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Every Riemannian metric is R-quadratic while many
Finsler metrics have not this property. A Finsler met-
ric is called R-quadratic if its Riemannian curvature is
quadratic in all direction at any points of the underly-
ing manifold. A Finsler metric on a manifold is called
a generalized Berwald metric if there exists a covariant
derivative such that the parallel translations induced
by it preserve the Finsler function. In this paper, we
study the class of generalized Berwald («, 3)-manifolds
with R-quadratic properties and prove a rigidity result.
We show that such manifolds satisfy S = 0 if and only
if B=0.

1. INTRODUCTION

For a Finsler metric F' an a manifold M, the second variation of geodesics gives rise to
a family of linear maps R, : T,M — T,M, at any point y € T,M which is called the

Riemann curvature in the direction y. One can see that it is not only a function of position

but also depends on direction, while in Riemann geometry it only depends on position. If
F is Riemannian, i.e., F(y) = 1/g(y,y) for some Riemannian metric g, then R, := R(-, )y,
where R(u,v)z denotes the Riemannian curvature tensor of g. In this case, R, is quadratic

iny € T,M. There are many Finsler metrics whose Riemann curvature in every direction

is quadratic. A Finsler space is said to be R-quadratic if its Riemann curvature R, is
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quadratic in y € T, M. Indeed a Finsler metric is R-quadratic if and only if the h-curvature
of Berwald connection depends on position only in the sense of Bacsé-Matsumoto [1]. The
notion of R-quadratic Finsler metrics was introduced by Shen, which can be considered as a
generalization of R-flat metrics.

Every Berwald metric is a trivially R-quadratic. A Finsler metric F' is called a Berwald
metric if G = %I‘;k(x)y] y* are quadratic in y € T, M for any x € M. Also, Berwald metrics
belongs to the class of generalized Berwald metrics. A Finsler metric ' on a manifold M is
called a generalized Berwald metric if there exists a covariant derivative V on M such that
the parallel translations induced by V preserve the Finsler function F' [11][16]. In this case,
(M, F) is called a generalized Berwald manifold. If V is also torsion-free, then F' reduces to

a Berwald metric. Thus, we get the following
{Berwald metrics} C {R-quadratic metrics} N {generalized Berwald metrics}.

There is another quantity that is close to the Berwald metrics, namely, S-curvature. The
S-curvature is constructed by Shen for given comparison theorems on Finsler manifolds [9].
A natural problem is to study and characterize Finsler metrics of vanishing S-curvature. It
is known that some of Randers metrics are of vanishing S-curvature [7][14]. This is one of
our motivations to consider Finsler metrics with vanishing S-curvature. Shen proved the
following:

Theorem A. ([9] Shen Theorem) Every Berwald metric satisfies S = 0.

Very soon, Tayebi-Rafie Rad generalized Shen theorem and proved that every isotropic
Berwald metric has isotropic S-curvature [14]. However, in [3], Bao-Shen found a class of
non-Berwaldian Randers metrics with vanishing S-curvature. Thus the converse of Shen’s

theorem is not true, generally. A natural question arises:

Question. Under which conditions the converse of Shen’s Theorem holds?

To find some solutions for the above question, one can consider the class of («, 5)-metrics.
An («, 8)-metric is a Finsler metric on M defined by F' := a¢(s), where s = 3/a, ¢ = ¢(s)
is a C*° function on the (—bg,bp) with certain regularity, o = \/W is a positive-
definite Riemannian metric and 3 = b;(x)y’ is a 1-form on M. The simplest (c, 8)-metrics
are the Randers metrics F' = a + § which were discovered by G. Randers when he stud-
ied 4-dimensional general relativity. In [12], Tayebi-Eslami characterized the class of two-
dimensional generalized Berwald («, 8)-metrics with vanishing S-curvature and prove the
following.

