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ABSTRACT

Let R be a commutative ring with identity and let A(R)
be the set of all ideals of R with non-zero annihila-
tors. The annihilating-ideal graph of R is defined as the
graph AG(R) with the vertex set A∗(R) = A(R)⧹{(0)}
and two distinct vertices I and J are adjacent if and
only if IJ = (0). Let G = (V,E) be a graph. A dom-
ination set for G is a subset S of V such that every
vertex not in S is joined to at least one member of S by
some edge. The domination number γ(G) is the min-
imum cardinality among the dominating sets of G. In
this paper, we study and characterize the dominating
sets and domination numbers of the annihilating-ideal
graph AG(R) for a commutative ring R.
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1. Introduction

The study of algebraic structures using the properties of graphs has been an exciting

research topic in the last twenty years. There are many papers on assigning a graph to

a ring, for instance see [3-18, 20]. Throughout this paper, all rings are assumed to be

commutative with unity. For a ring R, we denote by Z(R), Spec(R), Min(R) and Ass(R),

the set of all zero-divisors of R, the set of all prime ideals of R, the set of all minimal prime

ideals of R and the set of all associated prime ideals of R, respectively. A ring R is said to be
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reduced, if it has no non-zero nilpotent elements or equivalently ∩P∈Min(R)P = (0). A subset

S of a commutative ring R is called a multiplicative closed subset (m.c.s) of R, if 1 ∈ S and

a, b ∈ S implies that ab ∈ S. If S is an m.c.s of R, then we denote by RS , the ring of fractions

of R. An ideal I of R is called annihilating-ideal if there exists a non-zero ideal J of R such

that IJ = (0). We use the notation A(R) for the set of annihilating-ideals of R. By the

annihilating-ideal graph AG(R) of R, we mean the graph with vertices A∗(R) = A(R)⧹{(0)}
with two distinct vertices I and J adjacent if and only if IJ = (0). Consequently, AG(R)

is the empty graph if and only if R is an integral-domain. The concept of the annihilating-

ideal graph of a commutative ring was first introduced in [12]. Recently, set notion of the

annihilating-ideal graph has been extensively studied by various authors (see for instance

[1-6]).

Let G = (V,E) be an undirected graph with vertex set V and edge set E. We denotes the

degree of a vertex v in G by d(v). In addition, NG(v) called the open neighborhood of v in

G, denoted the set of vertices of G which are adjacent to the vertex v of G and the closed

neighborhood of v, NG[v] = NG(v)∪{v}. Also, for any set S ⊆ V (G), the open neighborhood of

S, NG(S) is defined to be ∪v∈SNG(v) and the closed neighborhood of S is NG[S] = NG(S)∪S.
A set S ⊆ V of vertices in a graph G = (V,E) is called a dominating set if every vertex not

in S is joined to at least one member of S by some edge, or equivalently, NG[S] = V (G).

The minimum cardinality of a dominating set in G is called the domination number of G

and is denoted by γ(G). In addition, each dominating set of minimum cardinality is called

a γ-set of G. Also, a total dominating set of a graph G is a set S of vertices of G such that

every vertex is adjacent to a vertex in S, or equivalently NG(S) = V . The total domination

number of G, denoted by γt(G). We call a dominating set of cardinality γt(G) a γt-set. A

semi-total dominating set in AG(R) is a subset S ⊆ A∗(R) such that S is a dominating

set for AG(R) and for any I ∈ S there is a vertex J ∈ S (not necessarily distinct) such

that IJ = (0). The semi-total domination number γst(AG(R)) of AG(R) is the minimum

cardinality of a semi-total dominating set in AG(R). It is clear that for every ring R,

γ(AG(R)) ⩽ γst(AG(R)) ⩽ 2γ(AG(R)). A clique of a graph is a complete subgraph and the

number of vertices in a largest clique of graph G, denoted by ω(G), is called the clique number

of G. For a graph G, let χ(G) denote the chromatic number of G, i.e, the minimal number

of colors which can be assigned to the vertices of G in such a way that any two adjacent

vertices have different colors. A dominating set S is said to be a clique dominating set, if

the induced subgraph ⟨S⟩ is a clique. The clique domination number γcl(G) is the minimum

cardinality of clique dominating set of G. Recall that graph G is connected, if there is a path

between every two distinct vertices. For distinct vertices x and y of G, let d(x, y) be the

length of the shortest path from x to y and if there is no such path we define d(x, y) = ∞.

