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1. INTRODUCTION

The study of algebraic structures using the properties of graphs has been an exciting
research topic in the last twenty years. There are many papers on assigning a graph to
a ring, for instance see [3-18, 20]. Throughout this paper, all rings are assumed to be
commutative with unity. For a ring R, we denote by Z(R), Spec(R), Min(R) and Ass(R),
the set of all zero-divisors of R, the set of all prime ideals of R, the set of all minimal prime
ideals of R and the set of all associated prime ideals of R, respectively. A ring R is said to be
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reduced, if it has no non-zero nilpotent elements or equivalently Npecyin(r) P = (0). A subset
S of a commutative ring R is called a multiplicative closed subset (m.c.s) of R, if 1 € S and
a,b € S implies that ab € S. If S is an m.c.s of R, then we denote by Rg, the ring of fractions
of R. An ideal I of R is called annihilating-ideal if there exists a non-zero ideal J of R such
that IJ = (0). We use the notation A(R) for the set of annihilating-ideals of R. By the
annihilating-ideal graph AG(R) of R, we mean the graph with vertices A*(R) = A(R)\{(0)}
with two distinct vertices I and J adjacent if and only if I.J = (0). Consequently, AG(R)
is the empty graph if and only if R is an integral-domain. The concept of the annihilating-
ideal graph of a commutative ring was first introduced in [12]. Recently, set notion of the
annihilating-ideal graph has been extensively studied by various authors (see for instance
[1-6]).

Let G = (V, E) be an undirected graph with vertex set V and edge set E. We denotes the
degree of a vertex v in G by d(v). In addition, Ng(v) called the open neighborhood of v in
G, denoted the set of vertices of G which are adjacent to the vertex v of G and the closed
neighborhood of v, Ng[v] = Ng(v)U{v}. Also, for any set S C V(G), the open neighborhood of
S, N¢(S) is defined to be U,e s Ng(v) and the closed neighborhood of S is Ng[S] = Ng(S)US.
A set S C V of vertices in a graph G = (V, E) is called a dominating set if every vertex not
in S is joined to at least one member of S by some edge, or equivalently, Ng[S] = V(G).
The minimum cardinality of a dominating set in G is called the domination number of G
and is denoted by v(G). In addition, each dominating set of minimum cardinality is called
a v-set of G. Also, a total dominating set of a graph G is a set S of vertices of G such that
every vertex is adjacent to a vertex in S, or equivalently Ng(S) = V. The total domination
number of G, denoted by v:(G). We call a dominating set of cardinality 1¢(G) a ~yi-set. A
semi-total dominating set in AG(R) is a subset S C A*(R) such that S is a dominating
set for AG(R) and for any I € S there is a vertex J € S (not necessarily distinct) such
that IJ = (0). The semi-total domination number v5(AG(R)) of AG(R) is the minimum
cardinality of a semi-total dominating set in AG(R). It is clear that for every ring R,
Y(AG(R)) < 75t(AG(R)) < 27(AG(R)). A clique of a graph is a complete subgraph and the
number of vertices in a largest clique of graph G, denoted by w(G), is called the cliqgue number
of G. For a graph G, let x(G) denote the chromatic number of G, i.e, the minimal number
of colors which can be assigned to the vertices of G in such a way that any two adjacent
vertices have different colors. A dominating set S is said to be a clique dominating set, if
the induced subgraph (S) is a clique. The cligue domination number . (G) is the minimum
cardinality of clique dominating set of GG. Recall that graph G is connected, if there is a path
between every two distinct vertices. For distinct vertices = and y of G, let d(x,y) be the
length of the shortest path from z to y and if there is no such path we define d(z,y) = cc.
The diameter of G is diam(G) = Sup{d(z,y),x and y are distinict vertices of G}. A graph
with n vertices and no edge is denoted by N,,.

