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ABSTRACT

This paper addresses the control of a category of continuous-time
linear systems that switch between different modes, where the
switching signals are driven by random time-iteration. The sys-
tem under consideration is subject to uncertainties in the system
dynamics and observation noise in the output measurements. We
propose a robust control strategy that Accounting for the ran-
dom nature of the switching signals and the system uncertain-
ties. The learning performance is examined using the Lebesgue-
p norm, leading to the derivation of a sufficient condition for
convergence. The findings demonstrate that the proposed con-
trol law effectively addresses the tracking problem in switched
systems, Especially when the switching rules are expanded to
the time-iteration domain using a stochastic framework, we in-
troduce a groundbreaking control approach that guarantees the
system’s performance despite uncertainties and noise. Through
rigorous theoretical analysis, we prove the effectiveness of our
suggested approach in achieving robust control and estimation
performance.The results of this research contribute to the ad-
vancement of control theories and have potential applications in
various fields, including power systems, robotics, and process con-
trol.
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1. Introduction

ILC is a control strategy that utilizes repetitive iterations to learn and refine a system’s

performance, making it particularly effective for systems that perform repetitive tasks like

robotic arms, machine tools, and chemical processing plants. By leveraging the insights

gained from previous iterations, ILC adapts and optimizes control inputs to achieve enhanced

performance in subsequent cycles. ILC can significantly improve the accuracy of tracking

outputs, reduce errors, and optimize performance in systems with repetitive dynamics. ILC

uses data from previous iterations to learn and improve control performance. ILC is suited

for systems with repetitive dynamics, such as robotic arms or machine tools. ILC can adapt

to changes in system dynamics or operating conditions. ILC has applications in various

fields, including Robotics, Process control, Motion control, Mechatronics, Automation etc.

(See [1]-[17]).

Randomly switched systems are a type of dynamic system that transitions between differ-

ent modes or subsystems based on a stochastic switching signal. This signal is generated by

random time-iteration, resulting in unpredictable switching times that may vary with each

iteration. The randomness can be modeled using various stochastic processes like Markov

chains or random pulse trains. These systems have applications in control systems with

random faults, communication networks with packet losses, biological systems with random

mutations, and economic systems with market fluctuations. Due to the unpredictability of

switching times, analyzing and controlling these systems is challenging. Researchers employ

techniques like stochastic stability analysis, robust control, and adaptive control to design

controllers that can handle random switching and achieve stable and optimal performance

(See [15]-[26]).

The paradigm of ILC for improving robot performance was proposed by Arimoto et al.[1]

in 1984 through the ”betterment process.” This method enhances robot operation by us-

ing data from previous iterations to generate better control inputs for subsequent trials,

without requiring precise knowledge of system dynamics. The approach involves adding an

error-based increment to the previous input, ensuring convergence to the desired trajectory

under certain conditions. Miyazaki et al.[2] in 1986 extended this concept to robots with

elastic transmissions, proposing a two-stage betterment process. Kawamura et al.[3] in 1988

further demonstrated the practical application of this learning control scheme on a three-

degree-of-freedom manipulator, showing its effectiveness in both joint-angle and task-oriented

coordinates. The key advantage of this method is its ability to form input torque patterns

for desired motions, leveraging the repeatability of robot motion, we bypass the need for

dynamic parameter identification and iterative improvement through trials. The field has

seen advancements in stability analysis, performance optimization, robustness, and learning

transient behavior (Bristow et al.,[4] 2006). Various design techniques have emerged, includ-

ing frequency-domain-based ILC, 2-D theory-based ILC, and optimization-based ILC (Han

Zheng-zhi [5] 2005). ILC has been applied to diverse areas such as robotics, batch processes,

and semiconductor manufacturing (Ahn and Bristow[7], 2011). Recent research has focused

on relaxing traditional ILC assumptions and exploring more generalized conditions. De-

spite entering its third decade, the field continues to evolve, with ongoing investigations into

theoretical aspects like monotonic convergence, optimality, and hard nonlinearities ([6]-[7]).
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In 2012, X Ruan et al. [10] explored the convergence characteristics of PD-type iterative

learning control schemes for linear time-invariant systems with partial knowledge in the sense

of the Lebesgue-p norm. The studies demonstrate that convergence is influenced by both

derivative and proportional learning gains, as well as system matrices. First-order schemes

exhibit strictly monotone convergence, while second-order schemes achieve monotonicity

after a finite number of iterations. The papers compare convergence speeds between first-

order and second-order rules, noting that second-order processes can be Qp-slower, Qp-

equivalent or Qp-faster depending on learning gain selection. Additionally, the inclusion of

feedback information in PD-type ILC can potentially accelerate convergence when gains are

properly chosen ([11]-[12]).

In 2013, X Bu et al. [15] studied arbitrary switching rules, assuming repetitive operation

over finite time intervals (See [15, 19]). Under specific conditions, D-type ILC laws can en-

sure asymptotic convergence of output errors(see [14]). In 2015, Yang Ruan [19] implemented

ILC in linear discrete-time switched systems with dynamic switching rules, assessing conver-

gence and robustness features using the super vector technique. These studies collectively

demonstrate the effectiveness of ILC for various linear switched systems, offering theoretical

analysis and practical applications. Analysis of convergence has been conducted through the

super vector approach in noise-free systems and robustness in systems with bounded noise.

