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ABSTRACT

The concept of the Sombor index was extended by Reti
et. al. [2] by introducing a p-Sombor index which can
be seen as the p norm of the vector x = (d(u), d(v)) as
p → ∞, ∥x∥∞ = max{d(u), d(v)}. Inspired by this, we de-
fined indices namely, Reformulated Inf- Sombor index, En-
tire Inf-Sombor index, and KG Inf-Sombor index. Also, we
present lower and upper bounds by using some graph pa-
rameters and obtain exact values of these new topological
indices in some graph families. Further, we evaluated the
statistical behavior of these indices after computing index
values for different types of dendrimers for various growth
values k.
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1. Introduction

We only take into account undirected, simple, and finite graphs. Let δ = δ(G) and ∆ =

∆(G) be the minimum and maximum vertex degreeof the graph G respectively. g ∼ h means

that the edges g and h are adjacent, i.e., they share a common end-vertex in G and let u ∈
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Topological indices Mathematical expressions
Forgotten index [8, 9] F (G) =

∑
uv∈E(G)[d(u)

2 + d(v)2]

Randic index [11, 10] R(G) =
∑

uv∈E(G)
1√

d(u).d(v)

First Zagreb index [5] M1(G) =
∑

uv∈E(G)[d(u) + d(v)]

Second Zagreb index [6, 7] M2(G) =
∑

uv∈E(G)[d(u).d(v)]

Entire Randic index [17] ER(G) =
∑

{g,h}⊆B(G)
1√

d(g)d(h)

p-Sombor index [2] SOp(G) =
∑

uv∈E(G)[d(u)
p + d(v)p]1/p

Sombor index [1] SO(G) =
∑

uv∈E(G)[
√
d(u)2 + d(v)2]

Inf-Sombor index [12] SO∞(G) =
∑

uv∈E(G)max{d(u), d(v)}.
KG Sombor index [22] KG(G) =

∑
ue[

√
d(u)2 + d(e)2].

Reformulated Sombor index [20] RS(G) =
∑

g∼h

√
[d(g)2 + d(h)2]

Reformulated first Zagreb index [21] REM1(G) =
∑

g∼h[d(g) + d(h)]

Platt index [13] Pl(G) =
∑

u∈V (G) d(u) (d(u)− 1)

Reformulated second Zagreb index [21] REM2(G) =
∑

g∼h[d(g)d(h)]

First Entire Zagreb index [23] EM1(G) =
∑

{g,h}⊆B(G)[d(g) + d(h)]

Second Entire Zagreb index [23] EM2(G) =
∑

{g,h}⊆B(G)[d(g)d(h)]

Entire Sombor index [18, 19] ES(G) =
∑

{g,h}⊆B(G)

√
[d(g)2 + d(h)2]

Reformulated Inverse sum Indeg index[29] ISIe(G) =
∑

g∼h
d(g)d(h)
d(g)+d(h)

Table 1. Topological indices and their mathematical expressions

V (G), e ∈ E(G) then ue represents u is incident to e. If there is a path connecting each pair of

vertices in a graphG, then that graph is said to be connected. The degree of a vertex v, shown

by d(v), is the number of vertices that are adjacent to it. Furthermore, d(e) = d(u)+d(v)−2

defines the edge (e = uv) degree. For further terminology and notation pertaining to graph

theory, see [3, 4]. The Sombor index, defined as
∑

uv∈E(G)[
√
d(u)2 + d(v)2], was initially

defined by Gutman [1] in 2021. It is based on the degree radius of an edge e = uv ∈ E(G).

The concept of the Sombor index was extended by Reti et. al. [2]. by introducing a

p-Sombor index which can be seen as the p norm of the vector x = (d(u), d(v)) as p →
∞, ∥x∥∞ = max{d(u), d(v)}. Inspired by this, we defined indices namely, Reformulated

Inf- Sombor index, Entire Inf-Sombor index, and KG Inf-Sombor index. The reformulated

inf-Sombor index is defined as RSO∞(G) =
∑

g∼hmax{d(g), d(h)} and Entire Inf-Sombor

index which is defined as the sum of the maximum of the terms g and h, which are the two

members of the set B(G), where B(G) is the collection of all subsets of two members {g, h} ⊆
V (G) ∪E(G) such that g and h are adjacent or incident to each other and is represented as

ESO∞(G) =
∑

{g,h}⊆B(G)max{d(g), d(h)}. KG Sombor index is defined by Kulli et.al.[22]

which is defined as KG(G) =
∑

ue

√
d(u)2 + d(e)2, motivated by this we defined an index

named KG Inf-Sombor index is defined as KG∞(G) =
∑

uemax{d(u), d(e)}.
Some well-studied topological descriptors have many applications in the field of chemical

graph theory. For more details refer [25, 24, 27, 28, 34, 36, 35, 26].