In [16], Nikanish and Maimani studied dominating sets of the annihilating-ideal graphs.
The purpose of this paper is to general study on properties of dominating sets and domination
numbers of the annihilating-ideal graphs of commutative rings. The organization of this
paper is as follows:

In section 2, we discuss some basic properties and example of dominating sets of AG(R), for
instants, we show that for each Artinian ring R, v5(AG(R)) < |Min(R)| and hence v(AG(R))



Domination in annihilating-ideal graphs of commutative rings 49

is finite (see Proposition 2.5). Also, if 7(AG(R)) is finite, then Z(R) = U ; Ann([;), where I’s
are ideals of R and the converse is also true if Ann(I;) € Spec(R), for 1 < i < n, consequently
for every Noetherian ring R, v(AG(R)) < oo (see Proposition 2.9). In Theorem 2.16, it is
shown that if R is a Noetherian ring, then 1 (AG(R)),vs:(AG(R)) € {1,2,n}, where n is
number of maximal element in Ass(R). Also, if R is a ring, where Max(R) is a finite set and
for each M € Max(R), 7(AG(Ram)) < oo, then v(AG(R)) is finite (see Theorem 2.12).

In section 3, we investigate domination numbers of the annihilating-ideal graph of ring R,
where R is a direct product of some rings. For instance, we show that, if R is an Artinian
ring such that R 2 Fy x Fs, where Fy, Fy are fields, then 7(AG(R)) = v4(AG(R)) =
vst(AG(R)) = n < w(AG(R)), where n is number of summands in a decomposition of R to
local rings (see Proposition 3.3). In Proposition 3.5, it is shown that if R is a ring which
is not integral domain and F' is a field, then v(AG(F x R)) = vs:(AG(R)) + 1. Finally,
in Theorem 3.6, we show that, if R = Ry x R, where R;, Ry are two non-zero rings
and vst(AG(R1)) = m , 7&(AG(R2)) = n, where AG(R;) and AG(R2) not empty. Then
v(AG(R)) € {1,2,m+ 1,n+1,n+m}.

2. SOME BASIC PROPERTIES OF DOMINATING SETS OF AG(R)

In this section we review some of the standard facts on domination numbers of the
annihilating-ideal graphs. First we begin with the following example which is a direct result
of [12] Proposition 1.3, Theorem 2.7 and Theorem 2.2, respectively.

Ezample 2.1.

(1) Let (R, M) be an Artinian local ring. Then it is clear that for each I € A*(R),
(AnnM)I = (0) and (AnnM)? = (0). Thus Y(AG(R)) = 75t (AG(R)) = 74(AG(R)) =
1 and 1 (AG(R)) < 2.

(2) Let R be a ring, where Z(R) is an ideal of R such that (Z(R))?> = (0), then
A(AG(R)) = 72 (AG(R)) = a(AG(R)) = 1 and 1(AG(R)) < 2.

(3) Let R be a ring. Then v(AG(R)) = 1 if and only if either R = F' x D, where F is
field and D is an integral domain or Z(R) = Ann(x), for some 0 # = € R.

Ezample 2.2. The correctness of this example follows immediately from [13, Corollary 2.4]
and [1, Theorem 2.3, corollary 11], respectively.
(1) Let R be a ring such that AG(R) = K, »,, where n,m € N, then v(AG(R)) = 1.
(2) Let R be a ring and AG(R) be a tree, then 7(AG(R)) < 2.
(3) Let R be a ring such that |Min(R)| = 1. If AG(R) is a bipartite graph, then
Y(AG(R)) = 1.

Let R be a ring. The spectrum graph of R, denoted by AGg(R), is the graph whose
vertices are the set Ag(R) = A*(R) N Spec(R) with distinct vertices P and @ adjacent if and
only if PQ = (0) (see [19]). The following propositions and theorems gives some properties
of domination numbers of AG(R) via AGs(R).

Proposition 2.3. Let R be a Noetherian ring. If AG4(R) is a connected graph, then
V(AG(R)) < 2.

Proof. Since AG(R) is a connected graph, by [19, Theorem 3.7], AG4(R) = K1, K or Kj o.
If AG4(R) = K or K, then by [19, Proposition 3.2], there exists a vertex of AG(R) which
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is adjacent to every other vertex of AG(R) and hence v(AG(R)) = 1. If AGs(R) = Ko, then
by [19, Proposition 3.6], AG(R) is a complete bipartite graph and hence v(AG(R)) < 2.

Theorem 2.4. Assume that R is a Noetherian ring such that [Min(R)| =1 and AGs(R) 2
Ny. Then the following statements are equivalent.

