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Abstract. Let R be an associative Noetherian unital noncommu-
tative ring R. We introduce the functor PΓP over the category of
R-modules and use it to characterize P -semiprime. P -semisecond
R-modules also characterized by the functor PΛP . We also show
that the Greenless-May type Duality (GM) and Matlis Greenless-
May Equality(MGM) hold over the full subcategory of R-Mod con-
sisting of P -semiprime and P -semisecond modules. Finally, we gen-
erate a one-sided right ideal PΓP (R), which gives an equivalent
formulation to solve Köthe conjecture positively or negatively.
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1. Introduction

Let R be a unital Noetherian ring which is not necessarily commuta-
tive. R is semiprime if for all ideals P of R, P 2 = 0 implies that P = 0.
R is reduced if for all a ∈ R, a2 = 0 implies that a = 0. If R is commu-
tative, the two notions coincides. An ideal P of a ring R is semiprime
(resp. completely semiprime) if the quotient ring R/I is a semiprime
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(resp. reduced) ring. Any reduced ring is semiprime. However, the ring
M2(Z) is a semiprime ring which is not reduced. The notion of reduced,
semiprime, semisecond and coreduced modules has been widely studied
see for instance [11, 15, 16, 18, 21]. When R is commutative, the locally
nilradical functor aΓa(−) over a category of R-modules, where a is the
ring element has been studied as a measure of how far a module from be-
ing reduced in [9]. Moreover, in [19], it has been studied about P -reduced
and P -coreduced modules in relation with Matlis-Greenlees-May Equiv-
alence and Greenlees-May duality. The Köthe conjecture states that if
a ring R has no nonzero nil ideals then R has no nonzero nil one-sided
ideals and it has existed since 1930. Even if the problem is still open
lots of equivalent formulations has been made. The sum of two right
nil ideals in any ring R is nil is also an equivalent formulation for the
conjecture, [1, 8, 14]. This paper is organized as follows: In Section 2
we introduce the functor PΓP and show that it is a 1) radical over a
category of R-modules; 2) left exact over an abelian full subcategory of
R-Mod consisting of flat modules; 3) we also use it to characterize the
P -semiprime modules; 4) we characterize P -semisecond modules using
the functor PΛP . In Section 3 we study applications of P -semiprime
and P -semisecond modules and show that the Greenless-May duality
and Matlis-Greenless-May Equality holds. In Section 4, we generate a
right nil ideal by considering PΓP over rings. We also provide a gadget
that produces one sided nil ideals for any noncommutative ring for a
given right ideal (Proposition 4.2). This is useful in the possible counter
examples to answer the Köthe conjecture in the negative. Finally, we
pose questions which are equivalent to solve the Köthe conjecture in the
negative (Question 4.8) and positive (Question 4.9) using the ideal PΓP .

2. P -semiprime and P -semisecond modules

In this section unless otherwise mentioned R-Mod represents the cat-
egory of left R-modules. Let P be an ideal of a ring R. A submodule N
of an R-module M is P -semiprime if for all m ∈ M , P 2m ⊆ N implies
that Pm ⊆ N . A submodule N of an R-module M is semiprime if it
is P -semiprime for all ideals P of R. An R-module M/N is semiprime
(resp. P -semiprime) if N is a semiprime (resp. P -semiprime) submodule
of M .

Remark 2.1. A ring R is semiprime if and only if the R-module R is
semiprime.
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LetR-Mod be a category of leftR-modules. A functor γ(−) : R-Mod→
R-Mod is a preradical if γ(M) is a submodule of M and for every R-
homomorphism f : M → N, f(γ(M)) ⊆ γ(N). γ is a radical if it is
a preradical and for all M ∈ R-Mod, γ(M/γ(M)) = 0. A radical γ is
left exact if for every submodule N of a module M ∈ R-Mod, γ(N) =
N ∩ γ(M). Equivalently, if for any exact sequence 0 → N → M → K
of R-modules, the sequence 0→ γ(N)→ γ(M)→ γ(K) is also exact.

Definition 2.2. Let R be a Noetherian ring and P a right ideal of
R. ΓP (−) : R-Mod → R-Mod M 7→ ΓP (M) := {m ∈ M : P km =
0, for some k ∈ Z+}.

Proposition 2.3. The functor ΓP (−) : R-Mod→ R-Mod is a left exact
radical.

