[1] O. Alagoz, B. Gunduz and Akbulut S., Convergence theorems for a family of multi-valued nonexpansive mappings in hyperbolic spaces, Open Math,14 (2016),1065–1073.
[2] A. Akbar and M. Islamian, Fixed point theorems for Suzuki generalized nonexpan-sive multi-valued mappings in Banach Spaces, Fixed Point Theory Appl.,2010 (2010), 1–10.
[3] H.H. Bauschke and P.L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, Ser CMS Books in Mathematics, Berlin: Springer (2011).
[4] S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fundamenta Mathematicae, 3 (1922), 133–181.
[5] A.U. Bello, C.C. Okeke and C. Izuchukw, Approximating common fixed point for family of multi-valued mean nonexpansive mappings in hyperbolic spaces, Adv.Fixed Point Theory, 7(4) (2017), 524–543.
[6] F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert space, J. Math. Anal. Appl., 20(2) (1967), 197-228.
[7] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20(1) (2004), 103-120.
[8] S.S. Chang, G. Wang, L. Wang, Y.K. Tang and Z. Ma, ∆− convergence theorems for multi-valued nonexpansive mappings in hyperbolic spaces, Appl. Math. Comp.,249 (2014), 535–540.
[9] T. Hussain and A. Latif, Fixed points of multi-valued nonexpansive maps, Int. J.Math. Math. Sci., 14(3) (1991), 421–430.
[10] S. Ishikawa, Fixed points by new iteration method, Proc. Amer. Math. Soc., 149 (1974), 147–150.
[11] A.R. Khan, H. Fukhar Ud-Din and M.A.A. Khan, An implicit algorithm for two finite families of nonexpansive maps in hyperbolic spaces, Fixed Point Theory Appl., 2012 (2012), 1–12. http://dx.doi.org/10.1186/1687-1812-2012-54
[12] J.K. Kim, S. Dashputre and W.H. Lim, Approximation of fixed points for multi-valued nonexpansive mappings in Banach space, Global j. Pure Appl. Math.,12(6) (2016), 4901–4912.
[13] U. Kohlenbach, Some logical meta theorems with applications in functional analysis, Tran. Amer. Math. Soc., 357(1) (2004), 89–128.
[14] L. Leustean, A quadratic rate of asymptotic regularity for CAT(0) spaces, J.Math. Anal. Appl., 325 (2007), 386-399.
[15] L. Leustean, Nonexpansive iterations in uniformly convex W− hyperbolic spaces,Non. Anal. Opti. of Contemporary Mathematical, Ame. Math. Soc. Provi. RI,513 (2010), 193-210.
[16] W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953),506–510.
[17] J. Markin, Fixed points for generalized nonexpansive mappings in R trees, Comp.Math. Appl., 62 (2011), 4614–4618.
[18] S.B. Nadler, Multi-valued contraction mappings, Pac. J. Math., 30 (1969), 475–488.
[19] C.I. Podilchuk and R.J. Mammone, Image recovery by convex projections using a least-squares constraint, Journal of the Optical Society of America, 7(3) (1990),517-521.
[20] K.P.R. Sastry and G.V.R. Babu, Convergence of Ishikawa iterates for a multi-valued mapping with a fixed point, Czechoslovak Math. J., 55 (2005), 817–826.
[21] C. Suanoom and C. Klin-eam, Remark on fundamentally nonexpansive mappings in hyperbolic spaces, Bull. Aust. J. Nonlinear Sci. Appl., 9 (2016), 1952–1956.
[22] T. Suzuki, Fixed point theorems and convergence theorems for some generalized nonexpansive mappings, J. Math. Anal. Appl., 340 (2008), 1088–1095.
[23] W. Takahashi, A convexity in metric space and nonexpansive mappings, Kodai Mathematical Seminar Reports, 22(2) (1970), 142-149.
[24] D. Thakur, B.S. Thakur and M. Postolache, New iteration scheme for numerical reckoning fixed points of nonexpansive mappings, J. Inequal. Appl., 2014:328(2014), 1–15.