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ABSTRACT

The purpose of this paper is to introduce and study hy-
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of a vector space, a hyperframe will act as a general-
ization of a basis in hypervector space. The present
research will only considerl hypervector spaces over R,
viewed as a Krasner hyperfield. In particular, similar-
ity, equivalency, and dual hyperframes are discussed.
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1. Introduction

The literature readily attests that the concept of hyperstructures was introduced by Marty

in 1934 [7]. This theory has been subsequently expanded by various mathematicians, intro-

ducing structures such as hypergroups and hyperfields, which act as hyperstructure analogs

to groups and fields. In classical notions of algebra, the result of a binary operation is a

singular set element. In hyperstrutures, the result of at least one of the binary operations

defined on the set will be a non-empty subset. The curious reader is directed to [3] and [5]

for a detailed treatment of the topic.

There are competing notions as to the most natural way to define the hyperstructure ana-

log to a vector space. Tallini in [16] and Ameri and Dehghan in [1] studied hypervector spaces
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as abelian groups over fields with scalar multiplication as a hyperoperation. More generally,

Roy and Samanta (for example in [11], [12], and [13]) and Dehghan et al. ([4]) considered

hypervector spaces as canonical hypergroups over hyperfields equipped with hyperaddition

and standard singular-valued multiplication while scalar multiplication is multivalued. In

this paper, hypervector spaces will be canonical hypergroups over hyperfields equipped with

hyperaddition and standard multiplication while scalar multiplcation is singularly valued, as

defined in [9], [10], [14], and [15].

Notions of a basis of a hypervector space are well studied (see, for example, [11] [13] [14]

[15]). In a vector space, a frame acts as generalization of a basis. The purpose of this paper

is to provide a definition for and explore results related to hyperframes, which acts as a

generalization of a basis of a hypervector space. Section 2 provides prelimiary definitions

and results from the study of hyperstructures and hypervector spaces. Section 3 introduces

hyperframes. In particular, hyperframes for finite dimensional hypervector spaces over R,
viewed as a hyperfield, are studied. Notions of equivalent hyperframes, similar hyperframes,

and dual hyperframes are introduced and basic results provided. These results are shown

to still hold for uncountable hyperframes, and can be strengthened if the hypervector space

has a weak convergence property. Hopefully these results can provide a framework and

vocabulary base for further research. Section 4 provides possible avenues for such future

research.

2. Preliminaries

Let W be a non-empty set. A mapping ◦ : W × W → P∗(W ) is called a hyperopera-

tion on W , where P∗(W ) = P(W )\{∅}. The pair (W, ◦) is called a hypergroupoid. Every

hyperoperation extends to subsets X,Y of W by

X ◦ Y =
⋃
x∈X
y∈Y

x ◦ y

with X ◦ y = X ◦ {y} for every y ∈W , and y ◦X defined similarly.

Definition 2.1. A hypergroupoid (W, ◦) is called a canonical hypergroup if the following

axioms are satisfied:

(i) (x ◦ y) ◦ z = x ◦ (y ◦ z) for every x, y, z ∈W (associativity),

(ii) x ◦ y = y ◦ x for every x, y ∈W (commutativity),

(iii) there exists 0 ∈W so that x ◦ 0 = {x} for all x ∈W (identity),

(iv) for each x ∈W there exists −x ∈W so that 0 ∈ x ◦ −x (inverse), and

(v) x ∈ y ◦ z implies y ∈ x ◦ −z and z ∈ −y ◦ x (reversibility).

Definition 2.2. A triple (R,+, ·) is a (Krasner) hyperring if:

(i) (R,+) is a canonical hypergroup,

(ii) (R, ·) is a multiplicative semigroup with 0 as a bilaterally absorbing element (x · 0 =

0 · x = 0 for all x ∈ R), and

(iii) for every x, y, z ∈ R we have x · (y + z) = x · y + x · z.

A hyperring R in which (R, ·) is a monoid is called a hyperring with unity. If multiplication

is commutative, then the R is called a commutative hyperring.
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Definition 2.3. A commutative hyperring with unity (F,+, ·), is a (Krasner) hyperfield if

1 ̸= 0 and (F×, ·) is a group.

Example 2.4 (The Krasner Hyperfield). [17] Let K = {0, 1} have the usual multiplication

and hyperaddition by x⊞ 0 = {x} and 1⊞ 1 = K.

Example 2.5. [8] Let S be any multiplicative subgroup of R, and consider the set R/S =

{xS : x ∈ R}. Such a set is a hyperfield with multiplication by xS ·yS = xyS and xS⊞yS =

{(xp+ yq)S : p, q ∈ S}. Of particular interest will be M = R/{−1, 1}.

Example 2.6. Any field F can be seen as a hyperfield by carrying over the multiplication and

associating x+ y with {x+ y} for every x, y ∈ F.

Definition 2.7. [15] Let (F,+, ·) be a hyperfield and (V,⊞) be an additive canonical hy-

pergroup with identity
−→
0 . Then V is said to be a hypervector space over F if there exists a

map ∗ : F × V → V such that, for every a, b ∈ F and u, v ∈ V :

(i) a ∗ (u⊞ v) = a ∗ u⊞ a ∗ v,
(ii) (a+ b) ∗ u = a ∗ u⊞ b ∗ u,
(iii) (a · b) ∗ u = a ∗ (b ∗ u), and
(iv) 1 ∗ u = u.