Stability analysis and stabilization of these systems have been explored using average dwell

time and linear matrix inequalities, with connections to 2D repetitive systems [18]. ILC has

also been extended to non-linear switched systems, demonstrating asymptotic convergence

of tracking errors under certain conditions (see [14, 16, 18, 19]).

In 2018, Yang and Ruan[24] investigated ILC for switched r epetitive systems with random

time-iteration driven switching signals, deriving convergence conditions using the Lebesgue-p

norm. In 2015, Shen et al.[25] inspected the convergence properties of ILC for linear sys-

tems with randomly changing iteration durations, confirming almost sure and mean square

convergence via a switching system methodology. In 2018, Shao and Duarr [28] put forward

a high-order ILC technique for discrete-time linear switched systems with iteration-varying

parameters, addressing resetting errors and deriving stability conditions using linear ma-

trix inequalities. In 2019, Yang and Ruan [30] examined proportional-derivative ILC for

continuous-time switched systems with observation noise, revealing that convergence relies

on learning gains and subsystem dynamics. That same year, Sahu and Singh investigated

second-order ILC for discrete-time-switched systems with uncertainties, noises, and time-

delays, providing convergence conditions and robustness analysis. In 2021, Sahu and Singh

[32] introduced Mann-ILC and normal S-ILC methods for discrete-time switched systems,

establishing convergence theorems. Earlier, in 2009, Van de Wijdeven et al. [33] presented

a robust monotonic convergence analysis approach for ILC in uncertain systems using µ-

analysis, applicable to MIMO systems with additive and multiplicative uncertainties. Col-

lectively, these studies highlight the crucial role of proper gain selection and system dy-

namics in ensuring the convergence and robustness of ILC algorithms for switched systems

under various conditions, including noise, uncertainties, and time-delays. Later, in 2023,

Dewangan[37] expanded on this work by incorporating time delay, system uncertainty, and

bounded noise. In 2024, O. dewangan [38] studied A novel FOILC approach is proposed to
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mitigate time delays in fractional-order linear systems, ensuring convergence and robustness

against external disturbances.

We consider a class of linear systems that switch between different states in continuous

time, driven by a random iteration-based timing mechanism, and featuring system uncer-

tainties and observation noise and used PD-type ILC strategy ensures accurate trajectory

tracking in switched systems, even when switching rules are expanded in the time-iteration

domain, thereby ensuring precise control and reliability.

The paper is formatted in the following manner: The problem formulation is presented in

Section 2, followed by an in-depth analysis of the main results in Section 3. Section 5 offers

a succinct conclusion that encapsulates the essential insights derived from the paper.

2. Problem discriptions

Examine a class of linear systems that switch between different states in continuous time,

driven by a random iteration-based timing mechanism, and featuring with system uncertain-

ties and observation noise described as follow dynamic models:

(2.1)

ẋk(t) = Aτ(σ(t),k)xk(t) +Bτ(σ(t),k)uk(t) + ξk(t),

yk(t) = C(τ(σ(t),k))xk+1 + wσ(t),k(t), t ∈ Ω = [0, T ],

with initial state xk(0) = 0, where

• The iteration index is denoted by k, and the time duration is given by Ω = [0, T ].

• The system’s state is described by the vector xk(t) ∈ Rn.

• The input vector of the system is given by uk(t) ∈ Rm.

• The vector yk(t) ∈ Rp denotes the system’s output.

• The system matrices, Aτ(σ(t),k), Bτ(σ(t),k), and Cτ(σ(t),k), have appropriate dimensions

and are defined as Aτ(σ(t),k) is an n × n matrix, Bτ(σ(t),k) is an n × m matrix, and

Cτ(σ(t),k) is a p× n matrix.

• The switching signal, denoted by the subscript (τ(σ(t), k)), is a sequence of random

constant functions that switch according to both operational time and iteration.

• Consider a random division of the time duration into n segments, such that Ω =

Ω1 ∪ Ω2 ∪ · · · ∪ Ωn.

• ξk(t) ∈ Rn and wσ(t),k are system uncertinities and observation noise with bounds

∥ξk(t)∥p ≤ bξ and ∥wσ(t),k∥p ≤ wσ(t),0.

The switching signals exhibit iteration-to-iteration independence at the same time as subin-

terval. That is, during a specific time period, the switching rules randomly pick subsystems

(e.g., Ωi) in a manner that is independent across different iterations. For simplicity, we

denote this as

(2.2) τ(σ(t), k) = l[i, k], (i = 1, 2, ..., n),

where i is define as

σ(t) = i =



1, t ∈ Ω1 = [0, t1),

2, t ∈ Ω2 = [t1, t2),
...

n, t ∈ Ωn = [tn−1, T ].
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which arbitrarily divided the time duration Ω into n subintervals Ωi(i = 1, 2, · · · , n). Here

l[i, k] represents a sequence of random numbers at the kth trial.

Remark 2.1. In contrast to previous research, This paper presents an ILC approach for

switched systems with switching signals that vary randomly across time and iterations.