Proof. 1. Consider the R-module homomorphism f : M → N .
Let y ∈ f(ΓP (M)), y = f(m) ∈ N for some m ∈ ΓP (M), i.e.,
P km = 0 for some positive integer k. Now, P ky = P kf(m) =
f(P km) = f(0) = 0 which implies y ∈ ΓP (N).

2. To show it is radical, it is enough to show that ΓP (M/ΓP (M)) =
0. Let y ∈ ΓP (M/ΓP (M)) such that P km ∈ ΓP (M), where
y = m + ΓP (M) for some m ∈ M . Then there exists a positive
integer k1 such that P k1(P km) = 0 which implies P k1+km = 0.
It follows that m ∈ ΓP (M) and thus y = 0.

3. It is similar to the proof of [3, Lemma 1.16]
�

By multiplying the torsion functor ΓP by P from the left we define
PΓP as follows:

Definition 2.4. Let P be an ideal of a ring R. A functor

PΓP (−) : R-Mod→ R-Mod is defined by

M 7→ PΓP (M) :=

{ n∑
i=1

rimi : ri ∈ P and mi ∈ ΓP (M)

}
.

Proposition 2.5. Let M ∈ R-Mod and P an ideal of R. The following
are equivalent:

1. M is P -semiprime.
2. (0 : m) is an P -semiprime left ideal of R for all 0 6= m ∈M .
3. (0 :M P ) = (0 :M P 2).
4. HomR(R/P,M) = HomR(R/P 2,M).
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5. ΓP (M) ∼= Hom(R/P,M).
6. PΓP (M) = 0.

Proof. 1 ⇒ 2 For any left ideal P of R, let P 2 ⊆ (0 : m). Then
this implies that P 2m = 0 for all nonzero m ∈ M , since M
is P -semiprime R-module it follows that Pm = 0 and hence
P ⊆ (0 : m).
2 ⇒ 1 For any ideal P of R and 0 6= m ∈ M , let P 2m = 0
implies P 2 ∈ (0 : m) then by hypothesis P ∈ (0 : m) which
implies Pm = 0, thus P -semiprime.
2 ⇒ (3) Since (0 : m) is P -semiprime ideal of R, it follows that
(0 :M P 2) ⊆ (0 :M P ), the other inclusion is obvious.
3 ⇒ 4 Since (0 :M P ) is a left R-module, then it coincides with
HomR(R/P,M) then the result follows.
(4) ⇒ (5) since ΓP (M) ∼= lim−→

k

HomR(R/P k,M). then by (4) we

have
HomR(R/P,M) = HomR(R/P k,M) for all k ∈ Z+ . So, ΓP (M)
∼= HomR(R/P,M).
(5)⇒ (6) PΓP (M) ∼= P (Hom(R/P,M)) = 0.
1 ⇒ 6 Let M be P -semiprime module, m ∈ PΓP (M) and m =∑n

i=1 aimi, ai ∈ P and mi ∈ ΓP (M), i.e., P kimi = 0 for some
positive integers ki. By hypothesis Pmi = 0 then for each ai ∈ P
we have aimi = 0 then m = 0. So, PΓP (M) = 0.
6 ⇒ 1 Suppose PΓP (M) = 0. Let m ∈ M and P 2m = 0
which implies m ∈ ΓP (M) then Pm ⊆ PΓP (M) = 0, so M is
P -semiprime R-module.

�

So, the functor PΓP (−) on R-Mod is a measure of how far a module
is from being P -semiprime.

A left R-module F is flat if the functor −⊗F is exact. A short exact
sequence 0 → L → M → N → 0 of left R-modules is called pure if
K ⊗ L→ K ⊗M is a monomorphism for every right R-module K.

In general, PΓP is not left exact. Consider the Z-module M = Z12

and the submodule N = {0, 6} and take I = 〈2〉. Now, 〈2〉Γ〈2〉(M) =
{0, 3, 6, 9}, 〈2〉Γ〈2〉(N) = {0} and 〈2〉Γ〈2〉(M)∩N = N , but 〈2〉Γ〈2〉(N) =
{0}. Let Fl(R) denote an abelian full subcategory of R-Mod consisting
of all flat R-modules. This abelian category was studied in [6, 7, 20].
Note that since any free R-module is flat, R ∈ Fl(R).
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Proposition 2.6. Consider the functor

PΓP (−) : R-Mod→ R-Mod,M 7→ PΓP (M).