We will generally denote a ∗ u as au. Note that several useful facts follow directly from

the definition of hypervector space. In particular, −1v = −v, and 0v = a
−→
0 =

−→
0 . If F = R,

as a hyperfield, then we call V a real hypervector space. If V ′ is a subset of V with (V ′,⊞)

a hypervector space over F , then V ′ is said to be a hypersubspace of V.

Example 2.8. Consider (K2,⊞) with scalar multiplication given by a(x, y) = (a · x, a · y) and
vector addition by the following table.

⊞ (0,0) (0,1) (1,0) (1,1)

(0,0) (0,0) (0,1) (1,0) (1,1)

(0,1) (0,1) {(0,0), (0,1)} (1, 1) {(1,0), (1,1)}
(1,0) (1,0) (1,1) {(0,0), (1,0)} {(0,1), (1,1)}
(1,1) (1,1) {(1,0), (1,1)} {(0,1), (1,1)} {(0,0), (0,1), (1,0), (0,0)}

One can readily see that {(0, 0), (0, 1)} is a hypersubspace of K2.

In general, given any hyperfield (F,+, ·), let Fn represent all n-tuples with entries from

F . Then Fn is a hypervector space over F using a process similar to the above. That is, for

a ∈ F and (u1, . . . , un), (v1, . . . , vn) ∈ Fn we define a(u1, . . . , un) = (a · u1, . . . , a · un) and

extend + in the obvious way:

(u1, . . . , un) + (v1, . . . , vn) = {(z1, . . . , zn) : zi ∈ ui + vi, 1 ≤ i ≤ n}.

The setting with F = R/S will be especially fruitful in constructing real hyperfields of

whatever dimension desired.

Definition 2.9. [15] A subset X of a hypervector space V over F is said to span V if

for every v ∈ V there are elements {u1, . . . , un} ⊆ X and scalars a1, . . . , an ∈ F so that

v ∈ a1u1 ⊞ · · ·⊞ anun. In which case we may write V = span(X).
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Theorem 2.10. For any finite subset X of V , span(X) is a (possibly non-proper) hyper-

subspace of V .

Proof. Obvious □

Definition 2.11. Let V be a hypervector space over F . A (possibly uncountably infinite)

subset X of V is linearly independent if, for any collection {u1, . . . , un} ⊆ X and scalars

a1, . . . , an ∈ F ,
−→
0 ∈ a1u1 ⊞ · · ·⊞ anun implies ai = 0 for every 1 ≤ i ≤ n. A set that is not

linearly independent is called linearly dependent.

Definition 2.12. [15] A subset of a hypervector space V over F is a basis of V if it is linearly

independent and spans V . If a basis for V is finite and has n elements, we will say V has

dimension n and write dim(V ) = n. Otherwise we will say dim(V ) = ∞.

From [11] we know that if a basis of V has n elements, then every basis of V has n

elements. Similarly, if V has a basis with infinitely elements, then every basis has infinitely

many elements. Since the empty set is vacuously linearly independent, a typical Zorn’s

lemma argument on the class of all linearly independent subsets of V , ordered by inclusion,

shows that every hypervector space has a basis.

Example 2.13. The set {(1, 0), (0, 1)} is a basis for K2, so dim(K2) = 2.

The following powerful result is from Tahan and Davvaz. The proof is omitted here for

brevity, but the reader is pointed to [11] for the full details.

Theorem 2.14. Let V ′ and V ′′ be two hypersubspaces of a hyperspace (V,⊞). Then V ′ ⊞

V ′′ := {u ∈ v′ ⊞ v′′ : v′ ∈ V ′, v′′ ∈ V ′′} is also a hypersubspace of V and

dim(V ′ ⊞ V ′′) = dim(V ′) + dim(V ′′)− dim(V ′ ∩ V ′′).

Definition 2.15. [15] Let (V,⊞V ), (U,⊞U ) be two hypervector spaces over the same hyper-

field F , and T : V → U . Then T is a linear transformation if it satisifies:

(i) T (au) = aT (u) for all a ∈ F, u ∈ V , and

(ii) T (u⊞V v) = T (u)⊞U T (v) for all u, v ∈ V .

Proposition 2.16. T : V → U is a linear transformation if and only if T (au ⊞V bv) =

aT (u)⊞U bT (v) for all u, v ∈ V and a, b ∈ F .

Proof. Follows directly from the definition. □

We will define the range and kernel of T as usual and denote them as range(T ) and ker(T )

respectively. Notice that
−→
0 is always an element of the kernel, since T (

−→
0 ) = T (0v) =

0T (v) = 0.

Theorem 2.17. A linear map T : V → U is injective if and only if ker(T ) is trivial.

Proof. Suppose T is injective and x ∈ ker(T ). Hence T (x) = 0, and since T (
−→
0 ) = 0 = T (x)

and T is injective, we have x =
−→
0 .

