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ABSTRACT

The Indu-Bala product of graphs G and H consists of
two disjoint copies of the join of G and H such that
there is an adjacency between the corresponding ver-
tices in the two copies of H. A vertex subset S of a
graph G = (V,E) is said to be a geodetic set if every
vertex in G is in some u − v geodesic, where u and v
are any two vertices in S. The minimum cardinality
of such a set is the geodetic number of G. The vertex
subset D of a graph G is said to be a dominating set if
every vertex in G is either in D or adjacent to at least
one vertex in D. The minimum cardinality of such a
set is the domination number of G. In this work, the
authors studied various geodetic and dominating exten-
sions with respect to the Indu-Bala product of graphs.
The Aα matrix associated with a graph is a convex lin-
ear combination of its adjacency matrix and degree di-
agonal matrix, offering deeper insights into the proper-
ties of both matrices. In this article the authors discuss
the Aα spectrum of Indu-Bala product of graphs.
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1. Introduction

The graphs discussed in this study are simple, connected and non-directional. For the

basic graph theoretic terminologies and notations we refer [?, ?]. For a graph G = (V,E),

the order of G is the cardinality of the vertex set V and size is the cardinality of the edge set

E. The number of edges incident to a vertex v in G is its degree and is denoted as deg(v).

The maximum degree of a graph G is denoted as ∆(G) or ∆ and the minimum degree of G

is denoted as δ(G) or δ. The vertex with degree one is called the pendant vertex. A vertex

v in a graph G is said to be a universal vertex if deg(v) = |G| − 1. The set of vertices that

are adjacent to a vertex v is the neighbor of v and is denoted as N(v). The set N [v] is the

union of N(v) and {v}.

The distance between the two vertices u and v in a graph G is the number of edges in

the shortest u − v path or the u − v geodesic. For any u, v ∈ V (G), I[u, v] denotes set of

all vertices in some u − v geodesic including u and v. For S ⊆ V (G), I[S] is the union of

all vertices in the u − v geodesic including u and v, where u, v ∈ S. The eccentricity of a

vertex v in graph G is denoted as e(v) and is defined as the distance between v and a vertex

farthest from v in G. The maximum and the minimum eccentricities of vertices in G are the

diameter and the radius of G, denoted by diam(G) and rad(G) respectively. A subgraph

H of a graph G is said to be an induced subgraph [?] of G if each edge in G which ends in

V (H) also belongs to E(H) and it is denoted as < H >.

Definition 1.1. [?] A vertex v in a graph G is said to be an extreme vertex if < N(v) > is

complete. The number of extreme vertices in a graph G is its extreme order and is denoted

as ex(G).

Definition 1.2. [?, ?] The join of graphs G and H is denoted as G +H and it consists of

the vertex set

V (G+H) = V (G) ∪ V (G)

and the edge set

E(G+H) = E(G) ∪ E(H) ∪ {xy : x ∈ V (G), y ∈ V (H)}.

Definition 1.3. [?] The Indu-Bala product of two graphs G and H is denoted as G▼H

and it consists of two disjoint copies of G +H such that there is an adjacency between the

corresponding vertices in the two copies of H.

The Figure ?? represents the Indu-Bala product of paths P3 and P4.

Remark 1.1. Generally, G▼H ≇ H▼G.

Remark 1.2. For any graphs G and H, diam(G▼H) = 3.

Definition 1.4. [?, ?] A vertex subset D of a graph G is a dominating set if every vertex in

G is either in D or adjacent to at least one vertex in D. The minimum cardinality of such

a set is the domination number of the graph, denoted by γ(G).

Definition 1.5. [?, ?, ?, ?] A vertex subset S of a graph G is said to be a geodetic set, if

I[S] = V (G). The minimum cardinality of such a set is the geodetic number of G, denoted

as g(G).
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Figure 1. P3▼P4

Definition 1.6. [?] A vertex subset S of a graph G is said to be a geodetic dominating set

if S is both a geodetic and dominating set of G. The minimum cardinality of such a set is

the geodetic domination number, denoted as γg(G).

Definition 1.7. [?] A geodetic set S of a graph G = (V,E) is said to be a restrained geodetic

set if < V − S > has no isolated vertex. The minimum cardinality of such a set is the

restrained geodetic number, which is denoted as gr(G).

Definition 1.8. [?] A dominating set D of a graph G = (V,E) is said to be a restrained

dominating set if < V −D > has no isolated vertex. The minimum cardinality of such a set

is the restrained domination number, denoted as γr(G).