Theorem B. Let F' = a¢(s), s = f/a, be a two-dimensional generalized Berwald (a, 3)-
metric on a connected and orientable manifold M. Suppose that F' has vanishing S-curvature
and ¢/(0) # 0. Then one of the following holds:

: (i) If F' is a regular metric, then it reduces to a locally Minkowskian metric;
: (i) If £ is an almost regular metric that is not locally Minkowskian, then ¢ is given
by

(1.1)

5 kt+ qVb? —t2
¢ = cexp dt|,
0

1+ kt2 + qtVb2 — 2
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where ¢ > 0, ¢ > 0, and k are real constants, and ( satisfies
(12) Tij = 0, S; — 0.

In this case, F' is neither a Berwald nor Landsberg nor a Douglas metric.

Here, we consider generalized Berwald («, 3)-metric which are R-quadratic, and prove the
following.

Theorem 1.1. Let F = a¢(s), s = B/a, be a reqular generalized Berwald (o, 8)-metric on
a manifold M such that ¢'(0) # 0. Suppose that F is a R-quadratic. Then, F has vanishing
S-curvature S = 0 if and only if it is a Berwald metric B = 0.

In this paper, we use the Berwald connection and the h- and v- covariant derivatives of a
Finsler tensor field are denoted by “ | ” and “, ” respectively [13].

2. PRELIMINARY
A Finsler metric on a manifold M is a nonnegative function £’ on T'M having the following
properties
(a) Fis C* on TMy:=TM \ {0};
(b) F(A\y) = AF(y), VA >0, y € TM,
(c) for each y € T,;M, the following quadratic form g, on T, M is positive definite,

1
gy (u,v) := 3 F2(y + su+ tv)}

, u,v € T, M.
s,t=0

Given a Finsler manifold (M, F'), then a global vector field G is induced by F on T My,
which in a standard coordinate (¢, y*) for T My is given by

26, y) -

G 5

_ i
— Y oy
where G'(x,y) are local functions on T My satisfying

G'(x, \y) = NG (z,y) X > 0.

G is called the associated spray to (M, F'). The projection of an integral curve of G is called
a geodesic in M. In local coordinates, a curve c(t) is a geodesic if and only if its coordinates
(ci(t)) satisfy & + 2G%(¢) = 0. A Finsler metric F is called a Berwald metric if G* are
quadratic in y € T, M for any € M or equivalently the following Berwald curvature is
vanishing.

; o 83Gz

VLI Oyi dyk oyl
For a non-zero vector y € T, My, the Riemann curvature R, : T, M — T, M is defined by

Ry(u) == R, (y)u” 8?5“ where

R _20C G PG 66T oG
R = 2 0k 3:Ej8yky Oyoyk Oyl oyk”

The family R := {Ry}yerm, is called the Riemann curvature.
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There are many Finsler metrics whose Riemann curvature in every direction is quadratic.
A Finsler metric F' is said to be R-quadratic if R, is quadratic in y € T, M at each point
r € M. Put A ,
Rjikl@) =39 [% - % .
30y L oy oy

Rji i1 are the coefficients of the h-curvature of the Berwald connection, which are also denoted

by Hjikl in literatures. We have
Rik(?/) = ijjikl(y)yl-

Thus R, (y) is quadratic in y € T, M if and only if Rji w1 (y) are functions of x only.

For a Finsler metric F' on an n-dimensional manifold M, the Busemann-Hausdorff volume
form dVp = op(x)dzt - - dz™ is defined by

_ Vol(B"(1))
Vol{(yi) € Rn ( F<y8%|x> < 1}'

In general, the local scalar function op(z) can not be expressed in terms of elementary

op(x):

functions, even F' is locally expressed by elementary functions.
Let G'(x,y) denote the geodesic coefficients of F' in the same local coordinate system. The
S-curvature is defined by

S(y) := @&C;; (z,y) — i aii {ln O'F(LU)]

where y = o a(zi |l € T M. Tt is proved that S = 0 if F' is a Berwald metric [7]. There are
many non-Berwald metrics satisfying S = 0 [3].

Given a Riemannian metric «, a 1-form  on a manifold M, and a C* function ¢ = ¢(s)

on [—by, b], where b, := sup,c,s ||8]|z, one can define a function on T'M by

s

F = ag¢(s), s=_.