For the other direction, suppose now that ker(T ) is trivial and T (u) = T (v), in which case

T (u) ⊟U T (v) = T (u ⊟V v) = 0. Hence for every z ∈ u ⊟V v we have T (z) = 0. Since the

kernel is trivial, z =
−→
0 , so

−→
0 ∈ u⊟V v. From reversibility, u ∈ −→

0 V ⊞V v = v. □
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The next several definitions begin the necessary path to build up to the definition of an

innerproduct hyperspace and ultimately a real hyperframe.

Definition 2.18. [14] Let (V,⊞) be a real hypervector space. A hypernorm on V is a

function

∥ · ∥ : V → R

such that, for all a ∈ F and u, v ∈ V :

(i) if ∥u∥ = 0, then u =
−→
0 ,

(ii) ∥au∥ = |a| · ∥u∥, and
(iii) sup{∥z∥ : z ∈ u⊞ v} ≤ ∥u∥+ ∥v∥ (triangle inequality).

Example 2.19. Let {e1, . . . en} be a basis for a real hypervector space (V,⊞). For all v ∈ V ,

write v ∈ a1e1 ⊞ · · ·⊞ anen. Then define a hypernorm ∥ · ∥ on V by

∥v∥ = max{|ai| : 1 ≤ i ≤ n}.

Definition 2.20. [13] Let (V,⊞) be a real hypervector space. An innerproduct on V is a

function

⟨·, ·⟩ : V × V → R

such that:

(i) ⟨u, v⟩ = ⟨v, u⟩ for all u, v ∈ V ,

(ii) ⟨u, u⟩ > 0 for all u ∈ V \{−→0 },
(iii) ⟨u, u⟩ = 0 if and only if u =

−→
0 ,

(iv) ⟨u,w⟩+ ⟨v, w⟩ = sup{⟨z, w⟩ : z ∈ u⊞ v}, ∀u, v, w ∈ V and

(v) ⟨au, v⟩ = a⟨u, v⟩ for all a ∈ R, u, v ∈ V .

From the definition, it immediately follows that ⟨u,−→0 ⟩ = ⟨−→0 , u⟩ = 0 for every u in V . A

real hypervector space equipped with an innerproduct is called an innerproduct hyperspace.

Example 2.21. Define ⟨·, ·⟩ on M2 by

⟨(±u1,±u2), (±v1,±v2)⟩ = u1v1 + u2v2.

Throughout this paper, the innerproduct hyperspace (V,⊞, ⟨·, ·⟩) will be stylized as V to

highlight that the hypervector space is equipped with an innerproduct. Consider now a

special class of hypersubspaces generated by innerproducts. For any finite hypersubspace X

of V with basis EX , the subset X⊥ will be defined by X⊥ = span({v : ⟨v, c⟩ = 0 ∀e ∈ EX}).

Lemma 2.22. Let X = {u1, . . . , un} be a finite subset of vectors of V. Then there is no

non-zero vector in span(X) ∩X⊥

Proof. Suppose otherwise. Let v ∈ a1u1 ⊞ · · ·⊞ anun for a1, . . . an ∈ R not all zero. Now,

0 ⪇ ⟨v, v⟩ ≤ sup{⟨v, z⟩ : z ∈ a1u1 ⊞ · · ·⊞ anun} =

n∑
i=1

ai⟨v, ui⟩ = 0

which is a clear contradiction. □

Lemma 2.23. For any finite hypersubspace X of V, the subset X⊥ is a hypersubspace of V

Proof. This follows from the definition of hypersubspace and innerproduct. □

Theorem 2.24. Let X be any hypersubspace of V, then V = X ⊞X⊥.
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Proof. If X = V, then we are done since
−→
0 ∈ X⊥. Suppose then that X ⊊ V. Given any

basis of V, by [13] we can construct a basis E = {e1, . . . , en} so that ⟨ei, ej⟩ = 0 whenever

i ̸= j. Since X ⊊ V, there must be elements of E that are not in X. Rewrite E as

E = {e1, . . . , er} ⊔ {er+1, . . . , en} = E′ ⊔ E′′

where E′ ⊆ X and E′′ ∩X = ∅. Now X = span(E′) and by construction X⊥ = span(E′′).

The result follows. □

Notice that we could restate the above resuls as V = span(X)⊞X⊥.

Corollary 2.25. For any hypersubspace X of V, dim(V) = dim(X) + dim(X⊥).

Proof. Follows from Theoreom 2.11, Theorem 2.14, Lemma 2.22, Lemma 2.23, and Theorem

2.24. □

The following results are useful throughout the study of innerproduct hyperspaces.

Theorem 2.26. [13] In an innerproduct hyperspace V, |⟨u, v⟩| ≤
√
⟨u, u⟩ · ⟨v, v⟩ for all

u, v ∈ V .

Theorem 2.27. Every innerproduct hyperspace is equipped with a norm.

Proof. Let V by an innerproduct hyperspace. Define a norm ∥·∥ by ∥u∥ :=
√
⟨u, u⟩. Criteria

(i) is satisfied by construction. Now, for a ∈ R and u ∈ V,

∥au∥ =
√

⟨au, au⟩ =
√
a⟨u, au⟩ =

√
a⟨au, u⟩ =

√
a2⟨u, u⟩ = |a| · ∥u∥.