Definition 1.9. [?] A dominating set D of a graph G = (V,E) is said to be a total dominating

set if < D > has no isolated vertex. The minimum cardinality of such a set is the total

domination number, denoted as γt(G).

Definition 1.10. [?] A dominating set D of a graph G = (V,E) is said to be a total

restrained dominating set if both < V − D > and < D > has no isolated vertex. The

minimum cardinality of such a set is the total domination number, denoted as γtr(G).

Definition 1.11. [?] A dominating set D of a graph G = (V,E) is said to be a connected

dominating set if < D > is connected. The minimum cardinality of such a set is the connected

domination number, denoted as γc(G).

Definition 1.12. [?, ?] For a graph G = (V,E), the Roman dominating function on G is

a function f : V (G) → {0, 1, 2} with the condition that every vertex u with f(u) = 0 must

adjacent to at least one vertex v such that f(v) = 2.

Definition 1.13. [?, ?] The weight of a Roman dominating function of a graph G = (V,E)

is defined as
∑

u∈V (G) f(u). The minimum weight of a Roman dominating function of a

graph G is the Roman domination number of G, denoted as γR(G).

Definition 1.14. [?] A graph G is said to be a Roman graph, if γR(G) = 2γ(G).

Definition 1.15. [?] Let A(G) and D(G) be the adjacency matrix and the diagonal matrix of

vertex degrees of a graph G = (V,E). Then the Aα spectrum of G is defined as the collection

of eigenvalues of the matrix Aα(G) where,

Aα(G) = αD(G) + (1− α)A(G)

for any α ∈ [0, 1].
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Theorem 1.1. [?] The pendant and extreme vertices set in a graph G is always a subset of

any geodetic set of G.

Theorem 1.2. [?, ?, ?, ?] Let G be a graph of order n > 1. Then

(a). 2 ≤ g(G) ≤ n,

(b). g(G) ≤ n− diam(G) + 1,

(c). 2 ≤ g(G) ≤ gr(G) ≤ n,

(d). 2 ≤ min{g(G), γ(G)} ≤ γg(G) ≤ n

Some extensions of dominating sets with respect to Indu-Bala products are discussed in [?,

?]. For some recent works see [?, ?] and the references cited there in. In the following section,

we are discussing the extensions of the domination concept such as restrained domination,

total domination, connected domination and Roman domination on Indu-Bala product of

graphs.

2. Dominating Sets and its Extensions on Indu-Bala Product Graphs

Theorem 2.1. Let G and H be any two connected graphs of order m and n respectively.

Then γ(G▼H) = γ(H▼G) = 2 or 4. In particular,

(a). γ(G▼H) = γ(H▼G) = 2 if and only if ∆(G) = m− 1 or ∆(H) = n− 1 or ∆(G) =

m− 1 and ∆(H) = n− 1,

(b). γ(G▼H) = γ(H▼G) = 4 if and only if ∆(G) ̸= m− 1 and ∆(H) ̸= n− 1.

Proof. Without loss of generality let us consider ∆(G) = m − 1. Then G has at least one

universal vertex say u. Then, in both G▼H and H▼G, u is adjacent to all other vertices of

one copy of G+H. If u
′
is the universal vertex in the another copy of G, then u

′
is adjacent

all other vertices of another copy of G +H in G▼H and H▼G. Also, there is no universal

vertex in G▼H and H▼G. Therefore, the set D = {u, u′} form a minimum dominating set

of G▼H and H▼G. Hence γ(G▼H) = γ(H▼G) = 2.

Conversely, let γ(G▼H) = γ(H▼G) = 2. Then, clearly, the vertices in the minimum domi-

nating set of these graphs should belong to the two copies of G+H and each of these vertices

must be adjacent to all other vertices in that copy of G + H. This is possible only when

∆(G) = m− 1 or ∆(H) = n− 1 or ∆(G) = m− 1 and ∆(H) = n− 1.

Now consider ∆(G) ̸= m − 1 and ∆(H) ̸= n − 1. Then γ(G▼H) ̸= 2 ̸= γ(H▼G). Then in

G▼H, each vertex in G is dominated by a vertex in H, and each vertex in H is dominated

by a vertex in G. Similarly for the other copies of G and H. Therefore, the minimum

dominating set of G▼H and H▼G contain four vertices. The converse part is true from the

above result. □

Corollary 2.1.1. Let G and H be any two connected graphs. If G or H has at least one

universal vertex, then γr(G▼H) = 2.

