[1] M. Ahmad, A. Haseeb, J. B. Jun, Quasi-concircular curvature tensor on a Lorentzian β-Kenmotsu manifold, J. Chungcheong Math. Soc., 32(3) (2019), 281-293.
[2] S. R. Ashoka, C. S. Bagewadi and G. Ingalahalli, Certain Results on Ricci Solitons in α-Sasakian Manifolds, (2013), Article ID 573925, 4 Pages.
[3] A. Bejancu, Schouten-van Kampen and Vranceanu connections on Foliated manifolds, Anale Stintifice Ale Universitati. \AL.I. CUZA" IASI, Tomul LII, Mathematica, (2006), 37-60.
[4] A. M. Blaga, On Gradient -Einstein solitons, Kragujev. J. Math., 42(2) (2018), 229-237.
[5] G. Catino and L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal., 132 (2016), 66-94.
[6] G. Ingalahalli, C. S. Bagewadi, Ricci Solitons in -Sasakian Manifolds, International Scholarly Research Notices, (2012), Article ID 421384, 13 pages.
[7] R. S. Hamilton, The Ricci ow on surfaces, Math. and General Relativity, American Math. Soc. Contemp. Math., 7(1) (1988), 232-262.
[8] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, 3(2) (2012), 18-24.
[9] H. G. Nagarjuna and G. Somashekhara, On pseudo projective Curvature tensor in sasakian Manifolds, Int. J. Contemp. Math. Sciences, 6(27) (2011), 1319 - 1328.
296 A. Mandal, M. Mallik, R. Das, G. Saha, E. Hoque and Md. Rejuan [10] D. Narain, A. Prakash and B. Prasad, A pseudo projective Curvature tensor on a Lorentzian Para Sasakian manifold, Analele Stiinti ce ale Universitatii Al l cuza din lasi- Mathematica, 55(2) (2009), 275-284.
[11] D. Narain, A. Prakash and B. Prasad, Quasi-concircular curvature tensor on a Lorentzian para-Sasakian manifold, Bull. Cal. Math. Soc., 101(4) (2009), 387-394.
[12] B. Prasad, On pseudo projective curvature tensor on a Riemannian manifold, Bull. Cal. Math. Soc, 94(3) (2002), 163-166.
[13] B. Prasad, A. Mourya, Quasi-concircular curvature tensor on a Riemannain manifold, News Bull. Cal. Math. Soc., 30 (2007), 5-6.
[14] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic signi cance, Yokohama Math. J., 18 (1970), 105-108.
[15] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., 24(13) (2007), 3339-3346.
[16] J. A. Schouten and E. R. Van Kampen, Zur Einbettungs-und Krummungstheorie nichtholonomer Gebilde, Math. Ann., 103 (1930), 752-783.
[17] A. A. Shaikh and H. Kundu, On equivalency of various geometric structures, Journal of Geometry, 105(1) (2014), 139-165.
[18] R. Sharma, Certain results on K-contact and (k; )-contact manifolds, J. of Geometry, 89 (2008), 138-147.
[19] A. Sil, Some Properties of -Sasakian manifolds, Palestine Journal of Mathematics, 6(2) (2017), 327-332.
[20] A. Singh, R. K. Pandey, A. Prakash and S. Khare, On a pseudo projective -Recurrent Sasakian Manifolds, J. of Math. and Computer Sciences, 14 (2015), 309-314.
[21] M. M. Tripathi and P. Gupta, On τ-curvature tensor in K-contact manifold and Sasakian manifold, International Electronic Journal of Mathematics, 04 (2011), 32-47.
[22] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222 vl [math. D. G.], (2008).
[23] G. Vranceanu, Sur quelques points de la theorie des espaces non holonomes, Bull. Fac. St. Cernauti, 5 (1931), 177-205.