2. Reformulated Inf-Sombor index

This section contains the precise values of the reformulated Inf-Sombor index for certain

graph families.
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Observation: Any isolated vertices in a graph G have no impact on L(G), since L(G) is

defined on its edge set. It is obvious that RSO∞(G) = SO∞(L(G)).

Theorem 2.1. Let G be r-regular graph. Then,

RSO∞(G) = (r − 1)2nr.

Proof. Let G be an r-regular graph. Then,

RSO∞(G) =
∑
g∼h

max{d(g), d(h)}

=
Pl(G)

2
2(r − 1)

RSO∞(G) = (r − 1)2nr

□

Theorem 2.2. (1) For complete graph Kn with n ≥ 3, RSO∞(Kn) = n(n− 1)(n− 2)2.

(2) For cycle Cn with n ≥ 3, RSO∞(Cn) = 2n.

(3) For complete bipartite graph Km,n with 1 ≤ m ≤ n, RSO∞(Km,n) =
(m+n−2)2mn

2 .

(4) For path Pn with n ≥ 2, RSO∞(Pn) = 2(n− 2).

(5) For star graph Sn, with n ≥ 2, RSO∞(Sn) =
(n−2)2(n−1)

2 .

2.1. Inequalities related to Reformulated Inf-Sombor index.

Theorem 2.3. Let G be any graph. Then,

Pl(G)(δ − 1) ≤ RSO∞(G) ≤ Pl(G)(∆− 1).

Proof. Let G be a connected. Then,

RSO∞(G) =
∑
g∼h

max{d(g), d(h)}

≤ 2(∆− 1)
∑
g∼h

1

≤ Pl(G)(∆− 1).(2.1)

Similarly, RSO∞(G) =
∑
g∼h

max {d(g), d(h)}

≥ Pl(G)(δ − 1).(2.2)

From equations (2.1) and (2.2), we get

(2.3) Pl(G)(δ − 1) ≤ RSO∞(G) ≤ Pl(G)(∆− 1).

Equality holds when graph G is regular. □

Lemma 2.4. [14] For any connected graph G with n ≥ 2,

(1) 2m(δ − 1) ≤ Pl(G) ≤ 2m(∆− 1).

(2) m ≤ Pl(G) ≤ 2m(n− 2).

Lemma 2.5. [15, 16] For any graph G with n ≥ 2, P l(G) = M1(G)− 2m.

Corollary 2.6. For a graph G,

(1) 2m(δ − 1)2 ≤ Pl(G) ≤ 2m(∆− 1)2.
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(2) m(δ − 1) ≤ RSO∞(G) ≤ 2m(n− 2)(∆− 1).

Proof. By using Lemma 2.4 in equation (2.3), we get the results. □

Theorem 2.7. For any graph G,

1√
2
RSO(G) ≤ RSO∞(G) ≤ RSO(G).

Proof. Let G be a graph. Then,

RSO(G) =
∑
g∼h

√
d(g)2 + d(h)2

≤
∑
g∼h

√
2max{d(g)2, d(h)2}

≤
√
2RSO∞(G).(2.4)

Consider,
√
max{d(g)2, d(h)2} ≤

√
d(g)2 + d(h)2

RSO∞(G) ≤ RSO(G).(2.5)

From equations (2.4) and (2.5), we get 1√
2
RSO(G) ≤ RSO∞(G) ≤ RSO(G). □

Corollary 2.8. For any graph G,

m

2
≤ RSO∞(G) ≤ 2m(n− 2)2.