Then,

1 PΓP (−) is a radical and it is left exact over Fl(R).
2. PΓP (M) ∼= P⊗RΓP (M), i.e., a composition of ΓP (−) and P⊗−.
3. If in addition Fl(R) has enough injectives, then PΓP is exact.

Proof. 1. To show PΓP is a preradical, consider the module ho-
momorphism f : M → N for any left R-modules M and N .

Let y ∈ f(PΓP (M)), y = f(m) ∈ N,m =
∑l

i=1 rimi and

ri ∈ P,mi ∈ ΓP (M), i.e., P kmi = 0 for some positive integer

k. Now, P k(y) = P k(f(m)) = f(P k
∑l

i=1 rimi) = f(0) = 0
which implies y ∈ ΓP (N). To show it is radical, it is enough to
show that M/PΓP (M) is P -semiprime. Let m̄ ∈ M/PΓP (M)
and P 2m̄ = 0̄ which implies P 2(m+PΓP (M)) = PΓP (M)), then
P 2m ∈ PΓP (M) and hence Pm ∈ ΓP (M) such that P km = 0
for some positive integer k which implies m ∈ ΓP (M) and so,
Pm ⊆ PΓP (M) and thus, Pm̄ = 0̄. Then by Proposition 2.5
the functor is radical.
PΓP is left exact if and only if for all submodules N of M
PΓP (N) = PΓP (M) ∩ N , [12]. Since, PΓP (N) is submodule
of both PΓP (M) and N it is easy to show that PΓP (N) ⊆
PΓP (M)∩N . However, by hypothesis every submodule is pure,
so PΓP (N) = PM ∩ ΓP (N), [5, Proposition 8.1]. Then it fol-
lows that PM ∩ ΓP (N) ⊆ PΓP (M) ∩ N . To show the reverse
inclusion let y ∈ PΓP (M) ∩ N . Then, y =

∑n
i=1 rimi such

that P kiri = 0 for some positive integers ki, 1 ≤ i ≤ n. Now,
P ky =

∑n
i=1 P

krimi = 0, where k = k1 + · · ·+ kn, which shows
that y ∈ PM ∩ ΓP (N). Hence, PΓP (N) = PΓP (M) ∩N .

2. Since M ∈ Fl(R) and Fl(R) is an abelian subcategory, ΓP (M) ∈
Fl(R). It follows that PΓP (M) ∼= P ⊗R ΓP (M).

3. Since PΓP is left exact by part 1 and Fl(R) has enough injec-
tives, we can compute the right derived functor of PΓP . By [17,
Theorem 10.47] Ri(PΓP (M)) ∼= Ri(P ⊗R ΓP (M)) ∼= Ri(P ⊗R

Ri(ΓP (M)) ∼= 0. It is zero because P ⊗R − is exact.
�

In [4] examples for which Fl(R) has enough injectives were given.
This happens when RP is quasi-Frobenius for all P ∈ ASS(R), the
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assassinator of R. However, the only two examples of rings which were
given namely; commutative Noetherian domain and R = k[x, y]/〈xy〉
are both reduced and flat modules over reduced rings in which case, our
functor PΓP (−) : Fl(R)→ Fl(R) will be trivial. see [4, Theorem 3].

Example 2.7. If R = k[t]/〈t2〉. Then R is a flat R-Mod which is not
semiprime and also 〈t〉Γ〈t〉(R) 6= 0.

Definition 2.8. Let P be an ideal of R. Define the P -adic completion
functor ΛP (−) : R-Mod→ R-Mod by M 7→ ΛP (M) := lim←−

k

M/P kM .

Definition 2.9. Let P be an ideal of R. A left R-module M is said to
be P -semisecond if P 2M = PM .

A left R-module M is said to be semisecond if M is P -semisecond
module for every ideal P of R, [2].

Proposition 2.10. For any ideal P of R and R-module M the following
are equivalent:

1. M is P -semisecond.
2. R/P ⊗R M ∼= R/P 2 ⊗R M ,
3. R/P ⊗M ∼= ΛP (M).
4. PΛP (M) = 0.

Proof. (1) ⇒ (2) R/P ⊗R M ∼= M/PM since M is semisecond
R/P ⊗R M ∼= M/P 2M ∼= R/P 2 ⊗R M .
(2) ⇒ (3) ΛP (M) = lim←−

k

(M/P kM) ∼= lim←−
k

(M/P k ⊗R M) ∼=

lim←−
k

(M/P ⊗R M) = R/P ⊗R M .

