

Journal of Hyperstructures, 14 (2) (2025), 306-314

Journal Homepage: https://jhs.uma.ac.ir/

Research Paper

ON GENERALIZED BERWALD R-QUADRATIC METRICS

M.M. MOHAMMED ALZUHAIRY¹, B. REZAEI^{1,*} AND A. TAYEBI²,

ARTICLE INFO

Article history:

Received: 23 December 2024 Accepted: 21 January 2025

Communicated by Hoger Ghahramani

Keywords:

Generalized Berwald space R-quadratic space

Berwald space

MSC:

53B40, 53C60

ABSTRACT

Every Riemannian metric is R-quadratic while many Finsler metrics have not this property. A Finsler metric is called R-quadratic if its Riemannian curvature is quadratic in all direction at any points of the underlying manifold. A Finsler metric on a manifold is called a generalized Berwald metric if there exists a covariant derivative such that the parallel translations induced by it preserve the Finsler function. In this paper, we study the class of generalized Berwald (α, β) -manifolds with R-quadratic properties and prove a rigidity result. We show that such manifolds satisfy $\mathbf{S}=0$ if and only if $\mathbf{B}=0$.

1. Introduction

For a Finsler metric F an a manifold M, the second variation of geodesics gives rise to a family of linear maps $\mathbf{R}_y: T_xM \to T_xM$, at any point $y \in T_xM$ which is called the Riemann curvature in the direction y. One can see that it is not only a function of position but also depends on direction, while in Riemann geometry it only depends on position. If F is Riemannian, i.e., $F(y) = \sqrt{\mathbf{g}(y,y)}$ for some Riemannian metric \mathbf{g} , then $\mathbf{R}_y := \mathbf{R}(\cdot,y)y$, where $\mathbf{R}(u,v)z$ denotes the Riemannian curvature tensor of \mathbf{g} . In this case, \mathbf{R}_y is quadratic in $y \in T_xM$. There are many Finsler metrics whose Riemann curvature in every direction is quadratic. A Finsler space is said to be R-quadratic if its Riemann curvature \mathbf{R}_y is

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License. Copyright © 2025 The Author(s). Published by University of Mohaghegh Ardabili.

¹Department of Mathematics, Faculty of Science, Urmia University, Urmia. Iran, mhmdmtshr08@gmail.com

¹Department of Mathematics, Faculty of Science, Urmia University, Urmia. Iran, b.rezaei@urmia.ac.ir

²Department of Mathematics, Faculty of Science, University of Qom, Qom, Iran, akbar.tayebi@gmail.com

^{*}Address correspondence to B. Rezaei; Department of Mathematics, Faculty of Science, Urmia University, Urmia. Iran, Iran, E-mail: b.rezaei@urmia.ac.ir.

quadratic in $y \in T_xM$. Indeed a Finsler metric is R-quadratic if and only if the h-curvature of Berwald connection depends on position only in the sense of Bácsó-Matsumoto [1]. The notion of R-quadratic Finsler metrics was introduced by Shen, which can be considered as a generalization of R-flat metrics.

Every Berwald metric is a trivially R-quadratic. A Finsler metric F is called a Berwald metric if $G^i = \frac{1}{2}\Gamma^i_{jk}(x)y^jy^k$ are quadratic in $y \in T_xM$ for any $x \in M$. Also, Berwald metrics belongs to the class of generalized Berwald metrics. A Finsler metric F on a manifold M is called a generalized Berwald metric if there exists a covariant derivative ∇ on M such that the parallel translations induced by ∇ preserve the Finsler function F [11][16]. In this case, (M, F) is called a generalized Berwald manifold. If ∇ is also torsion-free, then F reduces to a Berwald metric. Thus, we get the following

 $\{Berwald metrics\} \subseteq \{R-quadratic metrics\} \cap \{generalized Berwald metrics\}.$

There is another quantity that is close to the Berwald metrics, namely, S-curvature. The S-curvature is constructed by Shen for given comparison theorems on Finsler manifolds [9]. A natural problem is to study and characterize Finsler metrics of vanishing S-curvature. It is known that some of Randers metrics are of vanishing S-curvature [7][14]. This is one of our motivations to consider Finsler metrics with vanishing S-curvature. Shen proved the following:

Theorem A. ([9] Shen Theorem) Every Berwald metric satisfies S = 0.