The diameter of G is diam(G) = Sup{d(x, y), x and y are distinict vertices of G}. A graph

with n vertices and no edge is denoted by Nn.

In [16], Nikanish and Maimani studied dominating sets of the annihilating-ideal graphs.

The purpose of this paper is to general study on properties of dominating sets and domination

numbers of the annihilating-ideal graphs of commutative rings. The organization of this

paper is as follows:

In section 2, we discuss some basic properties and example of dominating sets of AG(R), for

instants, we show that for each Artinian ring R, γst(AG(R)) ⩽ |Min(R)| and hence γ(AG(R))
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is finite (see Proposition 2.5). Also, if γ(AG(R)) is finite, then Z(R) = ∪n
i=1Ann(Ii), where I

,
is

are ideals of R and the converse is also true if Ann(Ii) ∈ Spec(R), for 1 ⩽ i ⩽ n, consequently

for every Noetherian ring R, γ(AG(R)) < ∞ (see Proposition 2.9). In Theorem 2.16, it is

shown that if R is a Noetherian ring, then γt(AG(R)), γst(AG(R)) ∈ {1, 2, n}, where n is

number of maximal element in Ass(R). Also, if R is a ring, where Max(R) is a finite set and

for each M ∈ Max(R), γ(AG(RM)) < ∞, then γ(AG(R)) is finite (see Theorem 2.12).

In section 3, we investigate domination numbers of the annihilating-ideal graph of ring R,

where R is a direct product of some rings. For instance, we show that, if R is an Artinian

ring such that R ≇ F1 × F2, where F1, F2 are fields, then γ(AG(R)) = γcl(AG(R)) =

γst(AG(R)) = n ⩽ ω(AG(R)), where n is number of summands in a decomposition of R to

local rings (see Proposition 3.3). In Proposition 3.5, it is shown that if R is a ring which

is not integral domain and F is a field, then γ(AG(F × R)) = γst(AG(R)) + 1. Finally,

in Theorem 3.6, we show that, if R = R1 × R2, where R1, R2 are two non-zero rings

and γst(AG(R1)) = m , γst(AG(R2)) = n, where AG(R1) and AG(R2) not empty. Then

γ(AG(R)) ∈ {1, 2,m+ 1, n+ 1, n+m}.

2. Some basic properties of dominating sets of AG(R)

In this section we review some of the standard facts on domination numbers of the

annihilating-ideal graphs. First we begin with the following example which is a direct result

of [12] Proposition 1.3, Theorem 2.7 and Theorem 2.2, respectively.

Example 2.1.

(1) Let (R,M) be an Artinian local ring. Then it is clear that for each I ∈ A∗(R),

(AnnM)I = (0) and (AnnM)2 = (0). Thus γ(AG(R)) = γst(AG(R)) = γcl(AG(R)) =

1 and γt(AG(R)) ⩽ 2.

(2) Let R be a ring, where Z(R) is an ideal of R such that (Z(R))2 = (0), then

γ(AG(R)) = γst(AG(R)) = γcl(AG(R)) = 1 and γt(AG(R)) ⩽ 2.

(3) Let R be a ring. Then γ(AG(R)) = 1 if and only if either R = F ×D, where F is

field and D is an integral domain or Z(R) = Ann(x), for some 0 ̸= x ∈ R.

Example 2.2. The correctness of this example follows immediately from [13, Corollary 2.4]

and [1, Theorem 2.3, corollary 11], respectively.

(1) Let R be a ring such that AG(R) ∼= Kn,m, where n,m ∈ N, then γ(AG(R)) = 1.

(2) Let R be a ring and AG(R) be a tree, then γ(AG(R)) ⩽ 2 .

(3) Let R be a ring such that |Min(R)| = 1. If AG(R) is a bipartite graph, then

γ(AG(R)) = 1.

Let R be a ring. The spectrum graph of R, denoted by AGs(R), is the graph whose

vertices are the set As(R) = A∗(R)∩ Spec(R) with distinct vertices P and Q adjacent if and

only if PQ = (0) (see [19]). The following propositions and theorems gives some properties

of domination numbers of AG(R) via AGs(R).