If ¢ and b, satisfy (2.1) and (2.2) below, then F' is a Finsler metric on M. Finsler metrics in
this form are called («, 8)-metrics. Randers metrics are special («, 5)-metrics.

Now we consider (a, 8)-metrics. Let a = \/a;;y%y/ be a Riemannian metric and 8 = b;y*

a 1-form on a manifod M. Let

1812 := /o (2)bi )b ().

For a C'* function ¢ = ¢(s) on [—b,, b,|, where b, = sup,cys || 3|z, define

F = ag¢(s), s=_.

By a direct computation, we obtain

9ij = paij + pobib; — p1(bicj + bjai) + spraiay,
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where «; := a;;37 /a, and
p= ¢(¢ - 3¢/)7

po = ¢¢" +¢'¢,

p1:=s(¢¢" +¢'¢") — ¢
By further computation, one obtains

-2
det (gi5) = ¢"* (¢ — s¢)" [(¢ —5¢') + (8112 — s*)¢" | det (as;) -

Using the continuity, one can easily show that

Lemma 2.1. Let b, > 0. F = a¢(B/a) is a Finsler metric on M for any pair {a, B} with
supgenr 18]z < bo if and only if ¢ = ¢(s) satisfies the following conditions:

(2.1) ¢(s) >0, (Is] < bo)
(22) 6(s) — 56/ (s) + (17 = 2)¢"(s) >0, (]s| <b<by).
Let

rij 1= %(blb + bj|7,'>7 Sij 1= %(blb — b]|l> .
Ty = biTij, S5 = bisij.
Let 70 = Tijyj, Si0 = sijyj, Ty = rjyj and sg := sjyj. Suppose that G* = G%(z,y) and
G' = G*(x,y) denote the coefficients of F' and « respectively in the same coordinate system.
By definition, we obtain the following identity

where

P = 0719[7'00 — 2Qaso},

Q' = aQs'y+¥[ron — 2Qaso ¥,

_ ¢
M
o _ _ 98 —s(6¢"+d¢)
26((6 — /) + (12 — )¢
‘IJ _ 1 Cb”

2(¢— s¢') + (12 — s2)¢'"
Clearly, if 3 is parallel with respect to a (r;; = 0 and s;; = 0), then P =0 and Q* = 0. In

this case, G* = G are quadratic in y, and F is a Berwald metric.

3. PROOF OF THEOREM 1.1
In this section, we will prove a generalized version of Theorem 1.1. Indeed, we study

Theorem 3.1. Let F = a¢(s), s = B/a, be a reqular generalized Berwald (o, 8)-metric on
an n-dimensional manifold M such that ¢'(0) # 0. Then F is a R-quadratic metric with
isotropic S-curvature S = (n + 1)cF if and only if it is a Berwald metric, where ¢ = c(x) is

a scalar function on M.
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To prove Theorem 3.1, we need the following key lemma.

Lemma 3.2. ([15]) An (o, 8)-metric satisfying ¢'(0) # 0 is a generalized Berwald manifold
if and only if 8 has constant length with respect to a.

A Finsler metric F' on an n-dimensional manifold M is called of isotropic S-curvature, if
S = (n+ 1)cF, where ¢ = ¢(x) is a scalar function on M. In [5], Cheng-Shen characterized
(a, B)-metrics with isotropic S-curvature on a manifold M of dimension n > 3. Soon, they
found that their result holds for the class of («, 8)-metrics with constant length one-forms,
only. In [12], we give a new characterization of the class of generalized Berwald metrics with

vanishing S-curvature and prove the following.

Lemma 3.3. ([12]) Let F' = a¢(s), s = §/a, be a generalized Berwald («, 5)-metric on an
n-dimensional manifold M. Suppose that ¢'(0) # 0. Then S = 0 if and only if 3 is a Killing
form with constant length, namely

(3.1) Tij = 0, Sj = 0.

First, we remark the following well-known Bianchi identities.