Very soon, Tayebi-Rafie Rad generalized Shen theorem and proved that every isotropic Berwald metric has isotropic S-curvature [14]. However, in [3], Bao-Shen found a class of non-Berwaldian Randers metrics with vanishing S-curvature. Thus the converse of Shen's theorem is not true, generally. A natural question arises:

Question. Under which conditions the converse of Shen's Theorem holds?

To find some solutions for the above question, one can consider the class of (α, β) -metrics. An (α, β) -metric is a Finsler metric on M defined by $F := \alpha \phi(s)$, where $s = \beta/\alpha$, $\phi = \phi(s)$ is a C^{∞} function on the $(-b_0, b_0)$ with certain regularity, $\alpha = \sqrt{a_{ij}(x)y^iy^j}$ is a positive-definite Riemannian metric and $\beta = b_i(x)y^i$ is a 1-form on M. The simplest (α, β) -metrics are the Randers metrics $F = \alpha + \beta$ which were discovered by G. Randers when he studied 4-dimensional general relativity. In [12], Tayebi-Eslami characterized the class of two-dimensional generalized Berwald (α, β) -metrics with vanishing S-curvature and prove the following.

Theorem B. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a two-dimensional generalized Berwald (α, β) -metric on a connected and orientable manifold M. Suppose that F has vanishing S-curvature and $\phi'(0) \neq 0$. Then one of the following holds:

- : (i) If F is a regular metric, then it reduces to a locally Minkowskian metric;
- : (ii) If F is an almost regular metric that is not locally Minkowskian, then ϕ is given by

(1.1)
$$\phi = c \exp \left[\int_0^s \frac{kt + q\sqrt{b^2 - t^2}}{1 + kt^2 + qt\sqrt{b^2 - t^2}} dt \right],$$

where c > 0, q > 0, and k are real constants, and β satisfies

$$(1.2) r_{ij} = 0, s_i = 0.$$

In this case, F is neither a Berwald nor Landsberg nor a Douglas metric.

Here, we consider generalized Berwald (α, β) -metric which are R-quadratic, and prove the following.

Theorem 1.1. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a regular generalized Berwald (α, β) -metric on a manifold M such that $\phi'(0) \neq 0$. Suppose that F is a R-quadratic. Then, F has vanishing S-curvature $\mathbf{S} = 0$ if and only if it is a Berwald metric $\mathbf{B} = 0$.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a Finsler tensor field are denoted by " | " and ", " respectively [13].

2. Preliminary

A Finsler metric on a manifold M is a nonnegative function F on TM having the following properties

- (a) F is C^{∞} on $TM_0 := TM \setminus \{0\};$
- (b) $F(\lambda y) = \lambda F(y), \forall \lambda > 0, y \in TM$;
- (c) for each $y \in T_xM$, the following quadratic form \mathbf{g}_y on T_xM is positive definite,

$$\mathbf{g}_{y}(u,v) := \frac{1}{2} \Big[F^{2}(y + su + tv) \Big] \Big|_{s,t=0}, \quad u,v \in T_{x}M.$$

Given a Finsler manifold (M, F), then a global vector field **G** is induced by F on TM_0 , which in a standard coordinate (x^i, y^i) for TM_0 is given by

$$\mathbf{G} = y^{i} \frac{\partial}{\partial x^{i}} - 2G^{i}(x, y) \frac{\partial}{\partial y^{i}},$$

where $G^{i}(x,y)$ are local functions on TM_{0} satisfying

$$G^{i}(x,\lambda y) = \lambda^{2}G^{i}(x,y) \quad \lambda > 0.$$

G is called the associated spray to (M, F). The projection of an integral curve of G is called a geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates $(c^i(t))$ satisfy $\ddot{c}^i + 2G^i(\dot{c}) = 0$. A Finsler metric F is called a Berwald metric if G^i are quadratic in $y \in T_xM$ for any $x \in M$ or equivalently the following Berwald curvature is vanishing.

$$B^{i}_{jkl} := \frac{\partial^{3} G^{i}}{\partial y^{j} \partial y^{k} \partial y^{l}}.$$

For a non-zero vector $y \in T_x M_0$, the Riemann curvature $R_y : T_x M \to T_x M$ is defined by $R_y(u) := R^i_{\ k}(y) u^k \frac{\partial}{\partial x^i}$, where

$$R^{i}_{k}(y) = 2\frac{\partial G^{i}}{\partial x^{k}} - \frac{\partial^{2} G^{i}}{\partial x^{j} \partial y^{k}} y^{j} + 2G^{j} \frac{\partial^{2} G^{i}}{\partial y^{j} \partial y^{k}} - \frac{\partial G^{i}}{\partial y^{j}} \frac{\partial G^{j}}{\partial y^{k}}.$$

The family $R := \{R_y\}_{y \in TM_0}$ is called the Riemann curvature.

