Bn;q(f ;x) =

n∑
k=0

(
n

k

)
p,q

xk(1− x)n−k
p,q f(

k

n
)

A new generalization with copious variations for those operators, like the (p, q)-Bernstein

and (p, q)- Durrmeyer operators in 2009 By Gupta and in 2015 was forwarded by Mursaleen

et al.([13],[18]). Some approximation properties for q-integers and (p, q)-integers with the

convexity of functions offered by Gupta ([12],[15],[16]). A new modification of the Narayana

operators using (k, t) bivariate with (p, q) generalized Bernstein operators and their appli-

cations in 2024 proposed by Bala and Mishra [1]. New Bernstein-type operators based on

beta-modification with a graphical depiction of the newly created operators for f ∈ C([0, 1))

are defined as Beta Bernstein operators. For x ∈ [0, 1], and βn : C[0, 1] → C[0, 1] was

presented by Dhawal J.et al.[7], such as

βn(f ;x) =
n∑

k=0

Pn,k(x)f(k/n)dt

where

Pn,k(x) =

(
n

k

)
β(nx+ k + 1, 2n− k − nx+ 1)

β(nx+ 1, n− nx+ 1)
.

at here β(a, b) is beta function and defined as

β(a, b) =

∫ 1

0
ta−1(1− t)b−1dt,

where (a, b) ≥ 0.

The summation integral formula provided by J.L.Durrmeyer furnished for additional gen-

eralizations of Bernstein operators in [9], including as

Dn(f ;x) =
n∑

k=0

pn,k(x)

∫ 1

0
pn,k(t)f(t)dt.
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The famous Szasz Mirakayan operator in [17] such as :

Sn(f, x) =
∞∑
k=0

sn,k(x)f(k/n)dt

where Sn,k(x) = e−nx (nx)k

k! . Furthermore, Baskakov introduced an operator known as the

Baskakov operator, which is applicable to continuous functions. There are defined examples

for x ∈ [0,∞), such as Vn : C[0,∞) → C[0,∞) in [2].

Vn(x) =
∞∑
k=0

vn,k(x)f(k/n),

where vn,k(x) =
(
n+k−1

k

)
xk

(1+x)n+k .

There has been a great deal of generalization of Bernstein-type operators available to aca-

demics. In 2016 the (p, q) Bernstein-Durrmeyer operators with beta integral using some

moments where for each n ∈ N and f ∈ C[0, 1] Honey Sharma [20].

Dp,q
n (f ;x) = [n+ 1]p,qp

−n2
n∑

k=0

bp,qn,k(x)(
q

p
)−k

∫ 1

0
bp,qn,k(qt)f(t)dp,qt,

for p > 1 then (p, q)-Bernstein Durrmeyer operators with beta integral.

Definition 1.1. ([20]). If 0 < p < q ≤ 1 and for every s, t ∈ R+, then the (p, q)-beta integral

is

βp,q(t, s) =

∫ 1

0
xt−1(1− qx)s−1

p,q dp,q(x)

and proposed a connection between q-beta and (p, q)-beta integrals.

Let 0 < p < q ≤ 1 then (p, q) integer [n]p,q! such as

[n]p,q! =
pn − qn

p− q

,

[n]p,q! = [1]p,q, [2]p,q, ......[n]p,q.

If for every n ≥ 1 and [n]p,q! = 1 if n = 0 for special case with integers 0 ≤ k ≤ n such as(
n

k

)
p,q

=
[n]p,q!

[k]p,q![n− k]p,q!

and expansion of (p, q)-polynomials is

(x+ y)np,q = (x+ y){(px+ qy)(p2x+ q2y)..........(pn−1x+ qn−1y)}.