Proposition 2.3. Let R be a Noetherian ring. If AGs(R) is a connected graph, then

γ(AG(R)) ⩽ 2.

Proof. Since AGs(R) is a connected graph, by [19, Theorem 3.7], AGs(R) ∼= K1, K2 or K1,∞.

If AGs(R) ∼= K1 or K1,∞, then by [19, Proposition 3.2], there exists a vertex of AG(R) which
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is adjacent to every other vertex of AG(R) and hence γ(AG(R)) = 1. If AGs(R) ∼= K2, then

by [19, Proposition 3.6], AG(R) is a complete bipartite graph and hence γ(AG(R)) ⩽ 2.

□

Theorem 2.4. Assume that R is a Noetherian ring such that |Min(R)| = 1 and AGs(R) ≇
N2. Then the following statements are equivalent.

(1) AGs(R) is a connected graph.

(2) γ(AG(R)) = 1.

(3) Z(R) = Annx, for some 0 ̸= x ∈ R.

Proof. (1) ⇒ (2) Assume that AGs(R) is a connected graph and |Min(R)| = 1. By the

same argument in previous proposition, if AGs(R) ∼= K1 or K1,∞, then γ(AG(R)) = 1. If

AGs(R) ∼= K2, then |Min(R)| = 1 and [19, Proposition 3.6] implies that AG(R) is an star

graph and γ(AG(R)) = 1.

(2) ⇒ (3) Suppose that γ(AG(R)) = 1, then by Example 2.1, either R = F×D, where F is

field and D is an integral domain or Z(R) = Annx, for some 0 ̸= x ∈ R, since |Min(R)| = 1,

we can conclude that Z(R) = Annx, where 0 ̸= x ∈ R.

(3) ⇒ (1) Assume that Z(R) = Annx, for some 0 ̸= x ∈ R, so Rx is a vertex in AG(R),

which is adjacent to every other vertex of AG(R). If AGs(R) ∼= K2, then there is nothing

to proof. So we may assume that |As(R)| ̸= 2, thus by [19, Proposition 3.2], there is a

vertex of AGs(R) which is adjacent to every other vertex of AGs(R). Therefore, AGs(R) is

a connected graph. □

Theorem 2.5. Let R be an Artinian ring. Then

γst(AG(R)) ⩽ |Min(R)|.

Proof. SinceR is an Artinian ring. Then by [19, Theorem 3.10], AGs(R) ∼= K1, AGs(R) ∼= K2

or AGs(R) ∼= Nn, where n ⩾ 2. Suppose that AGs(R) ∼= K1, thus R is an Artinian

local ring and hence γst(AG(R)) = 1 = |Min(R)| (see Example 2.1 (1)). Now assume that

AGs(R) ∼= K2, so R ∼= F1 × F2, where F1, F2 are fields, thus γst(AG(R)) = 2 = |Min(R)|.
Finally assume that AGs(R) ∼= Nn, where n ⩾ 2 and V (AGs(R)) = {P1, . . . , Pn}. In this

case, |Min(R)| = n. Since AG(R) is a connected graph (see [19, Theorem 2.1]) and PiPj ̸= (0)

for 1 ⩽ i ̸= j ⩽ n, there exists ideal Ii ∈ A∗(R)⧹Spec(R) such that IiPi = (0). For each

Pi, select one Ii and let X = {Ii}ni=1. It is clear that |X| ⩽ n = |Min(R)|. We claim that

X is a semi-total dominating set for AG(R). Assume that J ∈ A∗(R)⧹(X ∪ V (AGs(R)),

then by [19, Proposition 3.1], J ⊆ Pi, for some 1 ⩽ i ⩽ n. Therefore IiJ = (0) and hence

γ(AG(R)) ⩽ |X| = n = |Min(R)|. Now assume that I ∈ X, so there exists 1 ⩽ i ⩽ n such

that IPi = (0). Let 1 ⩽ j ⩽ n and i ̸= j, so I ⊆ Pj . On the other hand there exists J ∈ X

such that JPj = (0), if I = J , then I2 = (0), otherwise IJ = (0), therefore X is a semi-total

dominating set for AG(R) and hence γst(AG(R)) ⩽ |Min(R)| = n. □

Corollary 2.6. For every Artinian ring R, γ(AG(R)) is finite.