Finally, for u, v ∈ V,

sup{∥z∥ : z ∈ u⊞ v} = sup{
√
⟨z, z⟩ : z ∈ u⊞ v}

=
√

sup{⟨z, z⟩ : z ∈ u⊞ v}

=
√
⟨u, u⟩+ ⟨v, v⟩+ 2⟨u, v⟩

≤
√
(∥u∥+ ∥v∥)2

= ∥u∥+ ∥v∥

where the inequality follows from Theorem 2.26. □

Moving forward, the norm on V will always be the one induced by the innerproduct.

Before introducing hyperframes properly, note that the idea of an adjoint transformation

yields many powerful results in the study of traditional frames. An analogous notion will

provide to be equally as useful, but will take careful consideration to build up.

Definition 2.28. [14] Let (V, ∥·∥V ), (U, ∥·∥U ), be hypernormed spaces over the same hyper-

field F and T : V → U a linear transformation. Then T is a bounded linear transformation

if there exists a real M > 0 so that ∥T (u)∥U ≤M∥u∥V for all u ∈ V .

Definition 2.29. [14] Let (V, ∥ · ∥V ), (U, ∥ · ∥U ), be hypernormed spaces over the same

hyperfield F and T : V → U a linear transformation. The norm of T is defined by

∥T∥ = min{M > 0 : ∥T (u)∥U ≤M∥u∥V for all u ∈ V }.
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Lemma 2.30. Suppose L : V → R is a bounded linear transformation. Then these exists a

u′ ∈ V so that for all u ∈ V, L(u) ≤ ⟨u, u′⟩.

Proof. If L ≡ 0 the result trivially holds, so suppose otherwise. Set P = {v ∈ V : ⟨v, k⟩ = 0

∀k ∈ ker(L)}. Since L ̸≡ 0, we know P is not trivial. Pick a non-zero z ∈ P with unit norm.

This is always possible, since z ∈ P ⇒ z
∥z∥ ∈ P . Notice, by linearity of L,

L(L(u)z ⊟ L(z)u) = L(u)L(z)− L(u)L(z) = 0,

so L(u)z ⊟ L(z)u ⊆ ker(L). Now,

L(u) = L(u)⟨z, z⟩

= ⟨L(u)z, z⟩

≤ sup{⟨w, z⟩ : w ∈ L(u)z ⊟ L(z)u⊞ L(z)u}

= sup{⟨k, z⟩ : k ∈ L(u)z ⊟ L(z)u}+ ⟨L(z)u, z⟩

= 0 + ⟨v, L(z)z⟩

Where the last equality uses the fact that z ∈ P . The result now follows from setting

v′ = L(z)z. □

Theorem 2.31. Let T : V → U be a bounded linear transformation. Then there exists a

linear transformation T̂ : U → V so that for all v ∈ V and u ∈ U , ⟨T (v), u⟩U ≤ ⟨v, T̂ (u)⟩V

Proof. For each u ∈ U , define gu : V → R by gu(v) = ⟨T (v), u⟩U . Now,

∥gu(v)∥R = |⟨T (v), u⟩U |

≤ ∥T (v)∥U · ∥u∥V
≤ ∥T∥ · ∥v∥V · ∥u∥U .

Where the first inequality comes from Theorem 2.26, and the second from the definition of

norm of a linear transformation. Hence gu is bound by ∥T∥ · ∥u∥U . By Lemma 2.30, there is

some v′u so that

gu(v) = ⟨T (v), u⟩U ≤ ⟨v, v′u⟩V
Now, define T̂ : U → V by T̂ (u) = v′u. □

If T̂ is so that ⟨T (v), u⟩U = ⟨v, T̂ (u)⟩V for all u and v , we will say that T is adjointable

and write T̂ = T ∗ is an adjoint of T .

Example 2.32. If V is a hypersubspace of U , then T : V → U by T (v) = av ∗ v is adjointable

for any choice of scalars {av ∈ R : v ∈ V}. In this case, T ∗ = T .

3. Hyperframes

The purpose of this section is to define and study the basic results of hyperframes. Much

of the vocabulary and desired results are hyperstructure analogs of those found in [2] and

[6].
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Definition 3.1. A finite subset {φ1, . . . , φm} of an innerproduct hyperspace V is a (real)

hyperframe if there are real numbers 0 < A ≤ B <∞ so that, for all u ∈ V,

A∥u∥2 ≤
m∑
i=1

|⟨u, φi⟩|2 ≤ B∥u∥2.

The constants A and B are known as the lower and upper hyperframe bounds, respectively.

Notice that any 0 < A′ < A is also a lower hyperframe bound (and similarly, any B′ > B

is also an upper hyperframe bound). The largest lower hyperframe bound and smallest

upper hyperframe bound are known as the optimal hyperframe bounds. Moving forward, all

hyperframe bounds will be assumed to be optimal.

Proposition 3.2. Let {φ1, . . . , φm} be a hyperframe for V with upper bound B. Then

∥φj∥2 ≤ B for all 1 ≤ j ≤ m

Proof. If φj =
−→
0 , the result is obvious. Otherwise, apply the definition of hyperframe to

u = φj . □

Theorem 3.3. If a subset Φ = {φ1, . . . , φm} of an innerproduct hyperspace V is a hyperframe

then V = span(Φ).

