1] Brijesh Kumar Tripathi, and V. K. Chaubey, Nonholonomic frames for Finsler space with deformed Matsumoto metric, TWMS J. App. and Eng. Math., 7(2), (2017), 337-342.
[2] Brijesh Kumar Tripathi , V. K. Chaubey and R. B. Tiwari, Nonholonomic frames for Finsler space with generalized Kropina metric, International Journal of Pure and Applied Mathematics, 108 (4), (2016) 921-928.
[3] Ioan Bucataru and Radu Miron, Finsler-Lagrange Geometry: Applications to dynamical systems, Editura Academiei Romane, https :==www:math:uaic:ro= bucataru=working=metricg:pdf (2007).
[4] I.Bucataru, Nonholonomic frames on Finsler geometry,Balkan Journal of Geometry and its Applications, 7, (1), (2002), 13-27.
[5] I Y Lee and H. S. Park , Finsler spaces with in nite series ( ; )-metric, J.Korean Math. Society,41 (3), (2004), 567-589.
[6] M.Matsumoto , Theory of Finsler spaces with ( ; )-metric, Rep. Math. Phys., 31, (1992), 43-83.
[7] P.L.Antonelli and I.Bucataru, Finsler connections in anholonomic geometry of a Kropina space, Nonlinear Studies, 8 (1), (2001), 171-184.
[8] P.R.Holland, Electromagnetism, Particles and Anholonomy, Physics Letters, 91 (6), (1982), 275-278.
[9] R.G. Beil, Comparison of uni ed eld theories, Tensor N.S., 56 (1995), 175{183.
[10] R.G. Beil, Finsler and Kaluza-Klein Gauge Theories, Intern. J. Theor. Phys., 32,6 (1993) 1021-1031.
[11] R.Miron and M.Anastasiei, The geometry of Lagrange spaces: Theory and Applications, Kluwer Acad. Publ., FTPH, no.59, (1994).
[12] R.S.Ingarden, On Physical interpretations of Finsler and Kawaguchi spaces,Tensor N.S., 46, (1987), 354-360.
[13] S.K.Narasimhamurthy,Y. Kumar Mallikarjun, and A. R. Kavyashree, Nonholonomic Frames For Finsler Space With Special (α, β )-metric, International Journal of Scientic and Research Publications, 4(1), (2014), 1-7.