Proof. From Lemma (2.4), we have

Pl(G)

2
≤ max{d(e), d(f)} ≤ 2(n− 2) · Pl(G)

2
(2.6)

m

2
≤ max{d(e), d(f)} ≤ 2m(n− 2)2.

□

Corollary 2.9. For any graph G

M1(G)− 2m

2
≤ RSO∞(G) ≤ (n− 1)(M1(G)− 2m).

Proof. By using Lemma (2.5) in equation (2.6), we get the result. □

Theorem 2.10. For any graph G,

REM1(G)

2
≤ RSO∞(G) ≤ REM1(G).

Proof. For any integer x, y ≥ 0

g + h

2
≤ max{g, h} ≤ g + h∑

g∼h

d(g) + d(h)

2
≤

∑
g∼h

max{d(g), d(h)} ≤
∑
g∼h

d(g) + d(h1)

REM1(G)

2
≤ RSO∞(G) ≤ REM1(G).

□

Theorem 2.11. Let G be any graph. Then,

RM1(G)− (∆− 1)Pl(G) ≤ RSO∞(G) ≤ RM1(G)− (δ − 1)Pl(G).
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Proof. Let G be any graph. Then,

RM1(G) =
∑
g∼h

[d(g) + d(h)]

≤
∑
g∼h

max{d(g), d(h)}+ 2(∆− 1)
Pl(G)

2

≤ RSO∞(G) + (∆− 1)Pl(G).(2.7)

Similarly, RM1(G) ≥ RSO∞(G) + (δ − 1)Pl(G).(2.8)

From equations (2.7) and (2.8), we get

RM1(G)− (∆− 1)Pl(G) ≤ RSO∞(G) ≤ RM1(G)− (δ − 1)Pl(G)

□

Theorem 2.12. Let G be (n, m)-graph with∆ ≥ 2. Then

4(δ − 1)ISIe(G)

Pl(G)(∆− 1)
≤ RSO∞(G) ≤ 4(∆− 1)ISIe(G)

Pl(G)(δ − 1)
.

Equality holds if and only if G is regular.

Proof. Let G be any graph. Then,

ISIe(G) =
∑
g∼h

d(g)d(h)

d(g) + d(h)∑
g∼h

d(g)2(δ − 1)

2× 2(∆− 1)
≤

∑
g∼h

d(g)d(h)

d(g) + d(h)
≤

∑
g∼h

d(g)2(∆− 1)

2× 2(δ − 1)

4(δ − 1)ISIe(G)

Pl(G)(∆− 1)
≤ RSO∞(G) ≤ 4(∆− 1)ISIe(G)

Pl(G)(δ − 1)
.

Equality is attained if the graph is regular. □

3. Entire Inf-Sombor index

This section contains the precise values of the reformulated Inf-Sombor index for certain

graph families.

Observation : Let G be connected graph with n ≥ 3. Then,

(3.1) ESO∞(G) = SO∞(G) +RSO∞(G) +KG∞(G).

Theorem 3.1. Let G be an r-regular graph with n ≥ 3 and r ≥ 1. Then

ESO∞(G) =
nr2

2
+ 2n(r − 1)2 + 2nr(r − 1).

Proof. From Theorem 3.3, we have

ESO∞(G) = SO∞(G) +RSO∞(G) + 2Pl(G)

ESO∞(G) =
nr2

2
+ 2n(r − 1)2 + 2nr(r − 1).

□

Theorem 3.2. (1) For complete graph Kn with n ≥ 3, ESO∞(Kn) =
(n−1)2n

2 + n(n −
2)2(n− 1) + 2n(n− 1)(n− 2).
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(2) For cycle Cn with n ≥ 3, ESO∞(Cn) = 8n.

(3) For complete bipartite graph Km,n with 1 < m ≤ n, ESO∞(Km,n) = max{m,n} ·
mn+ (m+n−2)2mn

2 + 2(m+ n− 2)mn.

(4) For path Pn with n ≥ 3, ESO∞(Pn) = 4(2n− 3).

(5) For star Sn with n ≥ 3, ESO∞(Sn) = 2(n− 1)2 + (n−2)2(n−1)
2 + (n− 2)(n− 1).

Theorem 3.3. Let G be any connected graph without pendant vertices with n ≥ 2. Then,

ESO∞(G) = SO∞(G) +RSO∞(G) + 2Pl(G).