(1) AGs(R) is a connected graph.

(2) 7(AG(R)) = 1.

(3) Z(R) = Annz, for some 0 # z € R.

Proof. (1) = (2) Assume that AG4(R) is a connected graph and |[Min(R)| = 1. By the
same argument in previous proposition, if AG4(R) = K or K, then v(AG(R)) = 1. If
AGs(R) = Ko, then |Min(R)| = 1 and [19, Proposition 3.6] implies that AG(R) is an star
graph and v(AG(R)) = 1.

(2) = (3) Suppose that v(AG(R)) = 1, then by Example 2.1, either R = F'x D, where F is
field and D is an integral domain or Z(R) = Annz, for some 0 # = € R, since [Min(R)| = 1,
we can conclude that Z(R) = Annz, where 0 # x € R.

(3) = (1) Assume that Z(R) = Annz, for some 0 # = € R, so Rx is a vertex in AG(R),
which is adjacent to every other vertex of AG(R). If AGs(R) = K>, then there is nothing
to proof. So we may assume that |Ags(R)| # 2, thus by [19, Proposition 3.2], there is a
vertex of AG,(R) which is adjacent to every other vertex of AG,(R). Therefore, AG4(R) is
a connected graph. O

Theorem 2.5. Let R be an Artinian ring. Then
Vst (AG(R)) < [Min(R)].

Proof. Since R is an Artinian ring. Then by [19, Theorem 3.10], AG4(R) = K, AG5(R) = Ko
or AG4(R) = N, where n > 2. Suppose that AG4s(R) = K;, thus R is an Artinian
local ring and hence 75 (AG(R)) = 1 = |[Min(R)| (see Example 2.1 (1)). Now assume that
AG4(R) = Ka, so R = F| x Fy, where F1, Fy are fields, thus 74 (AG(R)) = 2 = |Min(R)|.
Finally assume that AG(R) = N,,, where n > 2 and V(AG4(R)) = {P1,...,P,}. In this
case, [Min(R)| = n. Since AG(R) is a connected graph (see [19, Theorem 2.1]) and P;P; # (0)
for 1 < i # j < n, there exists ideal I; € A*(R)\Spec(R) such that I; P, = (0). For each
P;, select one I; and let X = {[;}!' ;. It is clear that |X| < n = |[Min(R)|. We claim that
X is a semi-total dominating set for AG(R). Assume that J € A*(R)\(X U V(AG4(R)),
then by [19, Proposition 3.1], J C P;, for some 1 < i < n. Therefore I;J = (0) and hence
Y(AG(R)) < |X| = n = |[Min(R)|. Now assume that I € X, so there exists 1 < i < n such
that IP; = (0). Let 1 < j <nand i # j,so I C P;. On the other hand there exists J € X
such that JP; = (0), if I = J, then I? = (0), otherwise I.J = (0), therefore X is a semi-total
dominating set for AG(R) and hence 75 (AG(R)) < [Min(R)| = n. O

Corollary 2.6. For every Artinian ring R, v(AG(R)) is finite.

Let R be an Artinian ring, the following proposition gives a relationship between chromatic
number, clique number and diameter of AG(R), with v(AG(R)).

Proposition 2.7. Let R be an Artinian ring. Then
(1) If \(AG(R)) < 2, then 1(AG(R)) = 1.
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(2) If w(AG(R)) < 2, then v(AG(R)) = 1.
(3) If diam(AG(R)) < 2, then v(AG(R)) = 1.

Proof. (1) Suppose that x(AG(R)) = 1, since AG(R) is a connected graph (see [12, Theorem

2.1]), AG(R) = K; and hence v(AG(R)) = 1. Now assume that x(AG(R)) = 2 .By [13,

Corollary 2.4], either R = F} x F» or R is a local ring. In every cases, y(AG(R)) = 1.

(2) If w(AG(R)) = 1, then by [12, Theorem 2.1}, AG(R) = K; and hence v(AG(R)) = 1.

Now assume that w(AG(R)) = 2, so AG(R) is a triangle-free graph and hence [2, Corollary

2.5] implies that AG(R) is a bipartite graph. So by [13, Corollary 2.4], v(AG(R)) = 1.