Let R be an Artinian ring, the following proposition gives a relationship between chromatic

number, clique number and diameter of AG(R), with γ(AG(R)).

Proposition 2.7. Let R be an Artinian ring. Then

(1) If χ(AG(R)) ⩽ 2, then γ(AG(R)) = 1.
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(2) If ω(AG(R)) ⩽ 2, then γ(AG(R)) = 1.

(3) If diam(AG(R)) ⩽ 2, then γ(AG(R)) = 1.

Proof. (1) Suppose that χ(AG(R)) = 1, since AG(R) is a connected graph (see [12, Theorem

2.1]), AG(R) ∼= K1 and hence γ(AG(R)) = 1. Now assume that χ(AG(R)) = 2 .By [13,

Corollary 2.4], either R ∼= F1 × F2 or R is a local ring. In every cases, γ(AG(R)) = 1.

(2) If ω(AG(R)) = 1, then by [12, Theorem 2.1], AG(R) ∼= K1 and hence γ(AG(R)) = 1.

Now assume that ω(AG(R)) = 2, so AG(R) is a triangle-free graph and hence [2, Corollary

2.5] implies that AG(R) is a bipartite graph. So by [13, Corollary 2.4], γ(AG(R)) = 1.

(3) If diam(AG(R)) = 0 or 1, then it is clear that γ(AG(R)) = 1. Assume that diam(AG(R)) =

2. By [19, Theorem 4.2], AGs(R) ∼= K1 and hence Z(R) = Annx, where 0 ̸= x ∈ R (see [19,

Corollary 3.3]). Therefore γ(AG(R)) = 1. □

The following example shows that the converse of Proposition 2.7 (1), (2) are not hold.

Example 2.8. Let R =
Z2[X]

(X5)
. Then R is an Artinian local ring with maximal ideal M = (X)

and A∗(R) = {(X), (X2), (X3), (X4)}, therefore {(X4)} is a dominating set of AG(R) and

hence γ(AG(R)) = 1, but χ(AG(R)) = 3 = ω(AG(R)).

In the following results, we characterize when γ(AG(R)) is finite.

Proposition 2.9. Let R be a ring. If γ(AG(R)) is finite, then Z(R) = ∪n
i=1Ann(Ii), where

I ,is are ideals of R. The converse is also true if Ann(Ii) ∈ Spec(R), for 1 ⩽ i ⩽ n.

Proof. Suppose that γ(AG(R)) = m < ∞ and X = {J1, . . . , Jm} be a dominating set of

AG(R). Assume that I ∈ A∗(R)⧹X, then, there is 1 ⩽ j ⩽ m such that I ⊆ Ann(Ji) and

hence Z(R) =
(
∪m
i=1 Ann(Ji)

)
∪
(
∪m
i=1 Ji

)
. On the other hand Ji ∈ A∗(R) implies that

Ji ⊆ AnnJ for some ideal J of R. Therefore Z(R) = ∪n
i=1Ann(Ii), where Ii is an ideal of R.

Now assume that Z(R) = ∪n
i=1Ann(Ii), where I ,is are ideals of R and Ann(Ii) ∈ Spec(R),

for 1 ⩽ i ⩽ n. Let X = {I1, . . . , In}, we claim that X is a dominating set for AG(R). Let

J ∈ A∗(R)⧹X. Since J ⊆ Z(R) = ∪n
i=1Ann(Ii), by Prime Avoidance Theorem [18, Theorem

3.61], J ⊆ Ann(Ii) for some 1 ⩽ i ⩽ n and hence JIi = (0), so γ(AG(R)) < ∞. □

Corollary 2.10. For every Noetherian ring R, γ(AG(R)) < ∞.

Proof. Assume that R is a Noetherian ring. By [18, Corollary 9.36], Z(R) = ∪P∈Ass(R)P .

