Generalizations of prime submodules over non-commutative rings

Document Type : Research Paper

Author

Department of Mathematics, Marmara University, P.O.Box 34722, Istanbul, Turkey

Abstract

Throughout this paper, R is an associative ring (not necessarily commutative) with identity and M is a right R-module with unitary. In this paper, we introduce a new concept of ∅-prime submodule over an associative ring with identity. Thus we define the concept as following: Assume that S(M) is the set of all submodules of M and Ø : S(M) ! S(M) [ f;g is a function. For every Y 2 S(M) and ideal I of R; a proper submodule X of M is called Ø-prime, if YI ⊆ X and YI ⊄ Ø(X); then Y ⊆ X or I ⊆ (X :R M): Then we examine the properties of Ø-prime submodules and characterize it when M is a multiplication module.
 

Keywords


[1] R. Ameri, On the prime submodules of multiplication modules, Inter. J. Math. Math. Sci., 27 (2003), 1715-1724.
[2] D. D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra, 36 (2008), 686-696.
[3] D. D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math., 29 (2003) 831-840.
[4] D. D. Anderson, Cancellation modules and related modules, Lect. Notes Pure Appl. Math., 220 (2001), 13-25.
[5] F. W. Anderson and K. R. Fuller, Rings and Categories of Modules, SpringerVerlag, New York, (1992).
[6] S. E. Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math., 38 (3) (2007), 247-252.
[7] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, CRC Press (1969).
[8] P. K. Beiranvand and R. Beyranvand, Almost prime and weakly prime submodules, J. Algebra Appl., 18 (7) (2019), 1950129, 14 pp.
[9] S. M. Bhatwadekar and P. K. Sharma, Unique factorization and birth of almost primes, Comm. Algebra, 33 (2005), 43-49.
[10] J. Dauns, Prime modules, J. Reine Angew. Math., 298 (1978), 156-181.
[11] T. Y. Lam, A  rst course in noncommutative rings, Second Edition, Springer, (1991).
[12] C. P. Lu, Prime submodules of modules, Comm. Math. Univ. Sancti Pauli, 33 (1984), 61-69.
[13] R. L. McCasland and M. E. Moore, Prime submodules, Comm. Algebra, 20 (1992), 1803-1817.
[14] S. K. Nimbhorkar and J. A. Khubchandani, Fuzzy essential-small submodules and Fuzzy small-essential submodules, Journal of Hyperstructures, 9 (2), (2020), 52-67.
[15] A. A. Tuganbaev, Multiplication modules, Journal of Mathematical Sciences, 123 (2) (2004), 3839-3905.
[16] N. Zamani, Ø-prime submodules, Glasgow Math. J., 52 (2) (2010), 253-259.