Proof. Let u and u
′
be the universal vertices in the two copies of H. Then, from Theorem

??, γ(G▼H) = 2. The set D = {u, u′} form the minimum dominating set of G▼H. Also,

< V (G▼H) − S > is connected. Hence γr(G▼H) = 2. Similarly, we can prove if G has at

least one universal vertex. □
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Theorem 2.2. Let G and H be non-trivial connected graphs. Then, γc(G▼H) = 2 if and

only if H has at least one universal vertex, otherwise it is 4.

Proof. Let H have at least one universal vertex say u and u
′
be the universal vertex in the

another copy of H. Let S = {u, u′}. Then S is a minimum dominating set of G▼H and

< S > is P2. Therefore, γc(G▼H) = 2.

Conversely let γc(G▼H) = 2 and S = {u, v} be the minimum connected dominating set

of G▼H. Clearly < S > is P2. If u and v are in the two copies of G, then < S > is

disconnected, which is impossible. If u ∈ V (G) and v ∈ V (H), then in G▼H either S is

not a dominating set or < S > is disconnected. Therefore, u and v are in the two copies of

H. Clearly, in G▼H, u is adjacent to all vertices of one copy of G and v is adjacent to all

vertices of another copy of G. Since S is a dominating set, u must be adjacent to all other

vertices in H. Similarly, v must be adjacent to all other vertices in another copy of H. Then

u and v are universal vertices in H and its copy.

Consider the case in which H has no universal vertex and let S be the minimum connected

dominating set of G▼H. Since < S > is connected, S should contain at least one vertex

from each copy of H. Since H has no universal vertex, in order to satisfy the domination

condition we need to choose one vertex from each copy of G. Therefore, γc(G▼H) = 4. □

Corollary 2.2.1. Let G and H be non-trivial connected graphs. Then, γt(G▼H) = 2 if and

only if H has at least one universal vertex, otherwise it is 4.

Proof. Let H have at least one universal vertex say u. Then the other copy of H also has

universal vertex u
′
. Then the set S = {u, u′} is a minimum dominating set of G▼H and

< S > is P2. Therefore, S is also a minimum total dominating set of G▼H and hence

γt(G▼H) = 2. Then the rest of the proof is similar to the proof of Theorem ??. □

Theorem 2.3. Let G and H be non-trivial connected graphs. Then, γtr(G▼H) = 2 if and

only if H has at least one universal vertex otherwise it is 4.

Proof. Let u and u
′
be the universal vertices in H and its copy. Then from Corollary ??,

the set S = {u, u′} is a minimum total dominating set of G▼H. By Corollary ?? S satisfies

restrained condition also. Hence γtr(G▼H) = 2. Let H and its copy have no universal vertex,

but G and its copy have a universal vertex. Then these vertices cannot form a minimum

total restrained dominating set of G▼H since the total domination condition does not hold.

Then definitely γtr(G▼H) > 2. Therefore, if γtr(G▼H) = 2, then H and its copy must have

universal vertex. The rest of the proof is similar to the proof of Theorem ??. □

Theorem 2.4. Let G and H be non-trivial connected graphs. If G or H has at least one

universal vertex, then γR(G▼H) = 4.

Proof. Without loss of generality, let us consider G has at least one universal vertex. Let u

and u
′
be the universal vertices in the two copies of G. Then, in G▼H every vertex of one

copy of G + H is adjacent to u and every vertex of another copy of G + H is adjacent to

u
′
. Therefore, if we are assigning the Roman dominating function f with f(u) = 2 = f(u

′
),

then the weight of all other vertices can be given as 0. Hence
∑

v∈V (G▼H) = 4. Therefore,
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γR(G▼H) ≤ 4.

Claim: γR(G▼H) = 4.

From Definition ??, G▼H consists of two copies of G + H. If we are assigning the weight

0 to any arbitrary vertex of G or H, then there will be at least two vertices with weight

2. Hence
∑

v∈V (G▼H) ≥ 4. If we are assigning the weight 1 to all the vertices, then∑
v∈V (G▼H) = 2(|G| + |H|) ≥ 4. So we need not consider that case. Clearly, we cannot

assign exactly 4 or 3 or 2 or 1 vertices with weight 1 and rest all vertices with weight 0. Now

consider the cases in which exactly one vertex with weight 2, one or two or three vertices

with weight 1 and the rest with weight 0. But these cases are not possible. Since u is adja-

cent to all other vertices in one copy of G +H and u
′
is adjacent to all vertices of another

copy, G▼H should have at least two vertices with weight 2. Then the only possibility of

getting a minimum value for
∑

v∈V (G▼H) is as mentioned in the previous paragraph. Hence

γR(G▼H) = 4.