By segmenting the operation time interval into subintervals, we achieve independence in

switching signals, enhancing system adaptability. The switching signals enable a versatile

operational framework, where subsystems can be assigned to arbitrary time segments across

iterations. The notation l[2, 5] = 3 illustrates this, denoting that the 3rd subsystem will be

operational in the 5th iteration, within the 2nd time segment Ω2, showcasing the adaptive

and dynamic nature of the switching mechanism.

Using equation (2.2), we can reformulate the original system given in equation (2.1) as

(2.3)

ẋk(t) = Al[i,k]xk(t) +Bl[i,k]uk(t) + ξk(t),

yk(t) = Cl[i,k]xk+1(t) + wi,k, t ∈ Ω = [0, T ].

Consider an ILC strategy based on PD-type control

(2.4) uk+1 = Φl[i,k]uk(t) + Γp,l[i,k]ek(t) + Γd,l[i,k]ėk(t),

whereas Γp,l[i,k] represents the proportional learning rate, Γd,l[i,k] represents the derivative

learning rate, which controls the adaptation speed of the proportional and derivative terms in

the learning algorithm, and Φl[i,k](t) ∈ Rm×m is an invertible matrix, denoted as the learning

matrix.

Suppose we have a targeted trajectory yd(t) defined on Ω. Using the equation (2.4), we

can produce a control signal sequence recursively, meaning that control signals are produced

in a chain, with each signal relying on the previous one, creating a sequential and iterative

control process, that enables the system (2.3) to track yd(t) as accurately as possible, either

precisely or within a neighborhood, as the iteration index approaches infinity. Alternatively

stated,

(2.5) lim
k→∞

sup∥ek+1∥p ≤ η.

Choose a sufficiently small positive value η. The tracking error, ek(t), is the error between

the desired output, yd(t), and the actual output, yk(t), expressed mathematically as:

ek(t) = yd(t)− yk(t).

The superior limit of a sequence is denoted by limk→∞ sup{·}, and the Lesbesgue-p norm

of a vector-valued function is represented by ∥·∥p, which can be expressed as following:

Definition 2.2. Consider a vector-valued function g : I ⊆ R+ → Rm, where g(t) =

[g1(t), g2(t), . . . , gm(t)]T for t ∈ Ω. The p-norm of g in the Lebesgue sense is defined as:

∥g(·)∥p =
[∫

I

(
max

1≤j≤m
{|gj(t)|}

)p

dt

] 1
p

, 1 ≤ p ≤ ∞.

Convolution integers are used in System Response, Fourier Analysis and Solve Differential

Equations. Convolution integrals are crucial in signal processing techniques such as filtering,

convolution, and deconvolution. They help in extracting valuable information from signals
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and removing noise. Control theory is a specialized area of engineering that addresses the

design and analysis of control systems. Convolution integrals play a crucial role in control

theory, particularly in the design and analysis of control systems. Convolution integrals are

used in control theory because they provide a powerful tool for analyzing and designing

control systems. Convolution integrals are capable of simulating the dynamics of intricate

systems, including those with non-linear dynamics. Convolution integrals can be used to

design controllers that achieve specific performance criteria, such as stability, tracking, and

disturbance rejection.

Definition 2.3. Let h1(t) and h2(t) be functions in Rm. The convolution integral of h1 and

h2 is defined as the integral transform:

(h1 ∗ h2)(t) =
∫
I
h1(t− s)h2(s)ds,

which combines h1 and h2 through a continuous sum of scaled and shifted versions of their

product.

Generalized Young inequality is used to estimate the norm of convolution integrals and

Fourier analysis to estimate the norm of Fourier. Generalized Young inequality is used to

analyze the stability of control systems, particularly those with nonlinear dynamics, trans-

forms, design controllers that guarantee stability and performance criteria, the robustness of

control systems against uncertainties and disturbances, 4. estimate the norm of convolution

integrals that arise in control systems, construct Lyapunov functions that prove stability and

convergence of control systems etc.

Building upon the foundational definitions (2.2) and (2.3), We are able to obtain the

generalized Young inequality (GYI) for the convolution integral, which can be succinctly

stated as:

(2.6) ∥(h1 ∗ h2)(·)∥r ≤∥h1(·)∥q∥h2(·)∥p,

for all 1 ≤ p, q, r < ∞ satisfying
1

p
+

1

q
=

1

r
+ 1.

Notably, the inequality (2.6) undergoes a transformation, yielding

∥h1 ∗ h2∥p ≤∥h1∥1∥h2∥p,

when p = r.

The basic prerequisites for the system represented by equation (2.3) are as follows:

A1: The precursor state of each iterative evolution, denoted by xk(0), is close to the reference

initial state xd(0), satisfying the inequality ∥xk(0)−xd(0)∥ < δ for all iterations k = 1, 2, . . .,

where δ is a small positive real number.

A2:Given any realizable reference trajectory yd(t) on the domain Ω, there is a correspond-

ingtarget control vector u(t) and a suitable state trajectory x(t) such that the performance

of the controlled system ud(t), can track the reference yd(t).