(3)⇒ (4) PΛP (M) ∼= P (R/P ⊗R M) = P (M/PM) = 0
(1) ⇒ (4) Since P 2M = PM , it follows that P kM = PM for
each positive integer k, then PΛP (M) = 0
(4)⇒ (1) Since PΛP (M) = 0 which implies P (lim←−

k

M/P kM) = 0,

then PM = P kM for all k ∈ Z+ which implies PM = P 2M .
�
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3. Applications of P -semiprime and P -semisecond modules

If R is commutative ring and P is an ideal of R, then P -reduced and
P -semiprime coincide and similarly, P -coreduced also coincide with P -
semisecond modules. So, Matlis-Greenlees-May Equivalence and Greenlees-
May type duality holds, see [19]. However, when R is noncommuta-
tive the above notions are different. Hence in this section we prove
that Matlis-Greenlees-May Equivalence and Greenlees-May type dual-
ity holds in the settings of P -semiprime and P -semisecond modules.
In this section the modules under considerations are bimodules and R-
Mod:=R-R-Mod.

We denote by (R-Mod)P -ss(resp. (R-Mod)P -sp) the subcategory of R-
Mod consisting of P -semisecond (resp. P -semiprime) R-modules. A
left R-module is said to be P -torsion (resp. P -complete) if and only if
ΓP (M) = M (resp. ΛP (M) = M).

Proposition 3.1. If M is P -semisecond module and N an R-module,
then HomR(M,N) is P -semiprime.

Proof. Suppose that P 2M = PM , then M/P 2M = M/PM . So, HomR

(R/P 2,HomR(M,N)) ∼= HomR(R/P 2⊗M,N) ∼= HomR(R/P⊗M,N) ∼=
HomR(R/P,HomR(M,N)), then by Proposition 2.5 HomR(M,N) is P -
semiprime. For the converse assume that HomR(M,N) is P -semiprime
module. Then, HomR(R/P 2,HomR(M,N)) ∼= HomR(R/P,Hom(M,N)).

HomR(R/P 2⊗M,N) ∼= HomR(R/P⊗M,N) if and only if HomR(M/
P 2M⊗N) ∼= HomR(M/PM,N). SinceN reflects isomorphism, M/P 2M
∼= M/PM . So, M is P -semisecond. �

Proposition 3.2. For any ideal P of a ring R we have:

1. R/P ⊗ − and HomR(R/P,−) are idempotent functors from R-
Mod to
(R-Mod)P -ss ∩ (R-Mod)P -sp.

2. For any R-module M,R/P ⊗HomR(R/P,M) ∼= HomR(R/P,M)
and
HomR(R/P,R/P ⊗M) ∼= R/P ⊗M .

3. For anyR-moduleM , theR-modules HomR(R/P,M) andR/P⊗
M are
both P -torsion and P -complete.

Proof.
1. R/P ⊗(R/P ⊗M) ∼= (R/P ⊗R/P )⊗M ∼= R/P ⊗M and HomR(R/P,
HomR(R/P,M)) ∼= HomR(R/P ⊗R/P,M) ∼= HomR(R/P,M). For any
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R-module M , R/P ⊗M ∼= M/PM and HomR(R/P,M) ∼= (0 :M P ).
Also, P (M/PM) = 0 and P (0 :M P ) = 0. So, the R-modules M/PM
and (0 :M P ) are P -semisecond. It is also easy to see that (0 :(0:MP ) P ) =

(0 :(0:MP ) P
2) = (0 :M P ) and (0̄ :M/PM P ) = (0̄ :M/PM P 2) = M/PM .

Thus, the R-modules M/PM and (0 :M P ) are P -semiprime.

2. R/P ⊗HomR(R/P,M) ∼= HomR(R/P,M)
PHomR(R/P,M) = HomR(R/P,M). HomR(

R/P,R/P ⊗M) ∼= HomR(R/P,M/PM) = (0̄ :M/PM P ) = M/PM ∼=
R/P ⊗M .