(3) If diam(AG(R)) = O or 1, then it is clear that 7(AG(R)) = 1. Assume that diam(AG(R)) =
2. By [19, Theorem 4.2], AG4(R) = K; and hence Z(R) = Annz, where 0 # x € R (see [19,

Corollary 3.3]). Therefore v(AG(R)) = 1. O

The following example shows that the converse of Proposition 2.7 (1), (2) are not hold.

Zo| X
Ezxample 2.8. Let R = (;[,5)]

and A*(R) = {(X), (X?),(X?), (X"}, therefore {(X*)} is a dominating set of AG(R) and
hence v(AG(R)) =1, but x(AG(R)) = 3 = w(AG(R)).

. Then R is an Artinian local ring with maximal ideal M = (X)

In the following results, we characterize when v(AG(R)) is finite.

Proposition 2.9. Let R be a ring. If v(AG(R)) is finite, then Z(R) = U}, Ann(l;), where
I's are ideals of R. The converse is also true if Ann(l;) € Spec(R), for 1 <i < n.

Proof. Suppose that 7v(AG(R)) = m < oo and X = {Ji,...,Jn} be a dominating set of
AG(R). Assume that I € A*(R)\ X, then, there is 1 < j < m such that I C Ann(J;) and
hence Z(R) = (U?;l Ann(,]i)) U (U?;l Ji). On the other hand J; € A*(R) implies that
Ji € AnnJ for some ideal J of R. Therefore Z(R) = U}_, Ann([;), where I; is an ideal of R.
Now assume that Z(R) = U}",Ann(l;), where I’s are ideals of R and Ann(I;) € Spec(R),
for 1 <i<n. Let X ={[,...,I,}, we claim that X is a dominating set for AG(R). Let
J € A*(R\X. Since J C Z(R) = U} ;Ann(l;), by Prime Avoidance Theorem [18, Theorem
3.61], J C Ann(7;) for some 1 < i < n and hence JI; = (0), so 7(AG(R)) < oc. O

Corollary 2.10. For every Noetherian ring R, v(AG(R)) < oo.

Proof. Assume that R is a Noetherian ring. By [18, Corollary 9.36], Z(R) = Upcass(r)P-
Since R is a Noetherian ring, |Ass(R)| < oo and hence Z(R) = U, Ann(Rz;), where z; € R
for 1 < i < n. Therefore by Proposition 2.6, y(AG(R)) < co. O

The following theorem shows that if R is a semilocal ring (i.e. R has only finitely many
maximal ideals) and for each maximal ideal M of R, v(AG(Rx,)) is finite, then v(AG(R))

is finite. First we need the following lemma.

Lemma 2.11. [2, Lemma 10| Let R be a ring and I, J be two non-trivial ideals of R. If for
each M € Max(R), Ip = Jpm, then I = J.

Theorem 2.12. Let R be a ring, Max(R) is a finite set and for each M € Max(R),
Y(AG(RMm)) < 00, then y(AG(R)) < oo .



52 R. Taheri

Proof. Suppose that Max(R) is a finite set and Max(R) = {My,..., M,}. By contrary
suppose that 7v(AG(R)) = co and X = {J1, Ja, ... } is a infinite dominating set of AG(R). For
ideal My, let Xay, = {(J1) My, (J2) My, - - - |- Assume that Ty, € A*(Ruq, ), then I € A*(R)
and there is J; € X such that I.J; = (0), so Iaq, (Ji)m, = (0), and hence X vy, is a dominating
set for AG(Rpy, ), since Y(AG(Rpq,)) < oo, there exists infinite subset A; C N such that
for each i,5 € A1, (Ji)m, = (Jj)m,. Since v(AG(Rum,)) < oo, by same argument there
exists Az C N such that for every i, j € Aa, (Ji) m, = (Jj) m,. By continuing this procedure,
there exists infinite subset A C N such that for each i,j € A and M; for 1 < t < n,
(Ji)m, = (Jj)m,. Lemma 2.11 implies that X is a finite set, a contradiction and hence
v(AG(R)) < oo. O

In the next theorem, we characterize v,(AG(R)) and 75 (AG(R)) for Noetherian ring R.