3. Main result

Lemma 3.1. [10] Consider a sequence {ak} of non-negative real numbers satisfying

ak ≤ σ1ak−1 + σ2ak−2 + · · ·+ σNak−N + ε, k = N + 1, N + 2, · · · .



Stochastic Robustness in Switched Systems: A Novel Control Strategy for Random Time-Iteration Driven ... 7

having an initial value of al(l = 1, 2, · · ·N) together with a specified sequence {εk}. If the

coefficient σj(j = 1, 2, · · · , n) satisfy σj ≥ 0 and

σ =

N∑
j=1

, σj < 1,

then limk→∞ εk ≤ ε implies that

lim
k→∞

sup ak ≤ ε

1− σ
.

Especially, limk→∞ sup ak = 0 if ε = 0.

Proof. First, we can rewrite the inequality as

ak ≤ σ(ak−1 + ak−2 + · · ·+ ak−N ) + ε.

Then, we can use induction to show that

ak ≤ σk max{a0, a1, · · · , aN−1}+
1− σk

1− σ
ε.

Taking the supremum of both sides, we get

sup ak ≤ σk max{a0, a1, · · · , aN−1}+
1− σk

1− σ
ε.

As k → ∞, we have σk → 0 and thus

lim
k→∞

sup ak ≤ ε

1− σ
.

If ε = 0, then limk→∞ sup ak = 0. □

Now, we present main result as follows:

Theorem 3.2. Consider the control system characterized by Equation ((2.3)), which is mod-

ulated by the varying switching rules with time-iteration ((2.2)). Suppose the learning gains

Γp,l[i,k] and Γd,l[i,k] satisfy the following criteria:

max{∥I − Cl[i,k]Bl[i,k]Φ
−1(·)Γd,l[i,k]∥∞

+∥Cl[i,k] exp(Al[i,k](·)){[Al[i,k]Bl[i,k]Φ
−1(·)

−Bl[i,k]
˙Φ−1
l[i,k]] · Γd,l[i,k] +Bl[i,k]Φl[i,k]−1(·)Γp,l[i,k]}∥1} = ρ < 1.(3.1)

Then, the output trajectory yk(t) generated by the PD-type ILC ( (2.4)) converges to the

targeted trajectory yd(t) as the iteration index k tends to ∞, ∀t ∈ Ω, and the tracking error

is ultimately bounded within a certain neighborhood.

Proof. Presume the l[i, k]th subsystem is enabled during the k-th iterative cycle, spanning

the temporal domain [ti−1, ti). The resultant state trajectory of the system (2.3) can be

mathematically characterized as

xk+1 = exp(Al[i,k](t− ti−1))xk+1(ti−1)

+

∫ ti

ti−1

exp(Al[i,k](t− s))Bl[i,k]uk+1(s)ds

+

∫ ti

ti−1

exp(Al[i,k](t− s))Bl[i,k]ξk+1(s)ds, (i = 1, 2, · · · , n),
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Based on the definition of the tracking error, we can deduce that

ek+1(t) = yd(t)− yk+1(t)

= yd(t)− yk(t)− [yk+1 − yk(t)]

= ek(t)− [Cl[i,k] exp(Al[i,k](t− ti−1))xk+1(ti−1)

− Cl[i,k] exp(Al[i,k](t− ti−1))xk(ti)]

−
∫ ti

ti−1

[Cl[i,k+1] exp(Al[i,k+1](t− s))Bl[i,k+1]uk+1(s)

− Cl[i,k] exp(Al[i,k](t− s))Bl[i,k]uk(s)]ds

−
∫ ti

ti−1

exp(Al[i,k](t− s))Bl[i,k](ξk+1(s)− ξk(s))ds+∆wi,k(t).

Associated with each l[i, k] are non-singular matrices Θl[i,k](t) and Φ−1
l[i,k](t), which satisfy:

Cl[i,k+1] exp(Al[i,k+1](t− ti−1)) = Cl[i,k] exp(Al[i,k](t− ti−1))Θl[i,k](t)

and

Cl[i,k+1] exp(Al[i,k+1](t− s))Bl[i,k+1]

= Cl[i,k] exp(Al[i,k](t− s))Bl[i,k]Φ
−1
l[i,k](s).

Therefore, the above expression simplifies to

ek+1(t) = ek(t)− Cl[i,k] exp(Al[i,k](t− ti−1))[Θl[i,k](t)xk+1(ti−1)− xk(ti−1)]

−
∫ ti

ti−1

Cl[i,k+1] exp(Al[i,k](t− s))Bl[i,k][Φ
−1
l[i,k](s)uk+1(s)− uk(s)]ds

−
∫ ti

ti−1

exp(Al[i,k](t− s))Bl[i,k](ξk+1(s)− ξk(s))ds+∆wi,k(t).(3.2)

By substituting the updating law (2.4) into equation (3.2), we obtain

ek+1(t) = ek(t)− Cl[i,k] exp(Al[i,k](t− ti−1))∆xk(ti−1)

−
∫ ti

ti−1

[Cl[i,k] exp(Al[i,k](t− s))Bl[i,k]