There are many Finsler metrics whose Riemann curvature in every direction is quadratic. A Finsler metric F is said to be R-quadratic if R_y is quadratic in $y \in T_xM$ at each point $x \in M$. Put

$$R_{j\ kl}^{\ i}(y) := \frac{1}{3} \frac{\partial}{\partial y^{j}} \Big[\frac{\partial R_{\ k}^{i}}{\partial y^{l}} - \frac{\partial R_{\ l}^{i}}{\partial y^{k}} \Big].$$

 $R_j^{\ i}{}_{kl}$ are the coefficients of the h-curvature of the Berwald connection, which are also denoted by $H_i^{\ i}{}_{kl}$ in literatures. We have

$$R^i_{\ k}(y) = y^j R^i_{i\ kl}(y) y^l.$$

Thus $R_k^i(y)$ is quadratic in $y \in T_xM$ if and only if $R_{ikl}^i(y)$ are functions of x only.

For a Finsler metric F on an n-dimensional manifold M, the Busemann-Hausdorff volume form $dV_F = \sigma_F(x) dx^1 \cdots dx^n$ is defined by

$$\sigma_F(x) := \frac{\operatorname{Vol}(B^n(1))}{\operatorname{Vol}\{(y^i) \in \mathbb{R}^n \mid F(y^i \frac{\partial}{\partial x^i}|_x) < 1\}}.$$

In general, the local scalar function $\sigma_F(x)$ can not be expressed in terms of elementary functions, even F is locally expressed by elementary functions.

Let $G^{i}(x, y)$ denote the geodesic coefficients of F in the same local coordinate system. The S-curvature is defined by

$$\mathbf{S}(\mathbf{y}) := \frac{\partial G^i}{\partial y^i}(x, y) - y^i \frac{\partial}{\partial x^i} \Big[\ln \sigma_F(x) \Big].$$

where $\mathbf{y} = y^i \frac{\partial}{\partial x^i}|_x \in T_x M$. It is proved that $\mathbf{S} = 0$ if F is a Berwald metric [7]. There are many non-Berwald metrics satisfying $\mathbf{S} = 0$ [3].

Given a Riemannian metric α , a 1-form β on a manifold M, and a C^{∞} function $\phi = \phi(s)$ on $[-b_o, b_o]$, where $b_o := \sup_{x \in M} \|\beta\|_x$, one can define a function on TM by

$$F := \alpha \phi(s), \qquad s = \frac{\beta}{\alpha}.$$

If ϕ and b_o satisfy (2.1) and (2.2) below, then F is a Finsler metric on M. Finsler metrics in this form are called (α, β) -metrics. Randers metrics are special (α, β) -metrics.

Now we consider (α, β) -metrics. Let $\alpha = \sqrt{a_{ij}y^iy^j}$ be a Riemannian metric and $\beta = b_iy^i$ a 1-form on a manifod M. Let

$$\|\beta\|_x := \sqrt{a^{ij}(x)b_i(x)b_j(x)}$$

For a C^{∞} function $\phi = \phi(s)$ on $[-b_o, b_o]$, where $b_o = \sup_{x \in M} \|\beta\|_x$, define

$$F := \alpha \phi(s), \quad s = \frac{\beta}{\alpha}.$$

By a direct computation, we obtain

$$g_{ij} = \rho a_{ij} + \rho_0 b_i b_j - \rho_1 (b_i \alpha_j + b_j \alpha_i) + s \rho_1 \alpha_i \alpha_j,$$

where $\alpha_i := a_{ij} y^j / \alpha$, and

$$\rho := \phi(\phi - s\phi'),$$

$$\rho_0 := \phi\phi'' + \phi'\phi',$$

$$\rho_1 := s(\phi\phi'' + \phi'\phi') - \phi\phi'.$$

By further computation, one obtains

$$\det(g_{ij}) = \phi^{n+1} (\phi - s\phi')^{n-2} \left[(\phi - s\phi') + (\|\beta\|_x^2 - s^2)\phi'' \right] \det(a_{ij}).$$