First we need the following two lemmas.

Lemma 2.13. Let R be a ring such that v(AG(R)) = 1. Then

Proof. Suppose that v(AG(R)) = 1, so there is a vertex I € A*(R) such that I is adjacent
to every other vertex of AG(R) and hence by [12, Theorem 2.2], either R = F' x D, where
F is a field and D is an integral domain or Z(R) = Annzx for some 0 # = € R. If Z(R) =
Annz, then I = Rz, implies that 22 = 0 and hence S = {I} is a yg-set for AG(R), so
Yst(AG(R)) = 1 and 14 (AG(R)) < 2. Now assume that R = F' x D, in this case J = F x (0)
is a vertex in A*(R) which is adjacent to every other vertex of AG(R), where J2 # (0). Since
N{J} U{J} = A"(R), 7:(AG(R)) = %(AG(R)) = 2. O

Corollary 2.14. For every local ring R, if y(AG(R)) = 1, then v (AG(R)) = 1.
Proof. 1t is clear with Lemma 2.13. O

Lemma 2.15. [10, Lemma 3.6] Let x and y be elements in R such that Ann(Rzx) and
Ann(Ry) are two distinct prime ideals of R. Then xy = 0.

Theorem 2.16. Let R be a Noetherian ring. Then
1(AG(R)),7s(AG(R)) € {1,2,n}
where n is number of maximal element in Ass(R).

Proof. If v(AG(R)) = 1, then by Lemma 2.13, we have done. Then we assume that
Y(AG(R)) # 1 and X = {Py,...,P,} is the set of maximal element of Ass(R). By [18,
Corollary 9.36], Z(R) = U™ P, where P, = Ann(Rxz;). Let X = {Rxz;} ;. We claim
that X is a y;-set and a 7g-set for AG(R). Suppose that I € A*(R), by Prime Avoid-
ance Theorem, for some 1 < ¢ < n, I C Ann(Rz;) and hence I(Rz;) = (0). By Lemma
2.10 for each 1 < 4,5 < n, (Rx;)(Rz;) = (0) and hence X is a semi-total dominating
set of AG(R). Now assume that v (AG(R)) = m. It is clear that m < n and there ex-
ists Y = {[1,Ir...,I,} € A*(R) such that for each J € A*(R)\Y, JI; = (0), for some
1 <i<m,soJ C Ann([;). Also for each I; € Y, I; C Ann(I}), for some 1 < j < n, thus
Ui P = Z(R) = UL Ann(l;). By Prime Avoidance Theorem, for each 1 < j < m, there
is 1 <@ < nsuch that Ann(l;) C P, therefore Z(R) = U7, P;. Now assume that K € X,
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then for some 1 < j < m, K C P;. Since K is maximal in Ass(R), so K = P; and hence
n = |X]| < |Y| = m, therefore 75 (AG(R)) = v(AG(R)) = n. O

We conclude this section with the following proposition.

Proposition 2.17. Let R be a ring and S be an m.c.s of ring R containing no zero-divisors.
Then v (AG(Rs)) < va(AG(R)). Moreover v, (AG(Rs)) = 7a(AG(R)), when R is a re-

duced ring.

Proof. Since for each Ig, Jg € A*(Rg), where Ig # Jg and IgJg = (0), we have I # J and
IJ = (0), so we can conclude that v, (AG(Rs)) > 74(AG(R)). Now assume that R is a
reduced ring. We claim that for each I,J € A*(R) with I # J and IJ = (0), Is # Jg and
IsJs = (0). By contrary suppose that for some I,J € A*(R) such that I # J, we have
Is = Jg. Therefore 12 = Isls = IsJs = (IJ)s = (0) and hence Ig = (0) a contradiction.
So Y (AG(Rg)) < 74 (AG(R)) and hence equality is hold. O

3. DOMINATING NUMBERS OF THE ANNIHILATING-IDEAL GRAPH OF A DIRECT PRODUCT
OF RINGS

In this section we investigate domination numbers of ring R, where R is a direct product

of rings. We begin with the following proposition.

Proposition 3.1. Let R be a ring such that R = Ry X Ro, where R1 and Ry are not integral
domain. Then vst(AG(R)) < vst(AG(R1)) + st (AG(R2)).