{Φ−1
l[i,k](s)[Γp,l[i,k]ek(s) + Γd,l[i,k]ėk(s)]}ds

−
∫ ti

ti−1

exp(Al[i,k](t− s))Bl[i,k](ξk+1(s)− ξk(s))ds+∆wi,k(t),(3.3)
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where ∆xk(ti−1) = Θl[i,k](t)xk+1(ti−1) − xk(ti−1).Applying partial integration to the last

term of equation (3.3) yields∫ t

ti−1

[Cl[i,k] exp(Al[i,k](t− s))Bl[i,k]{Φ−1
l[i,k](s)Γd,l[i,k]ėk(t)}ds

= Cl[i,k] exp(Al[i,k](t− s))Bl[i,k]Φ
−1
l[i,k](s)Γd,l[i,k]ek(s)

∣∣s=ti
s=ti−1

+

∫ t

ti−1

Cl[i,k] exp(Al[i,k](t− s))[Al[i,k]Bl[i,k]Φl[i,k]−1(s)−Bl[i,k]Φ̇
−1
l[i,k](s)]

Γd,l[i,k]ek(s)ds.(3.4)

Substituting (3.4) into (3.3) yields

ek+1(t) = ek(t)− Cl[i,k] exp(Al[i,k](t− ti−1))∆xk(ti−1)

− Cl[i,k] exp(Al[i,k](t− s))Bl[i,k]Φ
−1
l[i,k](s)Γd,l[i,k]ek(s)

∣∣s=ti
s=ti−1

+

∫ t

ti−1

Cl[i,k] exp(Al[i,k](t− s))[Al[i,k]Bl[i,k]Φ
−1
l[i,k](s)

−Bl[i,k]Φ̇
−1
l[i,k](s)]Γd,l[i,k]ek(s)ds

−
∫ ti

ti−1

exp(Al[i,k](t− s))∆ξk(t)ds+∆wi,k(t).(3.5)

Step 1: Let t belong to first subinterval, i.e., t ∈ Ω1

During the k-th iteration, within the subinterval [ti−1, ti), the l[1, k]-th subsystem is trig-

gered. Starting from t0 = 0, the recursive relation for the tracking error at iteration k can

be expressed as

e2(t) = (I − Cl[1,1]Bl[1,1]Φ
−1
l[1,1]Γd,l[1,1])e1(t)

− Cl[1,1]

∫ t

0
exp(Al[1,1](t− s)){[Al[1,1]Bl[1,1]Φ

−1
l[1,1](s)

−Bl[1,1]Φ̇
−1
l[1,1](s)]Γd,l[1,1] +Bl[1,1]Φ

−1
l[1,1](s)Γp,l[1,1]}e1(s)ds

− Cl[1,1] exp(Al[1,1](t))∆x1(0)

− Cl[1,1] exp(Al[1,1](t))Bl[1,1]Φ
−1
l[1,1](0)Γd,l[1,1]e1(0)

−
∫ t

0
exp(Al[1,1](t− s))∆ξ1(s)ds+∆w1,1(t),
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e3(t) = (I − Cl[1,2]Bl[1,2]Φ
−1
l[1,2]Γd,l[1,2])e2(t)

− Cl[1,2]

∫ t

0
exp(Al[1,2](t− s)){[Al[1,2]Bl[1,2]Φ

−1
l[1,2](s)

−Bl[1,2]Φ̇
−1
l[1,2](s)]Γd,l[1,2] +Bl[1,2]Φ

−1
l[1,2(s)Γp,l[1,2]}e2(s)ds

− Cl[1,2] exp(Al[1,2](t))∆x2(0)

− Cl[1,2] exp(Al[1,2](t))Bl[1,2]Φ
−1
l[1,2](0)Γd,l[1,2]e2(0)

−
∫ t

0
exp(Al[1,2](t− s))∆ξ2(s)ds+∆w1,2(t),

...

ek+1(t) = (I − Cl[1,k]Bl[1,k]Φ
−1
l[1,k]Γd,l[1,k])e1(t)

− Cl[1,k]

∫ t

0
exp(Al[1,k](t− s)){[Al[1,k]Bl[1,k]Φ

−1
l[1,k](s)

−Bl[1,k]Φ̇
−1
l[1,k](s)]Γd,l[1,k] +Bl[1,k]Φ

−1
l[1,k](s)Γp,l[1,k]}e1(s)ds

− Cl[1,k] exp(Al[1,k](t))∆xk(0)

− Cl[1,k] exp(Al[1,k](t))Bl[1,k]Φ
−1
l[1,k](0)Γd,l[1,k]ek(0)

−
∫ t

0
exp(Al[1,k](t− s))∆ξk(s)ds+∆w1,k(t).(3.6)

By applying the Lebesgue-p norm to both sides of (3.6) and utilizing the GYI, we derive the

following estimate

∥e2(·)∥p ≤ (∥I − Cl[1,1]Bl[1,1]Φ
−1
l[1,1]Γd,l[1,1]∥∞

+∥Cl[1,1] exp(Al[1,1](·)){[Al[1,1]Bl[1,1]Φ
−1
l[1,1](·)