Proof. Let G be a graph without pendant vertices. Then d(u) ≥ 2 for all u ∈ V (G). If e = uv

is any edge then d(e) ≥ d(u) and d(e) ≥ d(v).

(3.2) Hence,
∑
ue

max{d(u), d(e)} = 2Pl(G).

From equation (3.1), we have ESO∞(G) = SO∞(G) +RSO∞(G) +
∑

uemax{d(u), d(e)}.
Using equation (3.2) in equation (3.1) we get, ESO∞(G) = SO∞(G)+RSO∞(G)+2Pl(G).

□

Theorem 3.4. Let G be any connected graph of order n ≥ 3 with p̃-pendant vertices. Then

ESO∞(G) = SO∞(G) +RSO∞(G) + 2Pl(G)− p̃.

Proof. Let v1, v2, . . . vp̃ be pendant vertices of a graphG and e1, e2, . . . ep̃ be the edges incident

to v1, v2, . . . vp̃, respectively. Then

ESO∞(G) = SO∞(G) +RSO∞(G) +KG∞(G)

= SO∞(G) +RSO∞(G) +
∑

v is incident to e

max{d(v), d(e)}

= SO∞(G) +RSO∞(G) +

p̃∑
i=1

[max{d(vi), d(ei)}+max{d(ui), d(ei)}]+∑
ei∈E(G)/{e1,e2,...ep̃}

[max{d(vi), d(ei)}+max{d(ui), d(ei)}]

= SO∞(G) +RSO∞(G) + d(e1) + d(e1)− 1 + d(e2) + d(e2)− 1 + . . . d(ep̃) + d(ep̃)− 1+

2d(ep̃+1) + . . . 2d(em)

ESO∞(G) = SO∞(G) +RSO∞(G) + 2Pl(G)− p̃.

□

3.1. Inequalities related to Entire Inf-Sombor index.

Theorem 3.5. For any graph G with ∆ ≥ 2,

EM2(G)

2(∆− 1)
≤ ESO∞(G) ≤ EM2(G)

δ
.
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Proof. Let G be any graph. Then

ESO∞(G) =
∑

{gh}⊆B(G)

max{d(g), d(h)}

=
∑

{gh}⊆B(G)

max{d(g), d(h)}d(x)d(y)
d(x)d(y)

≤ EM2(G)

δ

Similarly, ESO∞(G) =
∑

{gh}⊆B(G)

max{d(g), d(h)}

=
∑

{gh}⊆B(G)

max{d(g), d(h)}d(x)d(y)
d(x)d(y)

≥ EM2(G)

2(∆− 1)

EM2(G)

2(∆− 1)
≤ ESO∞(G) ≤ EM2(G)

δ
.

□

Theorem 3.6. For any graph G with ∆ ≥ 2,

δ

8(∆− 1)2
EF (G) ≤ ESO∞(G) ≤ ∆− 1

δ2
EF (G).

Proof. Let G be any graph. Then

ESO∞(G) =
∑

{g,h}⊆B(G)

max{d(g), d(h)}

=
∑

{g,h}⊆B(G)

max{d(g), d(h)}[d(x)2 + d(y)2]

[d(x)2 + d(y)2]

≤ (∆− 1)

δ2
EF (G)(3.3)

Similarly, ESO∞(G) =
∑

{g,h}⊆B(G)

max{d(g), d(h)}[d(x)2 + d(y)2]

[d(x)2 + d(y)2]

≥
∑

{g,h}⊆B(G)

[d(x)2 + d(y)2]δ

2 · 4(∆− 1)2

≥ δ

8(∆− 1)2
EF (G)(3.4)

From equations (3.3) and (3.4), we get

δ

8(∆− 1)2
EF (G) ≤ ESo∞(G) ≤ ∆− 1

δ2
EF (G).