3. The following maps hold true:

a. HomR(R/P,HomR(R/P,M)) ↪→ ΓP (HomR(R/P,M)) ↪→ HomR

(R/P,M).
b. HomR(R/P,R/P ⊗M) ↪→ ΓP (R/P ⊗M) ↪→ R/P ⊗M .
c. HomR(R/P,M)� ΛP (HomR(R/P,M))� R/P ⊗HomR(R/P,
M).

d. R/P ⊗M � ΛI(R/P ⊗M)� R/P ⊗ (R/P ⊗M),

where ↪→ denotes a monomorphism and� denotes epimorphism. The
first and the last maps are all isomorphisms since HomR(R/P,M) and
R/P ⊗M are idempotent. Moreover, HomR(R/P,M) and R/P ⊗M are
P -torsion and P -complete. Invariance of R/P ⊗M and HomR(R/P,M)
under the functor HomR(R/P,−) and R/P ⊗− respectively shows that
the morphisms in (b) and (c) maps are all isomorphisms. This shows
that R/P ⊗M and HomR(R/P,M) are P -torsion and P -complete re-
spectively.

�

3.1. Greenless-May type Duality. In general, functors ΓP and ΛP

are not adjoint to each other. However, over commutative ring their
derived functors RΓP and LΛP on the derived category of R-modules
are adjoint this is what is called Greenless-May duality, see [13, Theorem
7.12]. In this subsection we show that the functors ΓP and ΛP are adjoint
in the category of P -semiprime modules and P -semisecond modules, for
an ideal P of R (noncommutative).

Lemma 3.3. For any ideal P of a ring R,

1. The functor ΓP (−) : (R-Mod)P -sp → (R-Mod)P -ss is idempotent
and for any M ∈ (R-Mod)P -sp, ΓP (M) ∼= HomR(R/P,M).

2. The functor ΛP : (R-Mod)P -ss → (R-Mod)P -sp is idempotent
and for any M ∈ (R-Mod)P -ss, ΛP (M) ∼= R/P ⊗R M .
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Proof. 1. It follows from Proposition 2.5 (5) and Proposition 3.2
(1).

2. Follows from Proposition 2.10 (3) and Proposition 3.2 (1).
�

Theorem 3.4 (GM type Duality in R-Mod). For any ideal P of a ring
R and any N ∈ (R-Mod)P -sp and M ∈ (R-Mod)P -ss,

HomR(ΛP (M), N) ∼= HomR(M,ΓP (N)).

Proof. Consider the functor ΓP (−) : (R-Mod)P -sp → (R-Mod)P -ss. For
any module M ∈ (R-Mod)P -sp,ΓP (M) ∼= HomR(R/P,M), Lemma 3.3
(1). However, the functor R/P ⊗− is left-adjoint to HomR(R/P,−). By
uniqueness of adjoints, the functor ΛI(−) : (R-Mod)P -ss → (R-Mod)I-sp
which has the property that for all M ∈ (R-Mod)P -ss ΛP (M),∼= R/P ⊗
M , Lemma 3.3 (2). Then, ΛP is the left adjoint of ΓP . �

3.2. Matlis-Greenless-May Equality. Let R be a commutative ring
and D(R) denote the derived category of the abelian category R-Mod.
The Matlis-Greenless-May Equivalence (MGM) duality on derived cat-
egory is given as:

Theorem 3.5. [MGM Equivalence] [13, Theorem 7.11] Let R be a ring,
and P be a weakly proregular ideal in it.

1. If M ∈ D(R), then RΓP (M) ∈ D(R)P -tor and LΛP (M) ∈
D(R)P -com.

2. The functor RΓP (−) : D(R)P -com → D(R)P -tor is an equiva-
lence, with quasi-inverse LΛP .

In this subsection we prove the MGM Equality in the setting of P -
semiprime and P -semisecond modules.

Proposition 3.6. A left R-module M is P -torsion and P -semiprime if
and only if M is P -complete and P -semisecond.