Proof. Let v5(AG(R1)) = 0o or vst(AG(R2)) = oo, then there is nothing to proof. Assume
that v5:(AG(R1)) = m and 75 (AG(R2)) = n, where A ={I1,..., I} and B={J;,...,J,}
are vg-set for AG(R;) and AG(R3), respectively. Let Ay = {I x (0); I € A} and B; =
{(0) x J; J € B}. We claim that X = A; U Ay is a semi-total dominating set for R.
Assume that K x L € A*(R\X. If either K = (0) or L = (0), then it is clear that K x L
is adjacent to a vertex in X. We may assume that K, L # (0). Suppose that K = Ry,
since L € A*(Ry) for some 1 < t < n, there exists J; € B such that LJ; = (0). This
implise that (R; x L)((0) x J;) = (0) x (0) and hence R; x L is adjacent to a vertex in
X. For case L = Ry we have a similar argument. Now assume that K # (0), Ry and
L # (0), Ry. Since K € A*(R;) for some J; € B, where 1 < t < n, LJ; = (0) and
(K xL)((0) x J¢) = (0) x (0). On the other hand it is clear that every vertex in X is adjacent
to a vertex in X, so v5t(AG(R)) < |X| =m + n. O

The following example shows that the converse of the Proposition 3.1 is not hold.

Ezxample 3.2. Let Ry = Z4, Ro = Zg and R = Ry x Ry. It is clear that A = {(2)} and
B = {(2), (3)} are yg-set for AG(R;) and AG(Rs), respectively. Also X = {(2)x(0), (0)x(3)}
is a yg-set for AG(R). Therefore v5(AG(R1)) = 1, 75t (AG(R2)) = 2 and 75 (AG(R)) = 2.

Proposition 3.3. Let R be an Artinian ring such that R 2 Fy X Fy, where Fy, Fy are fields.
Then
Y(AG(R)) = 71 (AG(R)) = 7:t(AG(R)) = n < w(AG(R))

, where n is number of summands in a decomposition of R to local rings.
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Proof. First assume that R is a local ring. Since R is an Artinian ring, Example 2.1 (1)
implies that 7(AG(R)) = 74(AG(R)) = 7s(AG(R)) = 1 = n < w(AG(R)). Now assume
that R is an Artinian ring which is not local, by [9, Theorem 8.7], R & R; X -+ X Ry,
where n > 2 and R;s are Artinian local ring with maximal ideal M;, for 1 <@ < n. It is
sufficient to proof for case n = 2 (for n > 3, we have a similar argument). Let R = R; x Ry,
then Max(R) = {M; X Ry, R1 x Ms}. Since R is an Artinian ring by [12, Proposition 1.3],
(M1 X Rs), (Ry x M3) € A*(R), where (M; x Rg)(R1 x M3) # (0) x (0). It is clear that there
is nothing non-zero ideal of R which is adjacent to M; x Ry and R; x My. Since AG(R) is a
connected graph (see [12, Theorem 2.1]), there are two ideals I; x (0) and (0) x J; such that
I x (0) € Ann(M; x Ry) and (0) x J; € Ann(R; x M3). Now assume that I x J € A*(R),
then I x J C (M x R2) N (Ry x Ma), so I x JC Ann(; x (0)) N Ann((0) x J1) and hence
X ={I; x(0),(0) x Ji } is a dominating set of AG(R), then v(AG(R)) < 2. Since there is no
any vertex of AG(R) which is adjacent to every other vertex of AG(R), then v(AG(R)) = 2.
Now Assume that G is a subgraph of AG(R), such that V(G) = X. Since G is a complete
graph, X is a clique dominating set and hence 7(AG(R)) = 74(AG(R)) = 7(AG(R)) =
2=n < w(AG(R)). O

Corollary 3.4. Let R be a non-domain Artinian reduced ring. Then

(1) If R= Fy x Fy, where Fy, Fy are fields, then v (AG(R)) = w(AG(R)) = 2.
(2) If R 2 Fy x Fy, where Fy, Fy are fields, then

V(AG(R)) = 15t(AG(R)) = 71 (AG(R)) = w(AG(R))

Proof. (1) It is clear.

