Nonholonomic frames for Finsler space with deformed infinite series of (α,β) metric

Document Type : Research Paper

Authors

1 Department of Mathematics, L. D. College of Engineering, Ahmedabad, Gujarat-380015, India.

2 Department of Applied Sciences, Buddha Institute of Technology, GIDA Gorakhpur, U.P., 273209, INDIA

Abstract

The purpose of present paper to determine the Finsler spaces due to deformation of special Finsler  (α, β) -metric. Consequently, we obtained the non-holonomic frame with the help of α2=aij(x)yiyj, one form metric β=bi(x)yi and infinite series of (α, β) metric such as the forms I. ( β4 /(β-α )2 ) + α2 =F12+F22  i.e. sum of the square of infinite series of (α, β) -metric and square of Riemannian metric  II. ( β4 /(β-α )2 ) + β2 =F12+F32 i.e. sum of the square of infinite series of  (α, β) -metric and square of 1-form metric.

Keywords


1] Brijesh Kumar Tripathi, and V. K. Chaubey, Nonholonomic frames for Finsler space with deformed Matsumoto metric, TWMS J. App. and Eng. Math., 7(2), (2017), 337-342.
[2] Brijesh Kumar Tripathi , V. K. Chaubey and R. B. Tiwari, Nonholonomic frames for Finsler space with generalized Kropina metric, International Journal of Pure and Applied Mathematics, 108 (4), (2016) 921-928.
[3] Ioan Bucataru and Radu Miron, Finsler-Lagrange Geometry: Applications to dynamical systems, Editura Academiei Romane, https :==www:math:uaic:ro= bucataru=working=metricg:pdf (2007).
[4] I.Bucataru, Nonholonomic frames on Finsler geometry,Balkan Journal of Geometry and its Applications, 7, (1), (2002), 13-27.
[5] I Y Lee and H. S. Park , Finsler spaces with in nite series ( ;  )-metric, J.Korean Math. Society,41 (3), (2004), 567-589.
[6] M.Matsumoto , Theory of Finsler spaces with ( ;  )-metric, Rep. Math. Phys., 31, (1992), 43-83.
[7] P.L.Antonelli and I.Bucataru, Finsler connections in anholonomic geometry of a Kropina space, Nonlinear Studies, 8 (1), (2001), 171-184.
[8] P.R.Holland, Electromagnetism, Particles and Anholonomy, Physics Letters, 91 (6), (1982), 275-278.
[9] R.G. Beil, Comparison of uni ed  eld theories, Tensor N.S., 56 (1995), 175{183.
[10] R.G. Beil, Finsler and Kaluza-Klein Gauge Theories, Intern. J. Theor. Phys., 32,6 (1993) 1021-1031.
[11] R.Miron and M.Anastasiei, The geometry of Lagrange spaces: Theory and Applications, Kluwer Acad. Publ., FTPH, no.59, (1994).
[12] R.S.Ingarden, On Physical interpretations of Finsler and Kawaguchi spaces,Tensor N.S., 46, (1987), 354-360.
[13] S.K.Narasimhamurthy,Y. Kumar Mallikarjun, and A. R. Kavyashree, Nonholonomic Frames For Finsler Space With Special (α, β )-metric, International Journal of Scientic and Research Publications, 4(1), (2014), 1-7.