Since R is a Noetherian ring, |Ass(R)| < ∞ and hence Z(R) = ∪n
i=1Ann(Rxi), where xi ∈ R

for 1 ⩽ i ⩽ n. Therefore by Proposition 2.6, γ(AG(R)) < ∞. □

The following theorem shows that if R is a semilocal ring (i.e. R has only finitely many

maximal ideals) and for each maximal ideal M of R, γ(AG(RM)) is finite, then γ(AG(R))

is finite. First we need the following lemma.

Lemma 2.11. [2, Lemma 10] Let R be a ring and I, J be two non-trivial ideals of R. If for

each M ∈ Max(R), IM = JM, then I = J .

Theorem 2.12. Let R be a ring, Max(R) is a finite set and for each M ∈ Max(R),

γ(AG(RM)) < ∞, then γ(AG(R)) < ∞ .
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Proof. Suppose that Max(R) is a finite set and Max(R) = {M1, . . . ,Mn}. By contrary

suppose that γ(AG(R)) = ∞ andX = {J1, J2, . . . } is a infinite dominating set of AG(R). For

ideal M1, let XM1 = {(J1)M1 , (J2)M1 , . . . }. Assume that IM1 ∈ A∗(RM1), then I ∈ A∗(R)

and there is Jt ∈ X such that IJt = (0), so IM1(Jt)M1 = (0), and hence XM1 is a dominating

set for AG(RM1), since γ(AG(RM1)) < ∞, there exists infinite subset A1 ⊆ N such that

for each i, j ∈ A1, (Ji)M1 = (Jj)M1 . Since γ(AG(RM2)) < ∞, by same argument there

exists A2 ⊆ N such that for every i, j ∈ A2, (Ji)M2 = (Jj)M2 . By continuing this procedure,

there exists infinite subset A ⊆ N such that for each i, j ∈ A and Mt for 1 ⩽ t ⩽ n,

(Ji)Mt = (Jj)Mt . Lemma 2.11 implies that X is a finite set, a contradiction and hence

γ(AG(R)) < ∞. □

In the next theorem, we characterize γt(AG(R)) and γst(AG(R)) for Noetherian ring R.

First we need the following two lemmas.

Lemma 2.13. Let R be a ring such that γ(AG(R)) = 1. Then

γt(AG(R)), γst(AG(R)) ∈ {1, 2}.

Proof. Suppose that γ(AG(R)) = 1, so there is a vertex I ∈ A∗(R) such that I is adjacent

to every other vertex of AG(R) and hence by [12, Theorem 2.2], either R = F ×D, where

F is a field and D is an integral domain or Z(R) = Annx for some 0 ̸= x ∈ R. If Z(R) =

Annx, then I = Rx, implies that x2 = 0 and hence S = {I} is a γst-set for AG(R), so

γst(AG(R)) = 1 and γt(AG(R)) ⩽ 2. Now assume that R = F ×D, in this case J = F × (0)

is a vertex in A∗(R) which is adjacent to every other vertex of AG(R), where J2 ̸= (0). Since

N({J}) ∪ {J} = A∗(R), γst(AG(R)) = γt(AG(R)) = 2. □

Corollary 2.14. For every local ring R, if γ(AG(R)) = 1, then γst(AG(R)) = 1.

Proof. It is clear with Lemma 2.13. □

Lemma 2.15. [10, Lemma 3.6] Let x and y be elements in R such that Ann(Rx) and

Ann(Ry) are two distinct prime ideals of R. Then xy = 0.

Theorem 2.16. Let R be a Noetherian ring. Then

γt(AG(R)), γst(AG(R)) ∈ {1, 2, n}

where n is number of maximal element in Ass(R).

Proof. If γ(AG(R)) = 1, then by Lemma 2.13, we have done. Then we assume that

γ(AG(R)) ̸= 1 and X = {P1, . . . , Pn} is the set of maximal element of Ass(R). By [18,

Corollary 9.36], Z(R) = ∪n
i=1Pi, where Pi = Ann(Rxi). Let X = {Rxi}ni=1. We claim

that X is a γt-set and a γst-set for AG(R). Suppose that I ∈ A∗(R), by Prime Avoid-

ance Theorem, for some 1 ⩽ i ⩽ n, I ⊆ Ann(Rxi) and hence I(Rxi) = (0). By Lemma

2.10 for each 1 ⩽ i, j ⩽ n, (Rxi)(Rxj) = (0) and hence X is a semi-total dominating

set of AG(R). Now assume that γst(AG(R)) = m. It is clear that m ⩽ n and there ex-

ists Y = {I1, I2 . . . , Im} ⊆ A∗(R) such that for each J ∈ A∗(R)⧹Y, JIi = (0), for some