(2) Since R is an Artinian reduced ring, it is well known that R = Fy x --- x F,,, where F}s
are fields and n > 3. Let X = {F} x (0) x --- x (0),...,(0) x --- x Fy, }. It is clear that X is
a y-set and maximal clique for AG(R) and hence 7(AG(R)) = 7st(AG(R)) = 74 (AG(R)) =
w(AG(R)) =n. O

Proposition 3.5. Let R be a ring which is not integral domain and F be a field. Then
VAG(F x R)) = 7st(AG(R)) + 1

Proof. Assume that 74 (AG(R)) =n and X = {[;,...,I,} is a yg-set for AG(R). It is clear
that Y = {(0) x I;, I; € X}U{F x (0)} is a dominating set for AG(F x R). Since |Y|=n+1,
Y(AG(FxR)) < n+1. Now assume that A is a y-set for AG(F'xR). Let B ={I,(0)xI € A}.
We claim that B is a semi-total dominating set for AG(R). Assume that J € A*(R)\ B, then
F x J e A*(F x R), so there exists I; x J; € A such that I x J; € Ann(F x J) and hence
I = J1J = (0), thus J; € B. Therefore B is a dominating set for AG(R). Now suppose that
I € B,so F'x 1 e A*(F x R), thus there is I; x J; € A such that I; x J; C Ann(F x I),
thus Iy = IJ; = (0) and J; € B and IJ; = (0). Therefore B is a semi-total dominating
set for AG(R). Now we claim that |B| < |A|. By contrary suppose that |A| = |B].

is clear that (0) x R € A*(F x R), but for each I € B, ((0) x R)((0) x I) # (0) x (0 )
a contradiction. Therefore |A| = v(AG(F x R)) > |B| + 1 > 74 (AG(R)) + 1 and hence
A(AG(F x R)) = 1u(AG(R)) + 1. 0

We conclude this paper with the following theorem.
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Theorem 3.6. Let R = R; X Ry, where Ry and Ro are two non-zero rings such that
Vst(AG(R1)) = m , vst(AG(R2)) = n. Then

Y(AG(R)) € {1,2,m + 1,n+1,n+m}

Proof. We consider all cases for A*(R;) and A*(Rs). First assume that A*(R1) = A*(Ry) =0
and I x J € A*(R). It is clear that either, I = (0) or J = (0) and hence X = {R; x (0), (0) x
Ry} is a dominating set for AG(R)and thus v(AG(R)) < 2. Now assume that A*(Ry) # ()
and A*(Rg) = (. In this case, A*(R) = {I x J, I € A*(Ry),J is an ideal of Ro}U{(0) x J : J
is an non-zero ideal of R} U{I x (0), where (0) # I ¢ A*(R1)}. Suppose that A is a 7yg-set
for Ry and B={I x (0): I € A} U{(0) x Ry}. It is clear that B is a dominating set (also
a semi-total dominating set) for AG(R) and hence v(AG(R)) < |A|+1=m+ 1. Let C be
a v-set for AG(R) and D = {I, I x (0) € C}. We claim that D is a semi-total dominating
set for AG(Ry). Assume that I € A*(R;), then I x Ry € A*(R). Since C is a semi-total
dominating set for AG(R), there exists I; x J; € C such that I} x J; C Ann(I x Ry), so
J1 = (0) and II; = (0), then I; € D and hence D is a dominating set for AG(R). Let I € D,
so I x Ry € A*(R) and hence there exists L x K € C such that I x Ry C Ann(L x K),
so K = (0) and LI = (0), thus L € D and hence D is a semi-total dominating set for
AG(Ry), therefore v5(AG(R1)) < |D| < |C| = y(AG(R)). If |C| = v(AG(Ry)), then
C={Ix(0): I €D} and Ry x (0) is a vertex of AG(R) such that for each L x K € C,
(R1 x (0))(L x K) # (0) x (0), a contradiction, so y(AG(R)) = vst(AG(R1)) + 1 and hence
Y(AG(R)) = m + 1. For case A*(Ry) = 0 and A*(R2) # 0, by same argument we have
v(AG(R)) = n + 1. Finally assume that A*(R;) # 0 and A*(R2) # 0. Suppose that A
is a y-set for AG(R) and B = {I, I x (0) € A} and C = {J, (0) x J € A}. By same
argument in before case, B is a semi total dominating set for AG(R;) and C is a semi-total
dominating set for AG(R3), consequently m = v, (AG(R1)) < |B| and n = 74 (AG(R2)) <
|C|. Therefore v(AG(R)) = |A| > |B| + |C| = m + n. On the other hand by Proposition
3.1, y(AG(R)) < 7st(AG(R)) < m +n. Thus y(AG(R)) = m + n. Therefore in general,
Y(AG(R)) € {1,2,m+1,n+1,n+ m}. O