−Bl[1,1]Φ̇
−1
l[1,1](·)]Γd,l[1,1] +Bl[1,1]Φ

−1
l[1,1](·)Γp,l[1,1]}∥1)∥e1(·)∥p

+∥Cl[1,1] exp(Al[1,1])(·)∥p∥∆x(0)∥p
+∥Cl[1,1] exp(Al[1,1](·))Bl[1,1]Φ

−1
l[1,1](0)Γd,l[1,1]∥p∥e1(0)∥p

+∥Cl[1,1] exp(Al[1,1](·))∥p∥∆ξ1(·)∥p+∥∆w1,1(t)∥p,
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∥e2(·)∥p ≤ (∥I − Cl[1,2]Bl[1,2]Φ
−1
l[1,2]Γd,l[1,2]∥∞

+∥Cl[1,2] exp(Al[1,2](·)){[Al[1,2]Bl[1,2]Φ
−1
l[1,2](·)

−Bl[1,2]Φ̇
−1
l[1,2](·)]Γd,l[1,2] +Bl[1,2]Φ

−1
l[1,2](·)Γp,l[1,2]}∥1)∥e1(·)∥p

+∥Cl[1,2] exp(Al[1,2])(·)∥p∥∆x(0)∥p
+∥Cl[1,2] exp(Al[1,2](·))Bl[1,2]Φ

−1
l[1,2](0)Γd,l[1,2]∥p∥e1(0)∥p

+∥Cl[1,2] exp(Al[1,2](·))∥p∥∆ξ2(·)∥p+∥∆w1,2(t)∥p,
...

∥ek+1(·)∥p ≤ (∥I − Cl[1,k]Bl[1,k]Φ
−1
l[1,k]Γd,l[1,k]∥∞

+∥Cl[1,k] exp(Al[1,k](·)){[Al[1,k]Bl[1,k]Φ
−1
l[1,k](·)

−Bl[1,k]Φ̇
−1
l[1,k](·)]Γd,l[1,k] +Bl[1,k]Φ

−1
l[1,1](·)Γp,l[1,k]}∥1)∥ek(·)∥p

+∥Cl[1,k] exp(Al[1,k])(·)∥p∥∆x(0)∥p
+∥Cl[1,k] exp(Al[1,k](·))Bl[1,k]Φ

−1
l[1,k](0)Γd,l[1,k]∥p∥ek(0)∥p

+∥Cl[1,k] exp(Al[1,k](·))∥p∥∆ξk(·)∥p+∥∆w1,k(t)∥p.(3.7)

Notating

ρl[1,k] =(∥I − Cl[1,k]Bl[1,k]Φ
−1
l[1,k]Γd,l[1,k]∥∞

+∥Cl[1,k] exp(Al[1,k](·)){[Al[1,k]Bl[1,k]Φ
−1
l[1,k](·)

−Bl[1,k]Φ̇
−1
l[1,k](·)]Γd,l[1,k] +Bl[1,k]Φ

−1
l[1,1](·)Γp,l[1,k]}∥1).

Now, we observe that

∥ek+1(·)∥p ≤ ρl[1,k]∥ek(·)∥p
+∥Cl[1,k] exp(Al[1,k])(·)∥p∥∆x(0)∥p
+∥Cl[1,k] exp(Al[1,k](·))Bl[1,k]Φ

−1
l[1,k](0)Γd,l[1,k]∥p∥ek(0)∥p

+∥Cl[1,k] exp(Al[1,k](·))∥p∥∆ξk(·)∥p+∥∆w1,k(t)∥p.

From A1, it follows that the expressions equal

lim
k→∞

∥Cl[1,k] exp(Al[1,k])(·)∥p∥∆x(0)∥p,

and

lim
k→∞

∥Cl[1,k] exp(Al[1,k](·))Bl[1,k]Φ
−1
l[1,k](0)Γd,l[1,k]∥p∥ek(0)∥p.

are finite. To simplify the notation, denote

lim
k→∞

∥Cl[1,k] exp(Al[1,k])(·)∥p∥∆x(0)∥p = ε0,

and

lim
k→∞

∥Cl[1,k] exp(Al[1,k](·))Bl[1,k]Φ
−1
l[1,k](0)Γd,l[1,k]∥p∥ek(0)∥p = ω0.

Also, we observe that

∥Cl[1,k] exp(Al[1,k](·))∥p∥∆ξk(·)∥p+∥∆w1,k∥p
≤∥C1 exp(A1(·))∥p∥bξ + w1,0 = β0
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Hence, by amalgamating the assumption (3.1) and the Lemma, we derive ρl[i,k] ≤ ρ < 1

and

(3.8) lim
k→∞

sup∥ek+1(·)∥p ≤
ε0 + ω0 + β0

1− ρ1
.

Step 2: Now t beloge to second subinterval, i.e., t ∈ Ω2.