Using the continuity, one can easily show that

Lemma 2.1. Let $b_o > 0$. $F = \alpha \phi(\beta/\alpha)$ is a Finsler metric on M for any pair $\{\alpha, \beta\}$ with $\sup_{x \in M} \|\beta\|_x \leq b_o$ if and only if $\phi = \phi(s)$ satisfies the following conditions:

$$\phi(s) > 0, \qquad (|s| \le b_o)$$

(2.2)
$$\phi(s) - s\phi'(s) + (b^2 - s^2)\phi''(s) > 0, \qquad (|s| \le b \le b_o).$$

Let

$$r_{ij} := \frac{1}{2} \Big(b_{i|j} + b_{j|i} \Big), \quad s_{ij} := \frac{1}{2} \Big(b_{i|j} - b_{j|i} \Big).$$

 $r_j := b^i r_{ij}, \quad s_j := b^i s_{ij}.$

Let $r_{i0} := r_{ij}y^j$, $s_{i0} := s_{ij}y^j$, $r_0 := r_jy^j$ and $s_0 := s_jy^j$. Suppose that $G^i = G^i(x,y)$ and $\bar{G}^i = \bar{G}^i(x,y)$ denote the coefficients of F and α respectively in the same coordinate system. By definition, we obtain the following identity

$$G^i = \bar{G}^i + Py^i + Q^i,$$

where

$$P = \alpha^{-1}\Theta \Big[r_{00} - 2Q\alpha s_0 \Big],$$

$$Q^i = \alpha Q s^i_{\ 0} + \Psi \Big[r_{00} - 2Q\alpha s_0 \Big] b^i,$$

$$Q = \frac{\phi'}{\phi - s\phi'},$$

$$\Theta = \frac{\phi \phi' - s(\phi \phi'' + \phi' \phi')}{2\phi \Big((\phi - s\phi') + (b^2 - s^2)\phi'' \Big)},$$

$$\Psi = \frac{1}{2} \frac{\phi''}{(\phi - s\phi') + (b^2 - s^2)\phi''}.$$

Clearly, if β is parallel with respect to α ($r_{ij} = 0$ and $s_{ij} = 0$), then P = 0 and $Q^i = 0$. In this case, $G^i = \bar{G}^i$ are quadratic in y, and F is a Berwald metric.

3. Proof of Theorem 1.1

In this section, we will prove a generalized version of Theorem 1.1. Indeed, we study

Theorem 3.1. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a regular generalized Berwald (α, β) -metric on an n-dimensional manifold M such that $\phi'(0) \neq 0$. Then F is a R-quadratic metric with isotropic S-curvature $\mathbf{S} = (n+1)cF$ if and only if it is a Berwald metric, where c = c(x) is a scalar function on M.

To prove Theorem 3.1, we need the following key lemma.

Lemma 3.2. ([15]) An (α, β) -metric satisfying $\phi'(0) \neq 0$ is a generalized Berwald manifold if and only if β has constant length with respect to α .

A Finsler metric F on an n-dimensional manifold M is called of isotropic S-curvature, if $\mathbf{S}=(n+1)cF$, where c=c(x) is a scalar function on M. In [5], Cheng-Shen characterized (α,β) -metrics with isotropic S-curvature on a manifold M of dimension $n\geq 3$. Soon, they found that their result holds for the class of (α,β) -metrics with constant length one-forms, only. In [12], we give a new characterization of the class of generalized Berwald metrics with vanishing S-curvature and prove the following.

Lemma 3.3. ([12]) Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a generalized Berwald (α, β) -metric on an n-dimensional manifold M. Suppose that $\phi'(0) \neq 0$. Then $\mathbf{S} = 0$ if and only if β is a Killing form with constant length, namely

$$(3.1) r_{ij} = 0, s_j = 0.$$

First, we remark the following well-known Bianchi identities.