Proof. Suppose Φ is a hyperframe and by way of contradiction, say span(Φ) ⊊ V. From

Corollary 2.25, dim(Φ⊥) > 0, so we can find some non-zero u so that ⟨u, φi⟩ ≡ 0, however

now
∑m

i=1 |⟨u, φi⟩ |2 = 0, which contradicts the lower hyperframe bound.

□

From this we see that every hyperframe yields a spanning set, but there is no need for

linearly independence. Hence the number of vectors in the hyperframe may be more than

the dimension of V. The redundancy of the hyperframe Φ is |Φ|
dim(V) . The redundancy is

always greater than or equal to 1. Hyperframes, then, are relatively easy to come by.

Given one hyperframe {φ1, . . . , φm} we can construct infinitely many more. For example

{φ1,
−→
0 , φ2, . . . , φm} or {aφ1, . . . , aφm} for some real a. Unlike in traditional frame theory,

Theorem 3.3 is not necessarily biconditional since a spanning set may not have a lower

hyperframe bound without further conditions of V.
For every hyperframe {φ1, . . . , φm} for V, there are three important mappings. They are

defined by

Υ : V → Rm, u 7→ (⟨u, φ1⟩, . . . ⟨u, φm⟩),

Υ• : Rm → P∗(V), (c1, . . . , cm) 7→ c1φ1 ⊞ · · ·⊞ cmφm,

and

S := Υ• ◦Υ.

By construction, S : V → P∗(V) follows the rule

u 7→ ⟨u, φ1⟩φ1 ⊞ · · ·⊞ ⟨u, φm⟩φm.

The maps Υ,Υ•, and S are called the analysis map, synthesis map and hyperframe map,

respectively. Throughout Section 3.2, we will need to make use of the map S−1, which will

be understood for any X ∈ P∗(V) as S−1(X) = {u ∈ V : X ⊆ S(u)}. Additionally, we can

write S−1(v) for S−1({v}). If S is so that S−1(v) is a singleton for every v, and S−1 is linear,

we will say S is good.
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Example 3.4. Let {e1, e2} be any basis for the 2-dimensional innerproduct hyperspace M2.

Then {e1, e2, e1 ⊞ e2} is a hyperframe with redundancy 3/2. Letting {e1, e2} represent the

canonical basis {(±1, 0), (0,±1)}, the analysis and syntehsis maps yield Υ(±u1,±u2) =

(u1, u2, u1 + u2) and Υ•(c1, c2, c3) = {(±c1 ⊞ ±c3,±c2 ⊞ ±c3)} respectively. From this,

we have
S(±u1,±u2) = {(±(2u1 + u2),±(u1 + 2u2)), (±(2u1 + u2),±u1)

, (±u2,±(u1 + 2u2)), (±u2,±u1)}.

In which case S is not good, since, for example, both e2 and (±2
3 ,±

−1
3 ) are in S−1(e1).

Theorem 3.5. Let Φ = {φ1, . . . , φm} be a hyperframe for V with a linear analysis map Υ.

Then Υ is injective.

Proof. Since Φ is a hyperframe, spanΦ = V. Hence ⟨u, φi⟩ ≡ 0 if and only if u =
−→
0 , in

which case the kernel of the analysis map is trivial. The result now follows from Theorem

2.17. □

3.1. Equivalency and Similarity. In this section, different notions of “sameness” for hy-

perframes are discussed.

Definition 3.6. Two hyperframes {φ1, . . . , φm} and {ψ1, . . . , ψm} for V are equivalent if

there exists an invertible adjointable linear transformation T : V → V so that T (φi) = ψi for

every 1 ≤ i ≤ m.

Lemma 3.7. Let Φ = {φ1, . . . , φm} be a hyperframe for V with analysis map Υ and hyper-

frame map S and further suppose Φ is equivalent to Ψ by T . Then the hyperframe Ψ has

analysis map Υ ◦ T ∗ and hyperframe map T ◦ S ◦ T ∗.

Proof. This is simply a matter of definition. Indeed,

Υ(T ∗(u)) = (⟨T ∗(u), φ1⟩, . . . , ⟨T ∗(u), φm⟩)

= (⟨φ1, T
∗(u)⟩, . . . , ⟨φm, T

∗(u)⟩)

= (⟨T (φ1), u⟩, . . . , ⟨T (φm), u⟩)

= (⟨u, T (φ1)⟩, . . . , ⟨u, T (φm)⟩),

and
(T (S(T ∗(u)))) = T (⟨T ∗(u), φ1⟩φ1 ⊞ · · ·⊞ ⟨T ∗(u), φm⟩φm)

= T (⟨u, T (φ1)⟩φ1 ⊞ · · ·⊞ ⟨u, T (φm))⟩

= ⟨u, T (φ1)⟩T (φ1)⊞ · · ·⊞ ⟨u, T (φm)⟩T (φm).

□

Theorem 3.8. Let Φ and Ψ be hyperframes for V with analysis maps Υ1 and Υ2 respectively.