If f : [0, a] → R then integration of f(x) is defined by∫ a

0
f(x)dp,q(x) = (p− q)a

∞∑
k=0

qk

pk+1
f(

qk

pk+1
a)

when |pq | > 1

In 2022 by Cai et al. dealt with the new generalization of beta Bernstein with test

functions, uniform convergence, the Peetre K-functional, and functions of the Lipschitz class

[5], such as

B̃m(K : x) =
1

m

m∑
p=0

(
m

p

)
(p−mx)2xp−1(1−x)m−p−1 1

β(p+ 1,m− p+ 1)

∫ 1

0
up(1−u)m−pK(u)du.
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for every x ∈ (0, 1),m ∈ N and β(p+ 1,m− p+ 1) is a beta function and if r, s > 0 then

βr,s =

∫ 1

0
xr−1(1− x)s−1dx

Numerous mathematicians have proposed several Bernstein generalizations after studying a

new hybrid method for data analysis suggested by Vajargah and Nouraldin [4]. We provide

a new variation of the (p,q)-Bernstein operators defined by a gamma generalization.

Bp,q
n (f ;x) =

n∑
k=0

bp,qn,k(f, x)f(
k

n
)p,q. (1)

where

bp,qn,k(f ;x) = qk
(
n

k

)
p,q

pne−nx[nx]k,

If for every n ∈ N and p = 1, 0 < q < 1, then the above equation reduces to the q-Bernstein

operator.

bqn,k(f ;x) = qk
(
n

k

)
q

e−nx[nx]k, (2)

In the paper, we gave all estimates according to equation (2) because it’s a special case

of well-known Bernstein operators. In 2024 a novel Stancu-type adaptation of Bernstein-

Kantorovich bivariate operators with an exponential class was created. They also provided

some well-known theorems and approximation properties by Kanat and Su [21].

2. Main Results

Moments of the (p,q)-Bernstein operators

We now infer a few moments of those altered operators.

Lemma 2.1. If ei(t) = ti , i = 0, 1, 2 and for x ∈ [0,∞] and n ∈ N then

• Bp,q
n (e0;x) ≡ Bn(t

0, x) = Bn(1, x) = e−nx

• Bp,q
n (e1;x) ≡ Bn(t

1, x) = Bn(t, x) = qxe−nx

• Bp,q
n (e2;x) ≡ Bn(t

2, x) = e−nxqx

(
1
n + qxn(n− 1)

)
Proof. Let i = 0 in the above statement then we get with using the equations (1) and (2)

where

bp,qn,k(f ;x) = q0
(
n

0

)
p,q

e−nx[nx]0 = e−nx,

Bn(t
0, x) = Bn(1, x) = e−nx

And

Bn(t
1, x) = Bn(t, x) =

n∑
k=0

bn,k(f, x)(
k

n
) =

n∑
k=0

bp,qn,k(f ;x)(
k

n
) +

n∑
k=1

bp,qn,k(f ;x)(
k

n
) =

q0
(
n

0

)
p,q

e−nx[nx]0(
0

n
) + q1

(
n

1

)
p,q

e−nx[nx]1
1

n
= qxe−nx,
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Bn(t, x) = qxe−nx

The next moment is the, where

Bn(t
2, x) = Bn(t

2, x) =
n∑

k=0

bn,k(f, x)(
k

n
)2

=
n∑

k=0

bp,qn,k(f ;x)(
k

n
)2 +

n∑
k=1

bp,qn,k(f ;x)(
k

n
)2 +

n∑
k=2

bp,qn,2(f ;x)(
k

n
)2

= q0
(
n

0

)
p,q

e−nx[nx]0(
0

n
)2 + q1

(
n

1

)
p,q

e−nx[nx]1(
1

n
)2 + q2

(
n

2

)
p,q

e−nx[nx]2(
2

n2
)

= qnxe−nx(
1

n2
) + q2

n(n− 1)

2
(e−nx)[nx]2(

2

n2
),

Bn(t
2, x) = e−nx(

qx

n
) + q2e−nxn(n− 1)

= e−nxqx

(
1
n + qxn(n− 1)

)
. □

2.1. Central moments of above Bernstein operators.

Lemma 2.2. If x ∈ [0, 1] and for 0 < q < p ≤ 1, using the above moments of the lemma,

then

(1) Bn(t− x;x) = e−nxx(q − 1)

(2) Bn((t− x)2;x) = e−nxx

(
q
n + n(n− 1)xq2 − 2xq + x

)
Proof.