□

Corollary 2.4.1. Let G and H be non-trivial connected graphs with orders m and n respec-

tively. If ∆(G) = m− 1 or ∆(H) = n− 1, then G▼H is a Roman graph.

Proof. The result is true by Theorem ?? and Theorem ??. □

Corollary 2.4.2. For every even number n > 3, there exists a Roman graph of order n.

Proof. Consider any two graphs G and H with order m1 and m2 respectively, where m1 +

m2 = n. Also, ∆(G) = m1 − 1. Then the graph G▼H is of order n and by Theorem ?? and

Theorem ?? G▼H is a Roman graph. □

In the following section, we are discussing the geodetic concept and its various extensions

in Indu-Bala product graphs.

3. Geodetic Sets and its Extensions on Indu-Bala Product Graphs

Proposition 3.1. Let G = G1▼G2. Then g(G) ≤ |G| − 2.

Proof. Since diam(G) = 3, the result is true by the Theorem ??. □

Theorem 3.1. Let G ̸= Kn be a graph of order n > 2 and H be any graph of order m > 1.

Then, g(H▼G) ≤ 6, γg(H▼G) ≤ 6 and gr(H▼G) ≤ 6

Proof. Let ui, uj and u
′
i, u

′
j be the pair of non-adjacent vertices in the two copies of G. Let

vr, v
′
s be the vertices in two copies ofH. Now consider the set S = {ui, uj , u

′
i, u

′
j , vr, v

′
s}. Then

S is a dominating set of H▼G and I[S] = V (H▼G). But < V (H▼G) − S > is connected.

Therefore, S is a geodetic, geodetic dominating and restrained geodetic set of H▼G, hence

the result. □

Theorem 3.2. For the graphs Km and Kn,

g(Km▼Kn) = gr(Km▼Kn) = γg(Km▼Kn) = 2m.

Proof. Let S be the set of vertices in the two copies of Km. Then, these set of vertices are

extreme in Km▼Kn and S is a dominating set of Km▼Kn. Also, I[S] = V (Km▼Kn) and
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< V (Km▼Kn)− S > is connected. Therefore, S is both a geodetic and restrained geodetic

set of Km▼Kn with minimum cardinality and hence the result. □

Theorem 3.3. Let G be any non-trivial graph of order n. Then,

g(H▼G) = γg(H▼G) = gr(H▼G) = 2, if and only if H ∼= K1.

Proof. Let g(H▼G) = γg(H▼G) = gr(H▼G) = 2 and S = {u, v} be its minimum geodetic

dominating set. Since S is a dominating set, every other vertices in H▼G are adjacent to

either u or v. Since I[S] = 2, V (H▼G)− S is in u− v geodesic. Also, < V (H▼G)− S > is

connected. Then, by the definition of Indu-Bala product of two graphs, H must be K1. The

converse part is true, since the vertices in two copies of K1 form a geodetic and dominating

set of K1▼G and also satisfies the restrained property. □

Theorem 3.4. Let G be any non-trivial graph of order n. Then,

(a). g(G▼K2) = γg(G▼K2) = gr(G▼K2) = 4,

(b). g(K2▼G) = γg(K2▼G) = gr(K2▼G) = 4.

Proof. Let S = {u1, u2, u
′
1, u

′
2} be the vertices in the two copies ofK2. Then S is a dominating

set of both G▼K2 and K2▼G. But, < V (G▼K2)− S > consists of two disconnected copies

of G and < V (K2▼G) − S > is connected. In G▼K2, vertices in each copy of G is in the

geodesic between the vertices in K2, which is join with G. Also I[S] = V (K2▼G). Hence

the results. □

Theorem 3.5. Let G = (Kn−e)▼H, where H is a graph of order m and n > 3. Then,g(G) =

γg(G) = gr(G) = 4.

Proof. Let ui, uj and u
′
i, u

′
j be the non-adjacent vertices in the two copies of Kn − e. Then

consider the set S = {ui, uj , u
′
i, u

′
j}. Clearly, S is a dominating set of G and each vertex in S

are extreme vertex of G. But I[S] = V (G) and < V (G)− S > is G = Kn−2▼H. Therefore,

g(G) = γg(G) = gr(G) = 4. □

Theorem 3.6. For m > 3, let G = H▼(Km − e), where H ̸= Kn is a graph of order n.