Lemma 3.4. ([8]) For the Berwald connection, the following Bianchi identities hold:

$$R^{i}_{ikl|m} + R^{i}_{ilm|k} + R^{i}_{imk|l} = B^{i}_{jku}R^{u}_{lm} + B^{i}_{jlu}R^{u}_{km} + B^{i}_{klu}R^{u}_{jm}$$

(3.3)
$$B^{i}_{jml|k} - B^{i}_{jkm|l} = R^{i}_{jkl,m}$$

(3.4)
$$B^{i}_{jkl,m} = B^{i}_{jkm,l}.$$

Now, we study the Berwald curvature of generalized Berwald (α, β) -metrics and prove the following.

Lemma 3.5. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a generalized Berwald (α, β) -metric on manifold M such that $\phi'(0) \neq 0$. Suppose that F has vanishing S-curvature. Then, the following hold

$$(3.5) b_m B^m_{jkl} = 0,$$

where $b_m := b_m(x)$ are the components of 1-form $\beta = b_i(x)y^i$.

Proof. The spray coefficients of an (α, β) -metric $F = \alpha \phi(s)$, $s = \beta/\alpha$, are given by

(3.6)
$$G^{i} = \bar{G}^{i} + \alpha Q s^{i}_{0} + \frac{1}{\alpha} \left(r_{00} - 2Q\alpha s_{0} \right) \left(\Theta y^{i} + \alpha \Psi b^{i} \right),$$

where $s_j^i := a^{ih} s_{hj}, \ s_0^i := s_i y^i, \ r_{00} = r_{ij} y^i y^j$ and

$$\Theta = \frac{Q - sQ'}{2\Delta}, \quad \Psi = \frac{Q'}{2\Delta}.$$

According to the assumption, F has vanishing S curvature. Putting (3.1) in (3.6) gives us

$$G^{i} = \bar{G}^{i} + \alpha Q s^{i}_{0}.$$

Multiplying (3.7) with b_i yields

$$(3.8) b_i G^i = b_i \bar{G}^i.$$

The following hold

(3.9)
$$\frac{\partial^3 \bar{G}^i}{\partial y^j \partial y^k \partial y^l} = 0, \quad \frac{\partial b_i}{\partial y^j} = 0.$$

Then, taking three vertical derivation of (3.8) and using (3.9) gives us (3.5).

In [4], Cheng consider regular (α, β) -metrics with isotropic S-curvature and prove the following.

Theorem C. ([4]) A regular (α, β) -metric $F := \alpha \phi(\beta/\alpha)$, of non-Randers type on an n-dimensional manifold M is of isotropic S-curvature, $\mathbf{S} = (n+1)\sigma F$, if and only if β satisfies $r_{ij} = 0$ and $s_j = 0$. In this case, $\mathbf{S} = 0$, regardless of the choice of a particular $\phi = \phi(s)$.

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: By assumption, F is a regular (α, β) -metric. Then, by Theorem 3, the relations (3.1) hold. Taking a horizontal derivation of (3.5) implies that

(3.10)
$$b_m B^m_{jkl|s} = -b_{m|s} B^m_{jkl}.$$

By assumption F is R-quadratic metric. Thus

(3.11)
$$R^{i}_{jkl,m} = 0.$$

Then, by (3.3) and (3.11) we get

(3.12)
$$B^{i}_{jkl|m} - B^{i}_{jkm|l} = 0.$$

Multiplying (3.12) with b_i yields

$$(3.13) b_i B^i{}_{jkl|m} = b_i B^i{}_{jkm|l}.$$

Comparing (3.10) and (3.13) gives us

(3.14)
$$b_{i|m}B^{i}_{jkl} = b_{i|l}B^{i}_{jkm}.$$

The following holds

$$(3.15) b_{i|m} = r_{im} + s_{im},$$

which by considering $r_{ij} = 0$, it reduces to following

$$(3.16) b_{i|m} = s_{im}.$$

Multiplying (3.14) with y^l and considering (3.16) we obtain

$$(3.17) s_{i0}B^{i}_{jkm} = 0.$$

Taking three times vertical derivation of (3.7) gives us the following

$$B^{i}_{jkl} = \left[\alpha Q s^{i}_{0}\right]_{n^{j}n^{k}n^{l}}.$$

By (3.17) and (3.18) we have

(3.19)
$$s_{i0} \left[\alpha Q s^{i}_{0} \right]_{y^{j} y^{k} y^{l}} = 0.$$

(3.19) is equal to

$$(3.20) \left[\alpha \ Q \right]_{y^j y^k y^l} s_{i0} s^i_{\ 0} + \left[\alpha \ Q \right]_{y^j y^k} s_{i0} s^i_{\ l} + \left[\alpha \ Q \right]_{y^j y^l} s_{i0} s^i_{\ k} + \left[\alpha \ Q \right]_{y^k y^l} s_{i0} s^i_{\ j} = 0.$$