Proof. Suppose M be P -torsion and P -semiprime. M = ΓP (M) =
HomR(R/P,M)
= (0 :M P ), hence it follows that PM = 0 which implies P kM = 0 for
any k ∈ Z+ then ΛP (M) = M and P 2M = PM . Conversely, let M
be an P -complete and P -semisecond. To show it is P -semiprime, let
P kM = 0 for some k ∈ Z+, but since M is P -complete the previous
relation satisfied for all k ∈ Z+, thus PM = 0. Now by Proposition 2.6,
ΓP (M) = HomR(R/P,M) = (0 :M P ) = M . �
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Lemma 3.7. If P is an ideal of a ring R and M a P -semiprime (resp.
P -semisecond) R-module, then ΓP (M) (resp. ΛP (M)) is a P -complete
(resp. P -torsion) R-module.

Proof. Suppose M is P -semiprime. Then by Proposition 3.2 ΓP (M) =
HomR(R/P,
M) is both an P -semiprime and P -semisecond R-module. To show
that ΓP (M) is P -complete, ΛP (ΓP (M)) ∼= R/P ⊗ HomR(R/P,M) ∼=
HomR(R/P,M) ∼= ΓP (M). Let M be P -semisecond, by Proposition
3.2, ΛP (M) ∼= R/P ⊗ M which is also both an P -semiprime and P -
semisecondR-module. Now, HomR(R/P,ΛP (M)) ∼= HomR(R/P,R/P⊗
M) ∼= R/P ⊗M ∼= ΛP (M). This proves that ΛP (M) is P -torsion. �

Let C := (R-Mod)P -com ∩ (R-Mod)P -ss and T := (R-Mod)P -tor ∩
(R-Mod)P -sm.

Theorem 3.8 (MGM Equality). Let P be any ideal of a ring R,

1. If M ∈ (R-Mod)P -sm, then ΓP (M) ∈ C and if M ∈ (R-Mod)P -ss,
then Λp(M) ∈ T .

2. The functor ΓP (−) : R-ModP -sm → R-Mod)P -ss restricted to T
is equality between C and T with quasi inverse ΛP .

Proof. 1. Let M ∈ (R-Mod)P -sm then by Theorem 3.4 it follows
that ΓP (M) ∈ (R-Mod)P -ss and by Lemma 3.7, ΓP (M) ∈
(R-Mod)P -com. Then ΓP (M) ∈ C. Similarly, applying Theorem
3.4 and Lemma 3.7 we get ΛP (M) ∈ T .

2. Proposition 3.6 and Lemma 3.7 assures that there is equality
between the categories C and T which is the Matlis-Greenless-
May Equality for R-modules holds.

�

4. The functor PΓP over rings

In this section we study some properties of the ideal PΓP (R) and we
use it to formulate Köthe conjecture.

Lemma 4.1. 1. If P is a left ideal of R, then PΓP (R) is a two
sided ideal of R.

2. If P is a right ideal of R, then PΓP (R) is a right ideal of R.

Proof. 1. Suppose P is a left ideal of R. Let r ∈ R and x ∈ PΓI(R),

thus x =
∑l

i=1 airi such that P kiri = 0, for some positive in-

tegers ki, where ai ∈ P and ri ∈ R. Now, rx =
∑l

i=1(rai)ri,
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since P is left ideal rai ∈ I and by hypothesis P kiri = 0. Then
x ∈ PΓP (R) and hence PΓP (R) is left ideal. To show it is right

ideal, xr =
∑l

i=1 ai(rir), multiplying P kiri = 0 from the right

by r we get P kirir = 0 which shows that xr ∈ IΓP (R) and hence
it is right ideal of R.

2. Suppose P is a right ideal of R. Let r ∈ R and x ∈ PΓP (R), thus

x =
∑l

i=1 airi such that P kiri = 0, for some positive integers ki,
where ai ∈ P and ri ∈ R. To show PΓP (R) is right ideal of R,

xr =
∑l

i=1 ai(rir), multiplying P kiri = 0 from the right by r we

get P kirir = 0 which shows that xr ∈ PΓP (R) and hence it is
right ideal of R.

�

Proposition 4.2. For any right ideal P of a ring R, PΓP (R) is a nil
right ideal.