(1) Bn(t− x;x) = Bn(t, x)− xBn(1, x) = e−nxqx− e−nxx

= e−nxx(q − 1)

(2) Bn((t− x)2;x) = Bn(t
2, x)− 2xBn(t, x) + x2Bn(1, x)

= e−nx

(
1

n
+ n(n− 1)(qx)

)
− 2xe−nxqx+ e−nxx2

= e−nxx

(
q

n
+ n(n− 1)xq2 − 2xq + x

)
= Φ(x).

□

3. Convergence theorem for Bernstein operators

Theorem 3.1. If a function f ∈ C[0, 1] for every ϵ > 0 then there is an existence of N such

that

|f(x)−Bp,q
n (f ;x)| < ϵ,

for all x ∈ [0, 1] and n ≥ N.
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Proof. We know that the inequality(
k

n
− x

)2

= (
k

n
)2 − 2(

k

n
)x+ x2 (3)

both sides of equation (3) with the sum of k = 0 to n, then

n∑
k=o

(
k

n
− x

)2(n
k

)
qke−nx[nxk]

= Bp,q
n (t2;x)− 2xBp,q

n (t;x) + x2Bp,q
n (1;x)

= Bp,q
n

(
(t− x)2;x

)
= e−nxx

(
q

n
+ n(n− 1)xq2 − 2xq + x

)
By using above lemma

n∑
k=o

(
k

n
− x

)2(n
k

)
qke−nx[nxk] = e−nxx

(
q

n
+ n(n− 1)xq2 − 2xq + x

)
Now we select a number δ > 0 and if Sδ is a set for all values of k and holds | kn −x| ≥ δ then

1

δ2

(
k

n
− x2

)
≥ 1

hence

Σk∈Sδ

(
n

k

)
qke−nx[nx]k ≤ 1

δ2
Σk∈Sδ

(
k

n
− x

)2(n
k

)
qke−nx[nx]k

Since 0 ≤ e−nx.qx ≤ 1
2 on [0, 1] then we get

n∑
k=0

(
n

k

)
qke−nx[nx]k ≤ 1

2nδ2
(4)

then we can write
n∑

k=0

=
∑
kϵSδ

+
∑
k/∈Sδ

Now we can write the difference between f(x) and Bp,q
n (f ;x) we have

f(x)−Bp,q
n (f ;x) =

∑
k=0

n

(
f(x)− f

k

n

)(
n

k

)
qke−nx[nx]k

and so

f(x)−Bp,q
n (f ;x) =

∑
k∈Sδ

(
f(x)− f(

k

n
)

)(
n

k

)
qke−nx[nx]k+

∑
k/∈Sδ

(
f(x)− f(

k

n
)

)(
n

k

)
qke−nx[nx]k

we get

|f(x)−Bp,q
n (f ;x)| =

∑
k∈Sδ

|f(x)− f(
k

n
)|
(
n

k

)
qke−nx[nx]k+

∑
k/∈Sδ

|f(x)− f(
k

n
)|
(
n

k

)
qke−nx[nx]k (5)

We know f ∈ C[0, 1] and it is a bounded function, so |f(x)| ≤ M where M > 0 such that

|f(x)− f(
k

n
)| ≤ 2M, ∀x ∈ [0, 1].
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and hence

Σk∈Sδ
|f(x)− f(

k

n
)|
(
n

k

)
qke−nx[nx]k

≤ 2MΣk∈Sδ

(
n

k

)
qke−nx[nx]k

by equation (4)

Σk∈Sδ
|f(x)− f(

k

n
)|
(
n

k

)
qke−nx[nx]k

≤ 2M
1

2nδ2
(6)

Since function f is a continuous function and uniformly continuous also, then ∀ ∈> 0 then

there exists δ > 0 that depends on ϵ and f such that

|x− y| < δ ⇒ |f(x)− f(y)| < ϵ

2
, ∀x, y ∈ [0, 1]

then for k /∈ Sδ so

Σk/∈Sδ
|f(x)− f(

k

n
)|
(
n

k

)
qke−nx[nx]k

<
ϵ

2

n∑
k=0

(
n

k

)
qke−nx[nx]k <

ϵ

2
(7)

by equation (6) and (7) we get

|f(x)−Bp,q
n (f ;x)| < M

2nδ2
+

ϵ

2

we choosing N > M
∈δ2 so

|f(x)−Bp,q
n (f ;x)| < ϵ,∀n ≥ N.