Within the subinterval [ti−1, ti), during the k-th iteration, the l[2, k]-th subsystem is trig-

gered and the tracking error (3.5) becomes

e2(t) = (I − Cl[2,1]Bl[2,1]Φ
−1
l[2,1]Γd,l[2,1])e1(t)

− Cl[2,1]

∫ t

0
exp(Al[2,1](t− s)){[Al[2,1]Bl[2,1]Φ

−1
l[2,1](s)

−Bl[2,1]Φ̇
−1
l[2,1](s)]Γd,l[2,1] +Bl[2,1]Φ

−1
l[2,1](s)Γp,l[2,1]}e1(s)ds

− Cl[2,1] exp(Al[2,1](t))∆x1(t1)

− Cl[2,1] exp(Al[2,1](t))Bl[2,1]Φ
−1
l[2,1](t1)Γd,l[2,1]e1(t1)

−
∫ t

0
exp(Al[21](t− s))∆ξ1(s)ds+∆w2,1(t),

e3(t) = (I − Cl[2,2]Bl[2,2]Φ
−1
l[2,2]Γd,l[2,2])e2(t)

− Cl[2,2]

∫ t

0
exp(Al[2,2](t− s)){[Al[2,2]Bl[2,2]Φ

−1
l[2,2](s)

−Bl[2,2]Φ̇
−1
l[2,2](s)]Γd,l[2,2] +Bl[2,2]Φ

−1
l[2,2(s)Γp,l[2,2]}e2(s)ds

− Cl[2,2] exp(Al[2,2](t))∆x2(t1)

− Cl[2,2] exp(Al[2,2](t))Bl[2,2]Φ
−1
l[2,2](t1)Γd,l[2,2]e2(t1)

−
∫ t

0
exp(Al[2,2](t− s))∆ξ2(s)ds+∆w2,2(t),

...

ek+1(t) = (I − Cl[2,k]Bl[2,k]Φ
−1
l[2,k]Γd,l[2,k])e2(t)

− Cl[2,k]

∫ t

0
exp(Al[2,k](t− s)){[Al[2,k]Bl[2,k]Φ

−1
l[2,k](s)

−Bl[2,k]Φ̇
−1
l[2,k](s)]Γd,l[2,k] +Bl[2,k]Φ

−1
l[2,k](s)Γp,l[2,k]}e2(s)ds

− Cl[2,k] exp(Al[2,k](t))∆xk(t1)

− Cl[2,k] exp(Al[2,k](t))Bl[2,k]Φ
−1
l[2,k](t1)Γd,l[2,k]ek(t1)

−
∫ t

0
exp(Al[2,1](t− s))∆ξk(s)ds+∆w2,k(t).(3.9)

Operating with the Lebesgue-p norm on both sides of (3.9) and leveraging the Generalized

Young’s Inequality (GYI), we have
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∥e2(·)∥p ≤ (∥I − Cl[2,1]Bl[2,1]Φ
−1
l[2,1]Γd,l[2,1]∥∞

+∥Cl[2,1] exp(Al[2,1](·)){[Al[2,1]Bl[2,1]Φ
−1
l[2,1](·)

−Bl[2,1]Φ̇
−1
l[2,1](·)]Γd,l[2,1] +Bl[2,1]Φ

−1
l[2,1](·)Γp,l[2,1]}∥1)∥e1(·)∥p

+∥Cl[2,1] exp(Al[2,1])(·)∥p∥∆x(t1)∥p
+∥Cl[2,1] exp(Al[2,1](·))Bl[2,1]Φ

−1
l[2,1](t1)Γd,l[2,1]∥p∥e1(t1)∥p

+∥Cl[1,1] exp(Al[1,1](·))∥p∥∆ξ1(·)∥p+∥∆w1,1(t)∥p,

∥e2(·)∥p ≤ (∥I − Cl[2,2]Bl[2,2]Φ
−1
l[2,2]Γd,l[2,2]∥∞

+∥Cl[2,2] exp(Al[2,2](·)){[Al[2,2]Bl[2,2]Φ
−1
l[2,2](·)

−Bl[2,2]Φ̇
−1
l[2,2](·)]Γd,l[2,2] +Bl[2,2]Φ

−1
l[2,2](·)Γp,l[2,2]}∥1)∥e1(·)∥p

+∥Cl[2,2]exp(Al[2,2])(·)∥p∥∆x(t1)∥p
+∥Cl[2,2] exp(Al[2,2](·))Bl[2,2]Φ

−1
l[2,2](t1)Γd,l[2,2]∥p∥e1(t1)∥p

+∥Cl[1,2] exp(Al[1,2](·))∥p∥∆ξ2(·)∥p+∥∆w2,2(t)∥p,

...

∥ek+1(·)∥p ≤ (∥I − Cl[2,k]Bl[2,k]Φ
−1
l[2,k]Γd,l[2,k]∥∞

+∥Cl[2,k] exp(Al[2,k](·)){[Al[2,k]Bl[2,k]Φ
−1
l[2,k](·)

−Bl[2,k]Φ̇
−1
l[2,k](·)]Γd,l[2,k] +Bl[2,k]Φ

−1
l[2,1](·)Γp,l[2,k]}∥1)∥ek(·)∥p

+∥Cl[2,k] exp(Al[2,k])(·)∥p∥∆x(t1)∥p
+∥Cl[2,k] exp(Al[2,k](·))Bl[2,k]Φ

−1
l[2,k](t1)Γd,l[2,k]∥p∥ek(t1)∥p

+∥Cl[2,k] exp(Al[2,k](·))∥p∥∆ξk(·)∥p+∥∆w2,k(t)∥p.(3.10)

Evidently, the limit limk→∞ sup∥xd(t1)− xk+1(t1)∥p is infinitesimally small at time t1 owing

to the proof on Ω1. This leads to

limk→∞ sup∥∆xk(t1)∥p being sufficiently small. Hence,

lim
k→∞

sup∥Cl[2,k] exp(A2(t− t1))∥p∥∆xk(t1)∥p

is a finite positive quantity. Furthermore, (3.8) implies that

lim
k→∞

sup∥ek(t1)∥p

is finite.