□

Theorem 3.7. For any graph G, δ2ER(G) ≤ ESO∞(G) ≤ 4(∆(G)− 1)2ER(G).
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Figure 1. Regular Dendrimers

Proof. Let G be any graph. Then

ESO∞(G) =
∑

{g,h}⊆B(G)

max{d(g), d(h)}

=
∑

{g,h}⊆B(G)

max{d(g), d(h)}
√
d(x)d(y)√

d(x)d(y)

≤
∑

{g,h}⊆B(G)

√
4(∆− 1)2 · 2(∆− 1)√

d(x)d(y)

≤ 4(∆− 1)2ER(G).(3.5)

Similarly, ESO∞(G) =
∑

{g,h}⊆B(G)

max{d(g), d(h)} ≥ δ2ER(G)(3.6)

(3.5) and (3.6), we get δ2ER(G) ≤ ESO∞(G) ≤ 4(∆− 1)2ER(G). □

4. Results on Dendrimers

One of the most significant hyperbranched nanostructures is the dendrimer, which can

be synthesized by convergent or divergent processes and assembled from monomers via a

nanoscale production process. Nanotubes, nanolatex, chemical sensors, colored glass, mi-

cro and macro capsules, and photon funnels, such as artificial antennas are all made of

dendrimers. [30, 31, 33, 37, 38, 39, 40, 41]

4.1. Regular dendrimer. Regular dendrimers, which are highly branched and scattered

macro molecules, are a unique type of polymeric material found in chemical trees because of

the significant influence they have on the physical and chemical properties of the molecules.

There is a central vertex (v) in a regular dendrimer tree (Tk,d). Let the growth of the regular

dendrimer be k i.e the distance between the central vertex to the pendant vertex, and each

nonpendant vertex of Tk,d has a degree of d ≥ 2. Figure 1 shows examples of dendrimers

T3,4.

Lemma 4.1. [32] If Tk,d is a tree with central vertex v, then

(1) Tk,d has d branches, (d−1)k−1
d−2 vertices, (d−1)k−1−1

d−2 nonpendant vertices, (d − 1)k−1

pendant vertices.

(2) The order of Tk,d is 1 +
((d−1)k−1)d

d−2 .
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Figure 2. The particular values of the indices associated with the Inf-
Sombor index

Table 2. The calculated values of the indices associated with the Inf-Sombor
index

Indices Calculated values

Pl(Tk,d)
[
1 + d[(d−1)k−1]

d−2 − d(d− 1)k−1
]
d(d− 1)

SO∞(Tk,d)
(d−1)kd2−d2

d−2

RSO∞(Tk,d) 2(d− 1)
{

d(d−1)
2

[
d[(d−1)k−1]

d−2 − d(d− 1)k−1 + 1
]
− d(d−1)k−1(d−2)

2

}
ESO∞(Tk,d)

d2(d−1)k−d2

d−2 + 2(d− 1)
{

d(d−1)
2

[
1 + d[(d−1)k−1]

d−2 − d(d− 1)k−1
]
− d(d−1)k−1(d−2)

2

}
+ 2d(d− 1)

[
1 + d[(d−1)k−1]

d−2 − d(d− 1)k−1
]
− d(d− 1)k−1

Table 3. The particular values of the indices associated with Inf-Sombor
index

Growth k Indices associated with Inf-Sombor related indices
SO∞(Tk,d) RSO∞(Tk,d) ESO∞(Tk,d)

k=1 16 12 52
k=2 64 108 292
k=3 208 180 796
k=4 1280 1260 3812

Mathematically, the calculated values of the indices associated with the Inf-Sombor index

are given in Table 2. We calculated particular values of the indices associated with the

Inf-Sombor index of different growth k for 1 ≤ k ≤ 4 as shown in Table 3 and its graphical

comparison is shown in Figure 2.

4.2. Polyamidoamine (PAMAM), Polypropylenimine (PPI) and Polypropyleneamine

(POPAM) Dendrimers. PAMAM dendrimers are characterized by their size, shape, and

multifunctional terminal surface. They are hyperbranched dendrimers with a restricted

molecular weight distribution and unmatched molecular homogeneity. It seems that the

polypropylenimine dendrimers are appealing nonviral vectors for antisense oligonucleotides,

small interfering RNA, and gene delivery. On the other hand, little is known about how

PPI synthetic gene delivery vectors affect global gene expression. The Polypropyleneamine

dendrimers closely resemble PPI dendrimers.