According to (3.1), $s^i = s_i = 0$. Then, multiplying (3.20) with $b^j b^k b^l$ yields

(3.21)
$$\left[b^{j} b^{k} b^{l} [\alpha Q]_{y^{j} y^{k} y^{l}} \right] s_{i0} s^{i}_{0} = 0.$$

By (3.21), we get

$$(3.22) s_{i0}s^i_{\ 0} = 0.$$

Since α is a positive-definite Riemannian metric, then by (3.22) it follows that

$$(3.23) s^i{}_j = 0.$$

(3.23) means that β is a closed 1-form, and by considering (3.1), we conclude that β is a parallel 1-form. In this case, F reduces to a Berwald metric.

Finally, we conclude the following.

Corollary 3.6. Let $F = \alpha \phi(s)$, $s = \beta/\alpha$, be a regular generalized Berwald (α, β) -metric on a 2-dimensional manifold M such that $\phi'(0) \neq 0$. Suppose that F is a R-quadratic. Then, F has vanishing S-curvature $\mathbf{S} = 0$ if and only if it is a locally Minkowskian metric.

Proof. The well-known Szabó rigidity theorem says that every 2-dimensional Berwald surface is either locally Minkowskian or Riemannian. On the other hand, every Riemannian metric satisfies $\phi(s) = constant$, and then $\phi'(0) = 0$. By the assumption and using Theorem 1.1, it follows that F must be a locally Minkowskian metric.

References

- S. Bácsó and M. Matsumoto, Finsler spaces with h-curvature tensor H dependent on position alone, Publ. Math. Debrecen, 55(1999), 199-210.
- [2] D. Bao, S.S. Chern and Z. Shen, An Introduction to Riemann-Finsler Geometry, Springer, 2000.
- [3] D. Bao and Z. Shen, Finsler metrics of constant positive curvature on the Lie group S³, J. London. Math. Soc. **66**(2002), 453-467.
- [4] X. Cheng, The (α, β) -metrics of scalar flag curvature, Differ. Geom. Appl, 35(2014), 361-369.
- [5] X. Cheng and Z. Shen, A class of Finsler metrics with isotropic S-curvature, Israel J. Math. 169(2009), 317-340
- [6] X. Cheng, Z. Shen and Y. Zhou, On a class of locally dually flat Finsler metrics, Int. J. Math. 21(11) (2010), 1-13.
- [7] Z. Shen, Riemann-Finsler geometry with applications to information geometry, Chin. Ann. Math. 27(2006), 73-94.
- [8] Z. Shen, Differential Geometry of Spray and Finsler Spaces, Kluwer Academic Publishers, 2001.
- [9] Z. Shen, Volume comparison and its applications in Riemann-Finsler geometry, Adv. Math. 128(1997), 306-328.
- [10] Z. Shen, On R-quadratic Finsler spaces, Publ. Math. Debrecen. 58(2001), 263-274.
- [11] A. Tayebi and M. Barzegari, Generalized Berwald spaces with (α, β) -metrics, Indagationes. Math. (N.S.). **27**(2016), 670-683.
- [12] A. Tayebi and F. Eslami, On a class of generalized Berwald manifolds, Publ. Math. Debrecen, 105(2024), 379-402.
- [13] A. Tayebi and B. Najafi, Shen's processes on Finslerian connection theorey, Bull. Iran. Math. Soc. **36**(2010), 2198-2204.

- [14] A. Tayebi and M. Rafie. Rad, S-curvature of isotropic Berwald metrics, Sci. China. Series A: Math. 51(2008), 2198-2204.
- [15] C. Vincze, On a special type of generalized Berwald manifolds: semi-symmetric linear connections preserving the Finslerian length of tangent vectors, European Journal of Math. 3(2017), 1098-1171.
- [16] C. Vincze, On generalized Berwald manifolds with semi-symmetric compatible linear connections, Publ. Math. Debrecen. 83(2013), 741-755.
- [17] M. Zohrehvand, On the existence of 3-dimensional Berwald manifolds, J. Finsler Geom. Appl. 2(1) (2021), 86-95.