Then, g(G) = γg(G) = gr(G) = 4.

Proof. Let H1 and H2 be the two copies of H +Km − e. Then the non-adjacent vertices in

Km− e form a minimum geodetic set for H1 and H2. Hence g(H1) = g(H2) = 2. Then these

non-adjacent vertices form a minimum geodetic set S of G. Also, S is a dominating set and

< V (G)− S > is H▼Km−2. Therefore, the result is true by applying Theorem ??. □

Theorem 3.7. For m ≥ n ≥ 3, let G = Km▼Kn. Then,

g(G) = γg(G) = gr(G) = 6.

Proof. From Theorem ??, all vertices in the two copies of Km are in the geodesic between

any two vertices from each copy of Kn. Let S be the set of these vertices from the two copies

of Kn. Clearly S is not a geodetic set of G. Let ui be a vertex in one copy of Km and u
′
i

vertex in the another copy of Km. Now consider the set S1 = S ∪ {ui, u
′
i}. Since all vertices

in the two copies of Kn are in ui − u
′
i geodesic, I[S1] = V (G). Therefore, S1 is a minimum

geodetic set of G. Also, S1 is a dominating set of G and < V (G)−S1 > is connected. Hence

the result. □
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Theorem 3.8. Let H be a connected graph of order n and G1 = Km+H, where 2 ≤ m < n.

If G = G1▼Kp, then g(G) = 2m or 8.

Proof. e prove this theorem by considering the following only two cases.

Case 1: H = Kn

Then in G1, each vertices in Km are extreme, which form the minimum geodetic set of G1

and hence g(G1) = m. Let S be the set of vertices in the two copies of Km in G. Then each

x ∈ V (G) − S is in the geodesic between any two vertices in S and I[S] = V (G). Clearly,

the vertices in the two copies of Kp are not in the minimum geodetic set of G and S is the

minimum geodetic set. Hence g(G) = 2m.

Case 1: H ̸= Kn

Let x, y be any two non-adjacent vertices in H. Then, in G1 any vertex in Km is in the x−y

geodesic. Let uj , uk be any two vertices in Km. Then, in G1 any vertex in H is in uj − uk

geodesic. Therefore, the set S = {x, y, uj , uk} form the minimum geodetic set of G1 and

hence g(G1) = 4. Now consider the vertex set S
′
= {x, y, uj , uk, x

′
, y

′
, u

′
j , u

′
k} in G, which

belongs to the two copies of G1 in G. Clearly, in G, d(x, y) = 2 = d(x
′
, y

′
). Also, any vertex

in the two copies of Kp lies in the geodesic between any two vertices in S
′
which are on the

two copies of G1. Since G consists of two copies of Km +H, two non-adjacent vertices from

each of these Km and H are required to form a minimum geodetic set of G. Therefore, S
′

is a minimum geodetic set of G and hence g(G) = 8. □

4. Aα Spectrum of Indu-Bala Product Graphs

The adjacency and Laplacian spectra of Indu-Bala product of graphs were discussed in

[?]. In this section, we are discussing Aα Spectrum with respect to the operation Indu-Bala

product.

Definition 4.1. [?] For an n× n matrix M , the M−coronal is defined as

ΓM (x) = 1Tn (xIn −M)−11n, where 1n is the column vector of size n with all entries one.

Definition 4.2. [?] The graphs G and H are considered cospectral if G and H have the same

spectrum.

Lemma 4.1. [?] Let A, B, C and D be matrices with D is invertible. Then

det

(
A B

C D

)
= det(D)− det(A−BD−1C),

where A−BD−1C is called the Schur complement of D.

Lemma 4.2. [?] Let A =

(
B C

C B

)
be a 2×2 block symmetric matrix. Then the eigenvalues

of A are the eigenvalues of B + C and the eigenvalues of B − C.

Lemma 4.3. [?] Let the row sum of each row in an n× n matrix A is t. Then

ΓA(x) =
n

x−t .
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Theorem 4.1. Let G and H be two graphs. Then

PAα(G▼H)(x) = PAα(H)(x− α(n+ 1))PAα(G)(x− αm)(
(1− (1− α)2ΓAα(G)(x− α(n+ 1))ΓAα(H)(x− αm)

)
PAα(H)(x+ α(n+ 1))

PAα(G)(x− αm)
(
(1− (1− α)2ΓAα(G)(x+ α(n+ 1))ΓAα(H)(x− αm)

)

Proof. Let G andH be any two connected graphs of orderm and n respectively and α ∈ [0, 1].