If Φ and Ψ are equivalent then range(Υ1) = range(Υ2).

Proof. Given any linear map T , we have k ∈ ker(T ) if and only if ⟨T (k), u⟩ = 0 for all

u. Since ⟨T (k), u⟩ = ⟨k, T ∗(u)⟩ it follows that k ∈ ker(T ) if and only if ⟨k, v⟩ = 0 for all

v ∈ range(T ∗). Hence range(T ∗) = {v = T ∗(u) : ⟨k, v⟩ = 0 ∀k ∈ ker(T )}. Now suppose Φ

and Ψ are equivalent and let T be the invertible linear transformation between them. Since

the kernel of T is trivial, the range of T ∗ is V. Finally, from Lemma 3.6, Υ2 = Υ1 ◦ T ∗.

Hence Υ2(V) = Υ1(V).
□
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Definition 3.9. A hyperframe {φ1, . . . , φm} of V and a hyperframe {ψ1, . . . , ψm} of U are

similar if there exists an invertible adjointable linear transformation T : V → U so that

T (φi) = ψi for every 1 ≤ i ≤ m.

Example 3.10. Consider the hyperframe from Example 3.4. Pick any 2-dimensional inner-

product hyperspace (U ,⊞′) with basis {e′1, e′2}. Then {e1, e2, e1 ⊞ e2} is obviously similar to

the hyperframe {a1e′1, a2e′2, a1e′1 ⊞′ a2e
′
2} of U for any choice of scalars a1, a2 ∈ R.

Theorem 3.11. Let Φ be a hyperframe for V with analysis (hyperframe) map Υ1 (S1), and

Ψ be a hyperframe for U with analysis (hyperframe) map Υ2 (S2). If Φ and Ψ are similar

by T then,

(i) range(Υ1) = range(Υ2),

(ii) Υ2 = Υ1 ◦ T ∗, and

(iii) S2 = T ◦ S1 ◦ T ∗.

Proof. Similar to the proof of Lemma 3.7 and Theorem 3.8. □

Corollary 3.12. If a hyperframe Φ = {φ1, . . . , φm} for V with analysis map Υ is similar to

the canonical basis E = {e1, . . . , em} for Rm, then:

(i) Φ is a basis for V, and
(ii) range(Υ) = Rm.

Proof. (i) Φ is already known to be a spanning set, so it just remains to show that Φ is

linearly independent. To that end, let T be the linear map between Φ and E and suppose
−→
0 ∈ a1φ1 ⊞ · · · ⊞ amφm. Taking T of both sides yields 0 =

∑m
i=1 aiei, in which case every

ai = 0 and the result follows.

(ii) Since the analysis map for the hyperframe given by E is the identity map, Theorem 3.9(i)

yields range(Υ) = range(Id) = Rm. □

3.2. Dual Hyperframes.

Definition 3.13. Given a hyperframe Φ = {φ1, . . . φm} for V, a hyperframe {ψ1, . . . , ψm}
for V is a dual hyperframe for Φ if

u ∈ [⟨u, ψ1⟩φ1 ⊞ · · ·⊞ ⟨u, ψm⟩φm] ∪ [⟨u, φ1⟩ψ1 ⊞ · · ·⊞ ⟨u, φm⟩ψm]

for every u ∈ V.

In the case that Ψ is a dual hyperframe to Φ, we will simply write Ψ is dual to Φ.

Lemma 3.14. Given a hyperframe Φ = {φ1, . . . φm} for V with good hyperframe map S,

then Φ is dual to the hyperframe S−1(Φ).

Proof. For any u ∈ V, S(u) = ⟨u, φ1⟩φ1 ⊞ · · ·⊞ ⟨u, φm⟩φm. Hence

u ∈ S−1(⟨u, φ1⟩φ1 ⊞ · · ·⊞ ⟨u, φm⟩φm)

= ⟨u, φ1⟩S−1(φ1)⊞ · · ·⊞ ⟨u, φm⟩S−1(φm).

□

If S−1(φi) is not a singleton for any given φi, then it is still that case that for every u ∈ U
there will be a choice of si ∈ S−1(φi) so that u ∈ ⟨u, φ1⟩s1⊞ · · ·⊞ ⟨u, φm⟩sm. However, since

the choice of si depends on u, this does not satisfy the definition of a dual.
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Lemma 3.15. Let Φ be a hyperframe for V with analysis (synthesis) map Υ1 (Υ•
1) and let Ψ

be a hyperframe for V with analysis (synthesis) map Υ2 (Υ•
2) . Then Ψ is a dual hyperframe

of Φ if and only if u ∈ (Υ•
1 ◦Υ2)(u) ∪ (Υ•

2 ◦Υ1)(u) for all u ∈ V.

Proof. As Ψ = {ψ1, . . . , ψm} is dual to Φ = {φ1, . . . , φm}, for every u in V we have

u ∈ ⟨u, ψ1⟩φ1 ⊞ · · ·⊞ ⟨u, ψm⟩φm

= Υ•
1(⟨u, ψ1⟩, . . . , ⟨u, ψm⟩)

= Υ•
1(Υ2(u))

Similarly,

u ∈ ⟨u, φ1⟩ψ1 ⊞ · · ·⊞ ⟨u, φm⟩ψm = (Υ•
2 ◦Υ1)(u).