Lemma 3.4. ([8]) For the Berwald connection, the following Bianchi identities hold:

(3.2) R g+ B i + B i = B jra B+ B 1 R + Bl R
(3.3) B ik = B jrmp = B jrim
(34) B jrim =B jrmi-

Now, we study the Berwald curvature of generalized Berwald («, )-metrics and prove the
following.

Lemma 3.5. Let F = a¢(s), s = B/a, be a generalized Berwald (o, 3)-metric on manifold
M such that ¢'(0) # 0. Suppose that F has vanishing S-curvature. Then, the following hold

where by, := by, (x) are the components of 1-form 3 = b;(x)y'.

Proof. The spray coefficients of an (o, 5)-metric F' = a¢(s), s = 3/, are given by

S ‘ 1 . .
(3.6) G'=G"+aQs'y+ — (7“00 - 2Qaso) <@y’ + a@b’),
Q
where s§ = aihshj, 56 = s;y%, To0 = rijyiyj and
Q—sQ' Q'
© 2A 7 2A

According to the assumption, F' has vanishing S curvature. Putting (3.1) in (3.6) gives us
(3.7) G' = G' + aQs'y.

Multiplying (3.7) with b; yields

(3.8) b;Gt = b;GE.
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The following hold

PG ob;
(3.9) o gag =0 o=
Oyl Oykdy OyJ
Then, taking three vertical derivation of (3.8) and using (3.9) gives us (3.5). O

In [4], Cheng consider regular («a, ()-metrics with isotropic S-curvature and prove the
following.

Theorem C. ([4]) A regular (c, B)-metric F := a¢(f/a), of non-Randers type on an n-
dimensional manifold M is of isotropic S-curvature, S = (n+1)oF, if and only if B satisfies
rij =0 and s; = 0. In this case, S = 0, regardless of the choice of a particular ¢ = ¢(s).

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1: By assumption, F is a regular («, §)-metric. Then, by Theorem
3, the relations (3.1) hold. Taking a horizontal derivation of (3.5) implies that

By assumption F' is R-quadratic metric. Thus

(3.11) R jm =0.
Then, by (3.3) and (3.11) we get

(3.12) BiﬂdIm — Bijkmu =0.
Multiplying (3.12) with b; yields

(3.13) biBiMm = biBijkm‘l.
Comparing (3.10) and (3.13) gives us

(3.14) bi|mBijkl = bi|lBijkm'
The following holds

(315) bz|m = Tim + Sim,;

which by considering 7;; = 0, it reduces to following
(3.16) bl|m = Sim-

Multiplying (3.14) with ' and considering (3.16) we obtain

(3.17) $i0B" jjm = 0.
Taking three times vertical derivation of (3.7) gives us the following
i i
(3.18) By = [ons 0} g
By (3.17) and (3.18) we have
(3.19) s [aQsio} =0
yiyky!
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(3.19) is equal to

(3.20) [a Q] yjykylsiosio + [a Q} y]_yksigsil + [a Q} y]_ylsigsik + [oz Q} ykylsiosij = 0.
According to (3.1), s = s; = 0. Then, multiplying (3.20) with »/b*0! yields

(3.21) [b]bkbl [aQ]yjykyl] Siosio = 0.

By (3.21), we get

(3.22) 55089 = 0.

Since « is a positive-definite Riemannian metric, then by (3.22) it follows that
(3.23) s'; =0.

(3.23) means that  is a closed 1-form, and by considering (3.1), we conclude that 5 is a

parallel 1-form. In this case, F' reduces to a Berwald metric. O

Finally, we conclude the following.

Corollary 3.6. Let F = a¢(s), s = [/a, be a reqular generalized Berwald («, 3)-metric on
a 2-dimensional manifold M such that ¢'(0) # 0. Suppose that F is a R-quadratic. Then,

F has vanishing S-curvature S = 0 if and only if it is a locally Minkowskian metric.

Proof. The well-known Szabd rigidity theorem says that every 2-dimensional Berwald surface
is either locally Minkowskian or Riemannian. On the other hand, every Riemannian metric
satisfies ¢(s) = constant, and then ¢’(0) = 0. By the assumption and using Theorem 1.1, it

follows that F must be a locally Minkowskian metric. O
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