Then the matrix Aα(G▼H) is of order 2(m+ n)× 2(m+ n) which is defined as follows.

Aα(G▼H) =


An×n Bn×m 0n×m 0n×n

BT
m×n Cm×m Dm×m 0m×n

0m×n Dm×m Cm×m BT
m×n

0n×n 0n×n Bn×m An×n


where, A = Aα(G) + α mIn, B = (1− α)Jn×n, C = Aα(H) + α (n+ 1)Im and

D = (1− α)Im. Here the matrix J means the matrix with all entries are 1.

The above matrix is equivalent to

Aα(G▼H) =


An×n Bn×m 0n×n 0n×m

BT
m×n Cm×m 0m×n Dm×m

0n×n 0n×m An×n Bn×m

0m×n Dm×m BT
m×n Cm×m

 =

(
M1 M2

M2 M1

)

where M1 =

(
An×n Bn×m

BT
m×n Cm×m

)
and M2 =

(
0n×n 0n×m

0m×n Dm×m

)
By Lemma ?? in order to

find the eigenvalues of M1 +M2 and M1 −M2. Now,

PM1+M2(x) = Det

∣∣∣∣∣(x− αm)In −Aα(G) −(1− α)Jn×m

−(1− α)Jm×n (x− α(n+ 1)Im −Aα(H)

∣∣∣∣∣
Using Schur complement, we get

PM1+M2(x) = Det((x− α(n+ 1)Im −Aα(H))

Det((x− αm)In −Aα(G)− (1− α)2Jm×n(x− α(n+ 1)Im −Aα(H))−1Jn×m

= PAα(H)(x− α(n+ 1))PAα(G)(x− αm)(
(1− (1− α)2ΓAα(G)(x− α(n+ 1))ITm((x− αn)Im −Aα(H))−1Im)

)
= PAα(H)(x− α(n+ 1))PAα(G)(x− αm)(
(1− (1− α)2ΓAα(G)(x− α(n+ 1))ΓAα(H)(x− αm)

)
Using the above computation procedure, we can similarly find the following expression as

PM1−M2(x) = PAα(H)(x+ α(n+ 1))PAα(G)(x− αm)(
(1− (1− α)2ΓAα(G)(x+ α(n+ 1))ΓAα(H)(x− αm)

)
Therefore,

PAα(G▼H)(x) = (PM1+M2(x))(PM1−M2(x))
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Therefore,

PAα(G▼H)(x) = PAα(H)(x− α(n+ 1))PAα(G)(x− αm)(
(1− (1− α)2ΓAα(G)(x− α(n+ 1))ΓAα(H)(x− αm)

)
PAα(H)(x+ α(n+ 1))

PAα(G)(x− αm)
(
(1− (1− α)2ΓAα(G)(x+ α(n+ 1))ΓAα(H)(x− αm)

)
□

As an application, using Theorem ?? we can construct infinite family of Aα-cospectral

graph using Indu-Bala product

Corollary 4.1.1. Let G1 and G2 are Aα-cospectral regular graph and H is any graph. Then

G1▼H and G1▼H are Aα-cospectral.

Corollary 4.1.2. Let G1 be a regular graph H1 and H2 are Aα-cospectral graphs with

ΓAαH1(x) = ΓAαH1(x). Then G1▼H1 and G1▼H2 are Aα-cospectral.

5. Conclusion

The Indu-Bala product of graphs holds potential for modeling complex interconnected

systems where relationships between two distinct groups of entities need to be analyzed.

This framework can represent scenarios such as collaborations between companies, where

different departments within each organization maintain robust internal connections while

simultaneously engaging with specific counterparts in the partner company. For instance, a

company’s internal network could interact with that of its partner through designated links

between corresponding departments, creating a structure with strong intra-group connections

and additional inter-group relationships.

Such modeling captures the dual nature of internal cohesion and external collaboration,

making the Indu-Bala product particularly suitable for studying such interactions. While the

analysis of this graph product is still in its nascent stages, ongoing research and increasing

interest in its properties suggest that it may find broader real-world applications in the near

future.

In this study, we have explored different geodetic and domination variants in the Indu-

Bala product of graphs. A similar kind of study can be done with respect to edge geodetic

and edge domination variants. Also, we initiated the study on Aα spectrum of Indu-Bala

product of graphs.
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