Proof. By Lemma 4.1 (2), PΓP (R) is a right ideal, whenever P is a right

ideal of R. Let y ∈ PΓP (R). Then y =
∑l

i=1 airi where ri ∈ R and ai ∈
P such that Pniri = 0 for each 1 ≤ i ≤ l and let n = n1+ · · ·+nl. Then,

yn = (
∑l

i=1 airi)
n = (a1r1)

n + (a1r1)(a2r2)
n−1 + · · ·+ (a1r1)(airi)

n−1 +
· · · (ln terms) each of total degree n. Now, (a1r1)(airi)

n−1 = (a1r1)(airi)
(airi) · · · (ai)ri, i.e., this is a product of one a1r1 term, n−2 terms of airi,
one term of ai and ri, then (a1r1)(airi)

n−1 = (a1r1)(airi)(airi) · · · (ai)ri ⊆
PPn−2Pri = Pnri = 0. In a similar fashion every term in the expres-
sion yn undergoes such steps and then yn = 0 and hence PΓP (R) is a
nil right ideal. �

Corollary 4.3. Let R be a ring and U denotes the upper nilradical of
R.

1. For any ideal P of R
a. PΓP (R) is nil.
b.
∑

PCR PΓP (R) ⊆ U(R).
2. If R is P -torsion for any ideal P of R, then every ideal P is nil

and
∑

PCR PΓP (R) = U(R)

Proof. 1. a and b are direct consequences of Proposition 4.2.
2. By hypothesis ΓP (R) = R for all ideals I of R which implies
PΓP (R) = PR = P . By 1a) P is nil, so

∑
PCR PΓP (R) =∑

PCR P = U(R).
�
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Corollary 4.4. Let R be a right noetherian ring and P be a right ideal
of R, then PΓP (R) is nilpotent.

Proof. By proposition 2.9, PΓP (R) is a nil right ideal, for any right ideal
P of R then by [10, Levitzki’s Theorem] PΓP (R) is nilpotent. �

Proposition 4.5. For a ring R, PΓP (R[x]) = (PΓp(R))[x].

Proof. Let f(x) ∈ PΓp(R)[x]. Then f(x) =
∑n

i=0 aijx
i, where aij ∈

PΓP (R) which implies for each i there exists Sij and ki ∈ Z+ such

that Ikjsij = 0 and aij =
∑k

j=0 rijsij . Now, f(x) =
∑n

i=1 aijx
i =∑n

i=1(
∑k

j=0 rijsij)x
i =

∑n
i=0(ri0si0 + · · ·+ riksik)xi =

∑n
i=0 ri0(si0x

i) +

· · ·+ rik(sikx
i). Since Ikjsij = 0 it follows that sijx

i ∈ ΓP (R[x]). Thus,
f(x) ∈ PΓP (R[x]). Suppose g(x) =

∑n
i=0 aifi(x) ∈ PΓP (R[x]), where

fi(x) = (r0+r1x+ · · ·+rnxn)i and P kifi(x) = 0 which implies P kiri = 0
for each i, 0 ≤ i ≤ n and thus

∑n
i=0 airi ∈ PΓP (R). Therefore, g(x) =∑n

i=0 aifi(x) =
∑n

i=0(airi)x
i, so g(x) ∈ PΓP (R)[x].

�

Proposition 4.6. Let J1 and J2 be ideals of R and P be a right ideal
of R. Then PΓP (J1) + IΓP (J2) is a nil right ideal of R.

Proof. PΓP (J1) + PΓP (J2) = PΓP (J1 + J2) ⊆ PΓP (R). From Proposi-
tion 4.2 PΓP (R) is a right nil ideal of R, then it follows that PΓP (J1) +
PΓP (J2) is a right nil ideal of R. �

Corollary 4.7. If R is a ring such that all its right sided nil ideals are
of the form PΓP (J) for some ideal J of R, then R satisfies the Köthe
conjecture

question 4.8. Let P1 and P2 be two right ideals of a ring R. Is the
sum P1ΓP1(R) + P2ΓP2(R) a nil right ideal? A negative answer to this
question would answer the Köthe conjecture in the negative.

question 4.9. Is
∑

PCrR
PΓP (R) = U(R)? A positive answer to this

question would solve the Köthe conjecture in the affirmative.
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[12] L. Němec, T. Bican, P. Kepka, Rings, modules and preradicals, Lect. notes in

pure and appl. math. 75 (1982).
[13] M. Porta, L. Shaul and A. Yekutieli, On the homology of completion and tor-

sion, Algebr. Represent. Theory, 17(1) (2014), 31-67.
[14] E. R. Puczy lowski, Questions related to Köethe’s nil ideal problem, Algebra and
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