1 ⩽ i ⩽ m, so J ⊆ Ann(Ii). Also for each Ii ∈ Y, Ii ⊆ Ann(Ij), for some 1 ⩽ j ⩽ n, thus

∪n
i=1Pi = Z(R) = ∪m

j=1Ann(Ij). By Prime Avoidance Theorem, for each 1 ⩽ j ⩽ m, there

is 1 ⩽ i ⩽ n such that Ann(Ij) ⊆ Pi, therefore Z(R) = ∪m
j=1Pj . Now assume that K ∈ X,
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then for some 1 ⩽ j ⩽ m, K ⊆ Pj . Since K is maximal in Ass(R), so K = Pj and hence

n = |X| ⩽ |Y| = m, therefore γst(AG(R)) = γt(AG(R)) = n. □

We conclude this section with the following proposition.

Proposition 2.17. Let R be a ring and S be an m.c.s of ring R containing no zero-divisors.

Then γcl(AG(RS)) ⩽ γcl(AG(R)). Moreover γcl(AG(RS)) = γcl(AG(R)), when R is a re-

duced ring.

Proof. Since for each IS , JS ∈ A∗(RS), where IS ̸= JS and ISJS = (0), we have I ̸= J and

IJ = (0), so we can conclude that γcl(AG(RS)) ⩾ γcl(AG(R)). Now assume that R is a

reduced ring. We claim that for each I, J ∈ A∗(R) with I ̸= J and IJ = (0), IS ̸= JS and

ISJS = (0). By contrary suppose that for some I, J ∈ A∗(R) such that I ̸= J , we have

IS = JS . Therefore I2S = ISIS = ISJS = (IJ)S = (0) and hence IS = (0) a contradiction.

So γcl(AG(RS)) ⩽ γcl(AG(R)) and hence equality is hold. □

3. Dominating numbers of the annihilating-ideal graph of a direct product

of rings

In this section we investigate domination numbers of ring R, where R is a direct product

of rings. We begin with the following proposition.

Proposition 3.1. Let R be a ring such that R = R1×R2, where R1 and R2 are not integral

domain. Then γst(AG(R)) ⩽ γst(AG(R1)) + γst(AG(R2)).

Proof. Let γst(AG(R1)) = ∞ or γst(AG(R2)) = ∞, then there is nothing to proof. Assume

that γst(AG(R1)) = m and γst(AG(R2)) = n, where A = {I1, . . . , Im} and B = {J1, . . . , Jn}
are γst-set for AG(R1) and AG(R2), respectively. Let A1 = {I × (0); I ∈ A} and B1 =

{(0) × J ; J ∈ B}. We claim that X = A1 ∪ A2 is a semi-total dominating set for R.

Assume that K × L ∈ A∗(R)⧹X. If either K = (0) or L = (0), then it is clear that K × L

is adjacent to a vertex in X. We may assume that K,L ̸= (0). Suppose that K = R1,

since L ∈ A∗(R2) for some 1 ⩽ t ⩽ n, there exists Jt ∈ B such that LJt = (0). This

implise that (R1 × L)((0) × Jt) = (0) × (0) and hence R1 × L is adjacent to a vertex in

X. For case L = R2 we have a similar argument. Now assume that K ̸= (0), R1 and

L ̸= (0), R2. Since K ∈ A∗(R1) for some Jt ∈ B, where 1 ⩽ t ⩽ n, LJt = (0) and

(K×L)((0)×Jt) = (0)× (0). On the other hand it is clear that every vertex in X is adjacent

to a vertex in X, so γst(AG(R)) ⩽ |X| = m+ n. □

The following example shows that the converse of the Proposition 3.1 is not hold.