□

We conclude this subsection with a classification of all hyperframes dual to a given hyper-

frame.

Theorem 3.16. Suppose Φ = {φ1, . . . , φm} is a hyperframe with synthesis map Υ•
1 and good

hyperframe map S. The only hyperframes dual to Φ are of the form N = {ν1, . . . , νm} so

that each νi satisfies νi ∈ S−1(φi) ⊞ ψi where {ψ1, . . . , ψm} is a hyperframe with analysis

map Υ2 so that
−→
0 ∈ Υ•

1(Υ2(u)) for all u ∈ V.

Proof. For convenience, write si = S−1(φi). Suppose N satisfies the given conditions and let

u ∈ V be arbitrary. Then, since {s1, . . . , sm} is dual to Φ,

⟨u, φ1⟩ν1 ⊞ · · ·⊞ ⟨u, φm⟩νm
⊆ ⟨u, φ1⟩(si ⊞ ψ1)⊞ · · ·⊞ ⟨u, φm⟩(sm ⊞ ψm)

= [⟨u, φ1⟩s1 ⊞ · · ·⊞ ⟨u, φm⟩sm]⊞ [⟨u, φ1⟩ψ1 ⊞ · · ·⊞ ⟨u, φm⟩ψm]

∋ u⊞
−→
0 = u.

In which case N is dual to Φ. Suppose now that N = {ν1, . . . , νm} is any dual to Φ. Then,

again with u ∈ V arbitrary and using the fact that {s1, . . . , sm} is dual to Φ,

−→
0 ∈ u⊟ u

⊆ [⟨u, φ1⟩ν1 ⊞ · · ·⊞ ⟨u, φm⟩νm]⊟ [⟨u, φ1⟩s1 ⊞ · · ·⊞ ⟨u, φm⟩sm]

= ⟨u, φ1⟩(ν1 ⊟ s1)⊞ · · ·⊞ ⟨u, φm⟩(νm ⊟ sm).

Hence for each 1 ≤ i ≤ m there is a ψi ∈ νi ⊟ si so that

−→
0 ∈ ⟨u, φ1⟩ψ1 ⊞ · · ·⊞ ⟨u, φm⟩ψ1 = Υ•

1(Υ2(u)).

By reversibility, νi ∈ si ⊞ ψi. □

3.3. Uncountable Hyperframes. The definition of hyperframe can be extended to infinite

(countable or otherwise) subsets {φλ}λ∈Λ, provided the summation is given consideration as

to not become unwieldy. To that end, we provide the following definitions.

Definition 3.17. Given any collection of vectors U = {uλ}λ∈Λ in V, we will say that v ∈ V
has countable innerproducts with respect to U if {uλ ∈ U : ⟨v, uλ⟩ ̸= 0} is at most countable.

The collection of all vectors with countable innerproducts with respect to U will be denoted

C(U).
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Definition 3.18. A collection of vectors Φ = {φλ}λ∈Λ of an innerproduct hyperspace V is

a hyperframe if there are real numbers 0 < A ≤ B <∞ so that, for all u ∈ C(Φ),

A∥u∥2 ≤
∑
λ∈Λ

|⟨u, φλ⟩|2 ≤ B∥u∥2.

In the case that Λ is finite, this agrees with Definition 3.1. Several useful results that

have already been provided can be shown to hold in the case of uncountable hyperframes

by simply swapping out each instance of the quantifer “∀u ∈ V” with “∀u ∈ C(Φ)”. In

particular, Proposition 3.2 and Theorem 3.3 immediately hold. By carefully redefining a

dual as a hyperframe Ψ = {ψλ}λ∈Λ such that either u ∈ ⊞λ∈Λ⟨u, ψλ⟩φλ ∀u ∈ C(Ψ) or u ∈
⊞λ∈Λ⟨u, φλ⟩ψλ ∀u ∈ C(Φ), we get that Lemma 3.12 still holds for uncountable hyperframes.

Fortunately, we need not always make an adjustment to the quantifier on u since it can be

shown that for an orthnormal hyperframe Φ, the set of vectors with countable innerproducts

with respect with Φ is the entire space.

Theorem 3.19. If E = {eλ}λ∈Λ is orthonormal, then C(E) = V.

Proof. Let u ∈ V and n ∈ N be arbitrary but fixed. Suppose {e1, . . . en} is some collection

of vectors from E. Then,

0 ≤ sup{∥z∥2 : z ∈ u

n

⊟
i=1

⟨u, ei⟩ei}

= sup{⟨z, z⟩ : z ∈ u
n

⊟
i=1

⟨u, ei⟩ei}

= ⟨u, u⟩ −
n∑

i=1

|⟨u, ei⟩|2.

Where the last equality follows from E being orthonormal. We have then that ∥u∥2 ≥∑n
i=1 |⟨u, ei⟩|2. Now, set

Gu = {eλ ∈ E : ⟨u, eλ⟩ ̸= 0},

and

GN
u = {eλ ∈ E : |⟨u, eλ⟩| >

1

N
}.