We have calculated the indices related to inf-Sombor index in table 4 and compared them

graphically for growth values k = 1, 2, 3, and 4, which is shown in Figure 4a, 4b, 4c and 4d
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Table 4. The calculated values of the indices associated with the different
dendrimers

Dendrimers Indices Calculated values

D1

Pl(D1) 114× 2k − 60
SO∞(D1) 69× 2k − 33
RSO∞(D1) 162× 2k − 87
ESO∞(D1) 450× 2k − 237

D2

Pl(D2) 152× 2k − 72
SO∞(D2) 164× 2k − 76
RSO∞(D2) 216× 2k − 104
ESO∞(D2) 672× 2k − 320

D3

Pl(D3) 76× 2k − 72
SO∞(D3) 82× 2k − 76
RSO∞(D3) 108× 2k − 104
ESO∞(D3) 336× 2k − 320

D4

Pl(D4) 36× 2k − 28
SO∞(D4) 38× 2k − 28
RSO∞(D4) 48× 2k − 40
ESO∞(D4) 156× 2k − 124

D5

Pl(D5) 72× 2k − 28
SO∞(D5) 52× 2k − 28
RSO∞(D5) 168× 2k − 40
ESO∞(D5) 360× 2k − 204

Based on the vertices degrees, we have three partitions of the vertex set: V3(Dj) = {u :

d(u) = 3}, V2(Dj) = {u : d(u) = 2} and V1(Dj) = {u : d(u) = 1}.
Also, the four partitions of the edge set of Dj based on the degrees of end vertices are as

follows:

E1(Dj) = {e = uv ∈ E(Dj) : d(v) = 2 and d(u) = 1}

E2(Dj) = {e = uv ∈ E(Dj) : d(v) = 3 and duv) = 1}

E3(Dj) = {e = uv ∈ E(Dj) : d(v) = 2 and d(u) = 2}

E4(Dj) = {e = uv ∈ E(Dj) : d(v) = 3 and d(u) = 2}.
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Dendrimers Class Number Order of vertex and edge class

D1

1 ≤ i ≤ t |Vi(Dj)| |Ei(Dj)|
i = 1 9× 2k − 3 3× 2k

i = 2 30× 2k − 15 6× 2k − 3
i = 3 9× 2k − 5 18× 2k − 9
i = 4 - 21× 2k − 12

D2

i = 1 12× 2k − 4 4× 2k

i = 2 40× 2k − 18 8× 2k − 1
i = 3 12× 2k − 6 24× 2k − 11
i = 4 - 28× 2k − 14

D3

i = 1 6× 2k − 4 2k+1

i = 2 20× 2k − 18 4× 2k − 4
i = 3 6× 2k − 6 12× 2k − 11
i = 4 - 14× 2k − 14

D4

i = 1 2k+1 2k+1

i = 2 12× 2k − 8 -
i = 3 2× 2k − 2 8× 2k − 5
i = 4 - 6× 2k − 6

D5

i = 1 4× 2k 4× 2k

i = 2 24× 2k − 8 -
i = 3 4× 2k − 2 16× 2k − 5
i = 4 - 12× 2k − 6

Table 5. Order of vertex and edge class of Dj

(a) Comparision of Platt Number of
Dendrimers (b) Comparision of Infinite Sombor index of

Dendrimers

(c) Comparision of Reformulated Inf Sombor in-
dex of Dendrimers

(d) Comparision of Entire Inf Sombor index of
Dendrimers
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(a) First type of polyamidoamine dendrimer
D1

(b) Second type of polyamidoamine den-
drimer D2

(c) First type of polypropylenimine D3 (d) Polypropylenimine octaamine den-
drimer D4

(e) Polypropyleneamine dendrimer
(POPAM) D5

5. Conclusions

To achieve more accurate estimates of intermolecular forces, one needs to consider the

relations between edges and vertices in addition to the relation between vertices. This is

because intermolecular forces occur not just between atoms but also between atoms and

bonds. Hence, we studied the edge version of the Inf-Sombor and Entire Sombor indexes

and gave some bounds. In the end, we calculated these indices for the different dendrimers

and made a graphical comparison. The following can be taken into consideration for further

study.

(1) Characterize these indices with respect to other degree-based topological indices.
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(2) Finding extremal graphs for these indices will be an interesting task.
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