Example 3.2. Let R1 = Z4, R2 = Z6 and R = R1 × R2. It is clear that A = {(2̄)} and

B = {(2̄), (3̄)} are γst-set for AG(R1) and AG(R2), respectively. AlsoX = {(2̄)×(0), (0)×(3̄)}
is a γst-set for AG(R). Therefore γst(AG(R1)) = 1, γst(AG(R2)) = 2 and γst(AG(R)) = 2.

Proposition 3.3. Let R be an Artinian ring such that R ≇ F1×F2, where F1, F2 are fields.

Then

γ(AG(R)) = γcl(AG(R)) = γst(AG(R)) = n ⩽ ω(AG(R))

, where n is number of summands in a decomposition of R to local rings.
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Proof. First assume that R is a local ring. Since R is an Artinian ring, Example 2.1 (1)

implies that γ(AG(R)) = γcl(AG(R)) = γst(AG(R)) = 1 = n ⩽ ω(AG(R)). Now assume

that R is an Artinian ring which is not local, by [9, Theorem 8.7], R ∼= R1 × · · · × Rn,

where n ⩾ 2 and R,
is are Artinian local ring with maximal ideal Mi, for 1 ⩽ i ⩽ n. It is

sufficient to proof for case n = 2 (for n ⩾ 3, we have a similar argument). Let R ∼= R1 ×R2,

then Max(R) = {M1 ×R2, R1 ×M2}. Since R is an Artinian ring by [12, Proposition 1.3],

(M1×R2), (R1×M2) ∈ A∗(R), where (M1×R2)(R1×M2) ̸= (0)×(0). It is clear that there

is nothing non-zero ideal of R which is adjacent to M1×R2 and R1×M2. Since AG(R) is a

connected graph (see [12, Theorem 2.1]), there are two ideals I1× (0) and (0)× J1 such that

I1 × (0) ⊆ Ann(M1 ×R2) and (0)× J1 ⊆ Ann(R1 ×M2). Now assume that I × J ∈ A∗(R),

then I × J ⊆ (M1 ×R2) ∩ (R1 ×M2), so I × J ⊆ Ann(I1 × (0)) ∩Ann((0)× J1) and hence

X = {I1× (0), (0)×J1} is a dominating set of AG(R), then γ(AG(R)) ⩽ 2. Since there is no

any vertex of AG(R) which is adjacent to every other vertex of AG(R), then γ(AG(R)) = 2.

Now Assume that G is a subgraph of AG(R), such that V(G) = X. Since G is a complete

graph, X is a clique dominating set and hence γ(AG(R)) = γcl(AG(R)) = γst(AG(R)) =

2 = n ⩽ ω(AG(R)). □

Corollary 3.4. Let R be a non-domain Artinian reduced ring.Then

(1) If R ∼= F1 × F2, where F1, F2 are fields, then γst(AG(R)) = ω(AG(R)) = 2.

(2) If R ≇ F1 × F2, where F1, F2 are fields, then

γ(AG(R)) = γst(AG(R)) = γcl(AG(R)) = ω(AG(R))

Proof. (1) It is clear.

(2) Since R is an Artinian reduced ring, it is well known that R ∼= F1 × · · · × Fn, where F ,
i s

are fields and n ⩾ 3. Let X = {F1 × (0)× · · · × (0), . . . , (0)× · · · × Fn}. It is clear that X is

a γ-set and maximal clique for AG(R) and hence γ(AG(R)) = γst(AG(R)) = γcl(AG(R)) =

ω(AG(R)) = n. □

Proposition 3.5. Let R be a ring which is not integral domain and F be a field. Then

γ(AG(F ×R)) = γst(AG(R)) + 1

Proof. Assume that γst(AG(R)) = n and X = {I1, . . . , In} is a γst-set for AG(R). It is clear

that Y = {(0)×Ii, Ii ∈ X}∪{F×(0)} is a dominating set for AG(F×R). Since |Y| = n+1,

γ(AG(F×R)) ⩽ n+1. Now assume thatA is a γ-set for AG(F×R). LetB = {I, (0)×I ∈ A}.
We claim that B is a semi-total dominating set for AG(R). Assume that J ∈ A∗(R)⧹B, then

F × J ∈ A∗(F ×R), so there exists I1 × J1 ∈ A such that I1 × J1 ⊆ Ann(F × J) and hence