□

3.1. Korovkin type theorem.

Theorem 3.2. If f is a function that is continuous on [0, 1] and 0 < q < p ≤ 1, ∀ n ∈ N ,

then Bp,q
n (f, x) → f(x) converges uniformly on C[0, 1].

Proof. Since [n+s] → ∞ when s = 1, 2, 3 as n → ∞, then it is easily seen that Bp,q
n (ek;x) →

ek or xk where k = 0, 1, 2 and using the identity [n + s]p,q = Sp,qp
n + qs[n]p,q when s=

0,1,2. So we get our results due to the famous Korovkin’s theorem. □

4. Rate of convergence

In this section we will study a rate of convergence. If f ∈ C[0, 1], then the modulus of

continuity of function f such as

ω(f, δ) = sup
|t−x|<δ,(x,t)∈[0,1]

|f(x)− f(t)|

and the Lipschitz maximal type functions of order λ as follows.

ω̂λ(f, δ) = lim
t̸=x,(x,t)∈[0,1]

|f(t)− f(x)|
|t− x|λ

, 0 < λ ≤ 1

ω2(f, δ) = sup
|h|≤δ

|f(x+ 2h)− 2f(x+ h) + f(x)| where x, x+ h, x+ 2h ∈ [0, 1]
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Also, for a positive constant M , a Lipschitz function is one that is f ∈ LipM (ϕ) with

0 < ϕ ≤ 1. Then

|f(t)− f(x)| ≤ M |t− x|ϕ, ∀ t, x ∈ [0, 1].

And Peetre K—functional as

K2(f, δ) = inf
g∈W 2

{||f − g||+ δ||g′′||}

where

W 2 = {g ∈ C[0, 1]; g′, g′′ ∈ C[0, 1]}

then existence of positive constant C > 0 such that

K2(f, δ) ≤ Cω2(f,
√
δ) , d > 0.

Theorem 4.1. For f ∈ LipM (ϕ) and 0 < q < p ≤ 1 and n > 1 then

|Bp,q
n (f ;x)− f(x)| ≤ M

(
Ψ(n, p, q)

)ϕ

where Ψ = Bp,q
n

(
|t− x|;x

)
.

Proof. For f ∈ LipM (ϕ) and Bp,q
n (f ;x) both are positive linear operators, then by Hölder’s

inequality, we get

|Bp,q
n (f ;x)− f(x)| ≤ Bp,q

n (|f(t)− f(x)|;x) ≤ MBp,q
n (|t− x|ϕ;x)

If ϕ = 1

|Bp,q
n (f ;x)− f(x)| ≤ MBp,q

n (|t− x|ϕ;x)

|Bp,q
n (f ;x)− f(x)| ≤ MΨ(n, p, , q)ϕ

Hence proved. □

5. Direct estimates

Theorem 5.1. ([8]). If f ∈ C[0, 1] then

|Bp,q
n (f(t)− f(x);x)| ≤ 2ω(f, δ)

where

λn =
√
Bp,q

n (t− x)2;x

Proof. By using Popoviciu’s technique

|f(t)− f(x)| ≤ ω(f, δ)

(
|t− x|

δ
+ 1

)
, ∀ δ > 0. (8)

and also using linearity and monotonicity of the operator Dp,q
n (f ;x) we get

|Bp,q
n (f(t)− f(x));x| ≤ Bp,q

n (|f(t)− f(x)|;x) (9)

by (8) and (9) we have

|Bp,q
n (f(t)− f(x));x| ≤ ω(f, δ)

(
Bp,q

n (|t− x|;x)
δ

+ 1

)
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Now by the Cauchy-Schwartz inequality and the lemma for central moments, we have

|Bp,q
n (f(t)− f(x));x| ≤ ω(f, δ)

(
Bp,q

n (|t− x|2;x)1/2

δ
+ 1

)
≤ ω(f, δ)(

λn

δ
+ 1)

if we take λn = δ then

≤ 2ω(f, δ) So proved.

