On the geometry of warped product submanifolds of a quasi-hemi Slant submanifold with trans para Sasakian

Document Type : Research Paper

Authors

Department of Mathematics, University of RKDF, Ranchi, Jharkhand 834004, Ranchi, India

Abstract

The existence or non-existence of warped product quasi-hemi slant submanifolds in trans para-sasakian manifolds is defined. Then we obtain that there are no proper warped product quasi-hemi slant submanifolds in trans para-sasakian manifolds such that totally geodesic and totally umbilical submanifolds of warped product are proper semi-slant and invariant (or anti-invariant).

Keywords


[1] A. Benjancu and N. Papaghuic, Semi-invariant Submanifolds of a Sasakian manifold An. St. Univ. AI. I. Cuza. Iasi. Math.(N.S.) 27 (1981), 163-170.
[2] A. Carriazo, New developments in slant submanifolds theory, Narosa Publishing House, New Delhi (India), (2002).
[3] A. Lotta, Slant submanifold in contact geometry, Bull. Math. Soc. Sci. Math. Repub. Soc. Roum. 39 (1969), 183-198.
[4] B. Sahin, Warped product submanifolds of a Kaehler manifold with a slant factor, Ann. Pol. Math., 95 (2009), 107-126.
[5] B. Y. Chen, Slant immersions, Bull. Austral. Math. Soc. 41 (1) (1990), 135-147.
[6] B. Y. Chen, Geometry of slant submanifolds, Katholieke Universietit Leuven (1990).
[7] B. Y. Chen, Geometry of warped product CR-submanifolds in Kaehler manifold. Monatsh. Math., 133 (2001), 177195.
[8] D. E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Mathematics, 509, SpringerVerlag, Berlin-New York, (1976).
[9] D. Chinea and C. Gonzales, Curvature relations in trans-Sasakian manifolds, (Spanish), in Proceedings of the XIIth Portuguese-Spanish Conference on Mathematics, Vol. II, (Portuguese), Braga," Univ. Minho, Braga, (1987), 564 571.
[10] D. Janssens, L. Vanhecke, Almost contact structures and curvature tensors, Kodai Math. J., 4 (1981), 1-27.
[11] F. Sahin, Cohomology of hemi-slant submanifolds of a Kaehler manifolds. J. Adv. Stud. Topol., 5 (2014), 27-31.
[12] J. A. Oubina, New classes of almost contact metric structures Publ. Math. Debrecen 32 (3-4) (1985), 187 193.
[13] J. L. Cabrerizo, A. Carriazo, L. M. Fernndez and M. Fernndez, Slant Submanifolds in Sasakian manifolds. Glasg. Math. J. 42 (2000), 125-138.
[14] M.H. Shahid et al., Slant submanifolds of cosymplectic manifold. An. S tiint. Univ. Al. I. Cuza Iasi, Mat., 50 (2004), 33-50
[15] N. Papaghuic, Semi-slant submanifold of Kaehlerian manifold. An. St. Univ. AI. I. Cuza. Iasi. Math. (N.S.), 9 (1994), 55-61.
[16] R.L. Bishop and B. O Neill, Manifolds of Negative curvature. Trans. Amer. Math. Soc., 145 (1969), 149 .
[17] S. Rahman, Contact CR-warped product submanifolds of nearly Lorentzian paraSasakian manifold, Turkish Journal of Mathematics and Computer Science, 7 (2017), 40-47.
[18] S. Rahman and N.K. Agrawal, On the geometry of slant and pseudo-slant submanifolds in a quasi Sasakian manifolds. J. Modern Technology Engineering, 2 (1) (2017), 82-89.
[19] S. Rahman, S. M. Khan and A. Horaira, Warped Product Semi Slant Submanifold of Nearly Quasi Sasakian Manifold. Boson Journal of Modern Physics (BJMP), 5 (2019), 443-453.
[20] S. Rahman, S. M. Khan and A. Horaira, On pseudo-slant submanifolds of nearly quasi Sasakian manifolds. Mathematical Physics and Computer Simulation: Volgograd, 22(4) (2019), 39-52.
[21] S. Tanno, The automorphism groups of almost contact Riemannian manifolds. Tohoku Math. J., 21 (1969), 2138.
[22] S. Uddin, B. Y. Chen, and F. R. Al-Solamy, Warped product bi-slant immersions in Kaehler manifolds Mediterr. J. Math., 14 (2017), 95.