I1 = J1J = (0), thus J1 ∈ B. Therefore B is a dominating set for AG(R). Now suppose that

I ∈ B, so F × I ∈ A∗(F × R), thus there is I1 × J1 ∈ A such that I1 × J1 ⊆ Ann(F × I),

thus I1 = IJ1 = (0) and J1 ∈ B and IJ1 = (0). Therefore B is a semi-total dominating

set for AG(R). Now we claim that |B| < |A|. By contrary suppose that |A| = |B|. It

is clear that (0) × R ∈ A∗(F × R), but for each I ∈ B, ((0) × R)((0) × I) ̸= (0) × (0),

a contradiction. Therefore |A| = γ(AG(F × R)) ⩾ |B| + 1 ⩾ γst(AG(R)) + 1 and hence

γ(AG(F ×R)) = γst(AG(R)) + 1. □

We conclude this paper with the following theorem.
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Theorem 3.6. Let R = R1 × R2, where R1 and R2 are two non-zero rings such that

γst(AG(R1)) = m , γst(AG(R2)) = n. Then

γ(AG(R)) ∈ {1, 2,m+ 1, n+ 1, n+m}

Proof. We consider all cases for A∗(R1) and A∗(R2). First assume that A∗(R1) = A∗(R2) = ∅
and I×J ∈ A∗(R). It is clear that either, I = (0) or J = (0) and hence X = {R1× (0), (0)×
R2} is a dominating set for AG(R)and thus γ(AG(R)) ⩽ 2. Now assume that A∗(R1) ̸= ∅
and A∗(R2) = ∅. In this case, A∗(R) = {I×J, I ∈ A∗(R1), J is an ideal of R2}∪{(0)×J : J

is an non-zero ideal of R} ∪ {I × (0), where (0) ̸= I /∈ A∗(R1)}. Suppose that A is a γst-set

for R1 and B = {I × (0) : I ∈ A} ∪ {(0)×R2}. It is clear that B is a dominating set (also

a semi-total dominating set) for AG(R) and hence γ(AG(R)) ⩽ |A|+ 1 = m+ 1. Let C be

a γ-set for AG(R) and D = {I, I × (0) ∈ C}. We claim that D is a semi-total dominating

set for AG(R1). Assume that I ∈ A∗(R1), then I × R2 ∈ A∗(R). Since C is a semi-total

dominating set for AG(R), there exists I1 × J1 ∈ C such that I1 × J1 ⊆ Ann(I × R2), so

J1 = (0) and II1 = (0), then I1 ∈ D and hence D is a dominating set for AG(R). Let I ∈ D,

so I × R2 ∈ A∗(R) and hence there exists L × K ∈ C such that I × R2 ⊆ Ann(L × K),

so K = (0) and LI = (0), thus L ∈ D and hence D is a semi-total dominating set for

AG(R1), therefore γst(AG(R1)) ⩽ |D| ⩽ |C| = γ(AG(R)). If |C| = γst(AG(R1)), then

C = {I × (0) : I ∈ D} and R1 × (0) is a vertex of AG(R) such that for each L ×K ∈ C,

(R1 × (0))(L×K) ̸= (0)× (0), a contradiction, so γ(AG(R)) ⩾ γst(AG(R1)) + 1 and hence

γ(AG(R)) = m + 1. For case A∗(R1) = ∅ and A∗(R2) ̸= ∅, by same argument we have

γ(AG(R)) = n + 1. Finally assume that A∗(R1) ̸= ∅ and A∗(R2) ̸= ∅. Suppose that A

is a γ-set for AG(R) and B = {I, I × (0) ∈ A} and C = {J, (0) × J ∈ A}. By same

argument in before case, B is a semi total dominating set for AG(R1) and C is a semi-total

dominating set for AG(R2), consequently m = γst(AG(R1)) ⩽ |B| and n = γst(AG(R2)) ⩽

|C|. Therefore γ(AG(R)) = |A| ⩾ |B| + |C| ⩾ m + n. On the other hand by Proposition

3.1, γ(AG(R)) ⩽ γst(AG(R)) ⩽ m + n. Thus γ(AG(R)) = m + n. Therefore in general,

γ(AG(R)) ∈ {1, 2,m+ 1, n+ 1, n+m}. □
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