REFERENCES

[1] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shahsavari, Minimal prime ideals and cycles
in annihilating-ideal graphs, Rocky Mountain J. Math., 5 (2013), 1415-1425.

[2] G. Aalipour, S. Akbari, R. Nikandish, M. J. Nikmehr and F. Shahsavari,On the coloring of the
annshilating-ideal graph of a commutative ring, Discrete Math., 312 (2012), 2620-2626.

[3] G. Aalipour, S. Akbari, M. Behboodi, R. Nikandish and M. J. Nikmehr and F. Shahsavari, The classifi-
cation of the annihilating-ideal graph of a commutative ring, Algebra Colloquium, 21 (2014), 249-256.

[4] F. Aliniaeifard and M. Behboodi,Rings whose annihilating-ideal graphs have positive genus, J. Algebra
Appl., 11, 1250049 (2012), [13 pages].

[5] F. Aliniaeifard, M. Behboodi, E. Mehdi-Nezhad and A. M. Rahimi, The annihilating-ideal graph of a
commutative ring with respect to an ideal, Commun. Algebra, 42 (2014), 2269-2284.

[6] F. Aliniaeifard, M. Behboodi, E. Mehdi-Nezhad and A. M. Rahimi, The annihilating-ideal graph of a
commutative ring with respect to an ideal, Communication in Algebra, 42(5) (2014), 2269-2284.

[7] D.F. Anderson and A. Badawi, The total graph of a commutative ring, J. Algebra, 320 (2008), 2706-2719.

[8] D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra, 217
(1999), 434-447.



56

[9]

R. Taheri

M. F. Atiyah, [.G. Macdonald, Introduction to Commutative Algebra, Addison-Wesley Publishing Com-
pany, London, 1969.

1. Beak, Coloring of commutative rings, J. Algebra, 116(1) (1988), 208-266.

M. Behboodi,Zero divisor graphs for modules over commutative rings, J. Commut. Algebra, 4 (2012),
175-197.

M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10 (2011),
727-739.

M. Behboodi, Z. Rakeei, The annihilating-ideal graph of commutative rings I, J. Algebra Appl., 10 (2011)
740-753.

I. Chakrabarty, S. Ghosh, T. K. Mukherjee and M. K. Sen, Intersection graphs of ideals of rings, Discrete
Math., 309 (2009), 5381-5392.

S. Kiani, H. R. Maimani and R. Nikandish,Some Results On the Domination Number of a Zero-divisor
Graph, Canad. Math. Bull. Vol., 57(3) (2014), 573-578.

R. Nikandish and H.R. Maimani, Dominatig sets of the annihilating-ideal graphs, Electronic Notes Discrete
Math., 45 (2014), 17.22.

S. P. Redmond, An ideal-based zero-divisor graph of a commutative ring, Comm. Algebra, 31(9) (2003),
4425-4443.

R. Y. Sharp, Steps in Commutative Algebra, 2nd end., London Mathematical Society Student Texts, Vol.
51 (cambridge University Press, Cambridge, 1990).

R. Taheri, M. Behboodi and A. Tehranian, The spectrum subgraph of the annihilating-ideal graph of a
commutative Ting, J. Algebra Appl., 14 (2015) .

R. Taheri, A. Tehranian, The principal ideal subgraph of the annihilating-ideal graph of commutative
rings, J. Algebra structures Appl., 3(1) (2016), 39-52.



	1. Introduction
	2. Some basic properties of dominating sets of AG(R)
	3. Dominating numbers of the annihilating-ideal graph of a direct product of rings
	References