It is hopefully clear that Gu =
⋃∞

N=1G
N
u . For some fixed N , pick m elements and call them

{e1, . . . , em}. Then,

∥u∥2 ≥
m∑
i=1

|⟨u, ei⟩|2 ≥
m

N2
.

Hence m is bounded by ∥u∥2N2, so m, and subsequently the size of GN
u is finite. Since Gu

is a countable union of finite sets, Gu is countable for every u. By definition then, every u is

an element of C(E) and the result follows. □

Corollary 3.20. Let {φλ}λ∈Λ be an orthonormal hyperframe for V with upper bound B.

Then ∥φi∥2 ≤ B for all i ∈ Λ

Proof. Follows from Proposition 3.2 and Theorem 3.19. □

3.4. Weak Convergence Spaces. The goal of this section is to provide additional structure

to V so that Theorem 3.3 becomes biconditional. This can be satisified with only a notion

of weak convergence.
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Definition 3.21. A sequence of vectors {uk}k∈N in V weakly converge to u ∈ V if for every

v ∈ V the real sequence {⟨uk, v⟩}k∈N converges to ⟨u, v⟩.

Definition 3.22. A hypervector space with a norm is said to have the weak convergence

property if every bounded sequence has a weakly convergent subsequence.

For notation, if {uk} converges weakly to u, we will write uk ⇀ u. If V has the weak

convergence property, we will call it a WCP space.

Example 3.23. The reader is invited to show that M2 is a WCP space.

Theorem 3.24. A subset Φ = {φ1, . . . , φm} of a WCP space V is a hyperframe if and only

if V = span(Φ).

Proof. That a hyperframe is a spanning set is already shown by Theorem 3.3. Suppose now

that V = span(Φ) and by way of contradiction suppose there is no lower hyperframe bound.

Then we can find some sequence of vectors {uk}, scaled so that ∥uk∥ ≡ 1, such that

m∑
i=1

|⟨uk, φi⟩|2 ≤
1

k
.

Since V is a WCP space, there is some subsequence {ukl} of {uk} so that ukl ⇀ u for some

u ∈ V. Now,
m∑
i=1

|⟨u, φi⟩|2 = lim
l→∞

m∑
i=1

|⟨ukl , φi⟩|2 ≤ lim
l→∞

1

kl
= 0.

This is only possible if ⟨u, φi⟩ ≡ 0, so u ∈ Φ⊥, which contradicts span(Φ) = V. For the

upper bound, from Theorem 2.25, for any u ∈ V,
m∑
i=1

|⟨u, φi⟩|2 ≤
m∑
i=1

∥u∥2∥φi∥2 ≤ B
m∑
i=1

∥u∥2

where B =
∑m

i=1 ∥φi∥2. □

Notice that this result depends on Φ being finite. In the case of infinite dimensional WCP

spaces, it is still the case that a spanning set may not be a hyperframe. We conclude with a

result that is contigent on the hypervector space being WCP.

Corollary 3.25. Let Φ be a finite family of vectors in a WCP space V and any bijective

linear transformation T : V → U , where U is also WCP. Then Φ is a hyperframe for V if

and only if T (Φ) is a hyperframe for U .

Proof. Since Φ is a spanning set, for every v ∈ V there are vectors {φ1, . . . , φm} so that

v ∈ a1φ1 ⊞ · · · ⊞ amφm. Now T (v) ∈ a1T (φ1) ⊞ · · · ⊞ amT (φm). Since T is surjective,

the result follows. For the reverse direction, consider the surjective linear transformation

T−1. □

4. Conclusions

One possible avenue to strenghten the present results is to find sufficient conditions for

linear transformations over innerproduct hyperspaces to be adjointable. Similarly, with a

topological lense, it should be possible to find sufficient conditions for a hypervector space

to have the weak convergence property. Otherwise, it is possible to begin to generalize
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the present results by considering a broader class of hyperfields over which we have our

hypervector spaces.

Definition 4.1. [14] Given a hyperfield (F,⊕,⊙), a hyperabsolute value is a function

\ · \ : F → R≥0

such that, for all a, b ∈ F

(i) \a\ = 0R if and only if a = 0F ,

(ii) \a⊙ b\ = \a\ · \b\, and
(iii) sup{\z\ : z ∈ a⊕ b} ≤ \a\+ \b\ (triangle inequality).

Future research should consider hypervector spaces over C or the more general case of

hyperframes of hypervector spaces over any hyperfield equipped with a hyperabsolute value,

F . To do so will require the definition of innerproduct to be modified, or entirely replaced.

The present research, only considering real hypervector spaces, considers innerproducts with

symmetry. However, traditionally, an inner product on a vector space expresses conju-

gate symmetry. Hence the underlying hyperfield will need to be equipped with an invo-

lution † : F → F together with some useful sesquilinear form, f : V × V → F so that

f(u, v) = f(v, u)† for all u, v ∈ V . The involution would need to be suitable enough to re-

cover the norm by ∥u∥ :=
√

\f(u, u)\. It may prove much more critical to address linearity

in the first component without relying on the least upper bound property of R. It is not

clear if these two issues can simultaneously be resolved. If the underlying hyperfield is one

in which the norm can be recovered(such as C), it may not provide have lub property, and

vice versa.
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