Denoting that

lim
k→∞

∥Cl[2,k] exp(Al[2,k])(t− t1)∥p∥∆x(t1)∥p = ε1,

lim
k→∞

∥Cl[2,k] exp(Al[2,k](·))Bl[2,k]Φ
−1
l[2,k](t1)Γd,l[2,k]∥p∥ek(t1)∥p = ω1,
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Also observe that

∥Cl[2,k] exp(Al[2,k](·))∥p∥∆ξk(·)∥p+∥∆w2,k∥p
≤∥Cl[2,k] exp(Al[2,k](·))∥pbξ + w1,0 = β1

and synthesizing the condition (3.1) and utilizing Lemma 3.1, we derive

lim
k→∞

sup∥ek+1(·)∥p ≤
ε1 + ω1 + β1

1− ρ2
.

The preceding analysis extends to the interval Ω2, and by iteratively applying the same proof

methodology across the successive intervals Ωi for l = 2, 3, ..., n, we deduce

lim
k→∞

sup∥ek+1(·)∥p ≤
εj−1 + ωj−1 + βj−1

1− ρj
,

The derived inequality holds true on the interval Ωj−1 for j = 1, 2, 3, · · · , n, encompassing

the intervals Ω1,Ω2, · · · ,Ωn.

Let

M = max

{
εj−1 + ωj−1 + βj−1

1− ρj

}
, (j = 1, 2, · · · , n).

Consequently, we can assert that

lim sup∥ek+1(·)∥p ≤ M,

holds true for all time t ∈ Ω = [0, T ], where Ω = Ω1 ∪ Ω2 ∪ . . . ∪ Ωn satisfying the criterion

(2.5). Thus, the proof is complete □

Remark 3.3. If wi,k(t) = 0 and ,ξk(t) = 0∀k ∈ N, Consequently, the outcome coincides with

the findings reported in [24].

Remark 3.4. ILC is adept at addressing system uncertainty, a vital consideration in linear

switched systems. By iteratively refining its knowledge, ILC compensates for uncertainties

in system dynamics. Furthermore, ILC can skillfully accommodate random time-iteration

driven switching, a hallmark of the specified system. Its iterative nature enables ILC to adjust

to evolving switching patterns. ILC also excels at rejecting noise and disturbances, ensuring

accurate tracking performance in the presence of noise. Ultimately, ILC showcases robustness

against system uncertainty, noise, and disturbances, ensuring consistent reliability.

This theorem establishes the convergence and ultimate boundedness of the tracking error

for a PD-type ILC system with time-iteration varying switching rules. The result shows

that the output trajectory approaches the desired trajectory with increasing iteration index,

ensuring convergence, and the tracking error remains within a certain bound. This theorem

has significant implications for applications in control systems, robotics, and automation,

where precise tracking and convergence are crucial.

4. Applications:

(1) Simulation of power grid behavior with switching between various generation and

consumption profiles, considering random iteration-based timing and system uncer-

tainties.

(2) Robotic arm or autonomous vehicle control with task switching, accounting for sys-

tem dynamics uncertainties and observation noise.



Stochastic Robustness in Switched Systems: A Novel Control Strategy for Random Time-Iteration Driven ... 15

(3) Packet switching management in communication networks with random iteration-

based timing and system uncertainties.

(4) Modeling of population dynamics or gene regulatory networks with state switching,

subject to random iteration-based timing and system uncertainties.

(5) Macroeconomic dynamics modeling with regime switching, considering random iteration-

based timing and system uncertainties.

(6) Mechanical system control with gear or mode switching, accounting for system dy-

namics uncertainties and observation noise.

(7) Aircraft or spacecraft dynamics modeling and control with flight mode switching,

subject to random iteration-based timing and system uncertainties.

(8) Smart grid energy distribution and consumption management with switching between

generation and consumption patterns, considering random iteration-based timing and

system uncertainties.

(9) Traffic flow modeling and control with traffic light phase switching, subject to random

iteration-based timing and system uncertainties.

5. Conclusion

This study conclusively demonstrated the effectiveness of a conventional PD-type ILC

approach in addressing system uncertainties and bounded observation noise in switched

repetitive systems. By leveraging the Lebesgue-2 norm and GYI, a rigorous analysis estab-

lished a sufficient condition for convergence. The results unequivocally showed that The

proposed PD-type ILC strategy ensures accurate trajectory tracking in switched systems,

even with expanded switching rules in the time-iteration domain, resulting in reliable and

precise control. These findings have significant implications for the control of complex sys-

tems, highlighting the potential of PD-type ILC as a robust and reliable control strategy.

Future research can build upon these results to explore further applications and extensions

of this control approach.
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