□

Theorem 5.2. If f ∈ C[0, 1] then we have

|Bp,q
n (f ;x)− f(x)| ≤ Cω2(f ; δ2n(x)) + ω(f,

1

n
)

Proof. By lemma of central moments we get. Let

Bp,q
n

(
(t− x)2;x

)
≤ δn(x)

and assume that

Ep,q
n (f ;x) = f(x)− f

(
x+Bp,q

n (t− x;x)

)
and

Hp,q
n (f ;x) = Ep,q

n +Bp,q
n (f ;x)

then we get

|Ep,q
n (f ;x)| ≤ ω

(
f ;Bp,q

n (t− x;x)

)
≤ ω(f ;

1

[n]
).

Now using Taylor’s formula, we get

g(t) = g(x) + g′(x)(t− x) +

∫ t

x
(t− x)g′′(u)du

so

Hp,q
n (g;x)− g(x) = g′(x)

(
Hp,q

n (t− x);x

)
+Hp,q

n

(∫
xt(t− u)g′′(u)du;x

)
= Bp,q

n

(∫
xt(t− u)g′′(u)du;x

)
−
∫ x+Bp,q

n (t−x;x)

x

(
x+Bp,q

n (t− x;x)− u

)
g′′(u)du

we have

|Hp,q
n (g;x)− g(x)| ≤ |Bp,q

n

(∫
xt(t− u)g′′(u)du;x

)
|

+|
∫ x+Bp,q

n (t−x;x)

x

(
x+Bp,q

n (t− x;x)− u

)
g′′(u)du|

≤ ||g′′||Bp,q
n

(
(t− x)2;x

)
+

(
x+Bp,q

n (t− x;x)− u

)2

||g′′||

≤ δ2n||g′′||

also we get

|Hp,q
n (f ;x)| ≤ |Bp,q

n (f ;x)|+ 2||f || ≤ 3||f ||

so

|Bp,q
n − f(x)| ≤ |Hp,q

n (f − g;x)− (f − g)(x)|+ |f
(
Bp,q

n (t− x);x

)
− f(x)|+ |Hp,q

n − g(x)|
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≤ |Hp,q
n (f − x;x)|+ |(f − g)(x)|p,q + |f

(
Bp,q

n (t− x);x

)
− f(x)|+ |Hp,q

n (g;x)− g(x)|

≤ 4||f − g||+ ω(f ; δ) + δ2n(x)||g′′||

taking infimum on RHS and we know g ∈ W 2 and using Peetre K- functional so

|Bp,q
n (f ;x)− f(x)| ≤ Cω2(f ; δ2n(x)) + ω(f ; δ).

proved □

5.1. Monotonicity for convex function. In 2016 proved the monotonicity for (p, q)-

Bernstein operators by Kang [16]. Now we shall study the monotonicity of the (p, q) Bernstein

operators using the gamma function.

Definition 5.3. A function f : Rn → R is said to be convex if forall λ ∈ [0, 1] then

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Example 5.4.

(1).f(x) = eax

(2).f(x) = Sin(ϕx)

.

The function f(x) = eax exhibits convexity and monotonicity, as its values increase or de-

crease in correspondence with the behavior of f(x). This property is similar to the second ex-

ample, which depends on the value of ϕ = 1 and is restricted to the interval x ∈ (−π/2, π/2).

Theorem 5.5. If f ∈ C[0, 1] is a convex function, then Bp,q
n (f ;x) ≥ f(x), ∀ x ∈ [0, 1], ∀

n ∈ N and 0 < q < p ≤ 1.

Proof. We know that f ∈ C[0, 1] is a bounded function on [0, 1]. and |f | ≤ M for

M > 0 then we may write by using lemma Bp,q
n > 0 so we can

f(x) ≤ Bp,q
n (f ;x).

with alternating proof is that

let xk = [t] and λk =

(
n

k

)
qkp−ke−nx[nx]k

Bp,q
n (f ;x) = [n]

n∑
k=0

λkΓ(k + 1)f(xk)

≥ f

(
[n]

n∑
k=0

λkΓ(k + 1)(xk)

)
so

Bp,q
n (f ;x) ≥ f(x).

Condition for Monotonicity on [0, 1]: The generalized Bernstein operators with the polyno-

mial bn,k(f ;x) will be monotonically increasing on [0, 1] for k ≥ 1. □

5.2. Voronovskaja type theorem. We present a significant quantitative Voronovskaja-

type theorem in this section. Holhas also provided the identical first derivation theorem for
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(p, q)-Bernstein operators [14], utilizing the smoothness modulus of Ditzian-Totik of the first

order.

Theorem 5.6. For any f ∈ C[0, 1],then the inequality holds:

||Bp,q
n − f(x)− e−nxϕ(x)f ′′(x)|| ≤ Ce−nxf ′′(x)ϕ(x).

Proof. Since f ∈ C[0, 1] and t, x ∈ [0, 1]. We know Taylor expansion,then we get:

f(t)− f(x) = (t− x)f ′(x) +

∫ t

x
(t− u)f ′′(u)du

therefore

f(t)−f(x)−(t−x)f ′(x) =

∫ t

x
(t−u)f ′′(u)du−

∫ t

x
(t−u)f ′′(x)du =

∫ t

x
(t−u)[f ′′(u)−f ′′(x)]du.

By using lemma 0.0.2 and 0.1.1 : we get

||Bp,q
n − f(x)− e−nxϕ(x)f”(x)|| ≤ Bp,q

n

(∣∣∣∣ ∫ t

x
|t− u||f ′′(u)− f ′′(x)|du

∣∣∣∣;x) (A).∣∣∣∣ ∫ t
x |t− u||f ′′(u)− f ′′(x)|du

∣∣∣∣ was given by [11] page -337. as follows∣∣∣∣ ∫ t

x
|t− u||f ′′(u)− f ′′(x)|du

∣∣∣∣ ≤ 2||f ′′ − g||(t− x)2 = 2||ϕg′||||ϕ−x|||t− x|3 (B).

Where g ∈ Wϕ[0, 1] forall m = 1,2,3................ and 0 < q ≤ p ≤ 1 there exist a constant

Cm > 0.

||Bp,q
n ((t− x)m;x)|| ≤ Cmϕ(x)e−nx (C).

Where x ∈ [0, 1] and C is constant. Now combine (A), (B), and (C) with lemma 2.1

Then the Cauchy-Schwarz inequality we get is used by Kang[16].

||Bp,q
n −f(x)−e−nxϕ(x)f ′′(x)|| ≤ 2||f ′′−g||Bp,q

n

(
|t−x|2;x

)
+2||ϕg′||||ϕ−x||Bp,q

n

(
|t−x|3;x

)

≤ 2||f ′′ − g||||ϕx||e−nx + 2||ϕg′||||ϕ−x||
(
Bp,q

n |t− x|2;x
)1/2(

Bp,q
n |t− x|4;x

)1/2

≤ 2||f ′′ − g||||ϕx||e−nx + 2C||ϕg′||e−nxϕ(x)

Ce−nxϕ(x)

(
||f ′′ − g||+ ||ϕg′′

)
Since ϕ(x) ≤ 3 for every x ∈ [0, 1] we get

||Bp,q
n − f(x)− e−nxϕ(x)f ′′(x)|| ≤ 3Cϕ(x)e−nx

(
||f ′′ − g||+ ||ϕg′′||

)
Then finally we get

||Bp,q
n − f(x)− e−nxϕ(x)f ′′(x)|| ≤ Ce−nxf ′′(x)ϕ(x).

Hence Proved. □

6. Conclusions

This paper introduces a new modification of (p, q)-Bernstein operators. Using these oper-

ators, we propose and prove approximation properties for a new class of gamma functions in
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(p, q) - calculus. We also studied Korvkin’s theorem, direct estimates, and the rate of conver-

gence through Peetre’s K-functional and also proved the convergence theorem for Lipschitz

functions of continuous functions. We provide a proof of Voronovskaja’s theorem using the

Ditzian-Totik modulus of smoothness and get flexible results for those theorems.
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