Some curvature properties of para-Kenmotsu Manifold with respect to Zamkovoy connection

Document Type : Research Paper

Authors

1 Department of Mathematics, Raiganj Surendranath Mahavidyalaya, Raiganj, West Bengal-733134, India

2 Department of Mathematics, Raiganj University, West Bengal-733134, India

3 Department of Mathematics, Mathabhanga College, Mathabhanga, West Bengal-736146, India

Abstract

In the present paper we study some properties of the para-Kenmotsu manifold with respect to Zamkovoy connection. We discuss locally Φ-symmetric para-Kenmotsu manifold with respect to the Zamkovoy connection. Also, we study Ricci Soliton on para-Kenmotsu manifold with respect to Zamkovoy connection. Besides these, we discuss Wi-curvature tensor (i=0,1,2...9) with respect to Zamkovoy connection on para-Kenmotsu manifold.

Keywords


[1] A. Biswas and K. K. Baishya, Study on generalized pseudo (Ricci) symmetric Sasakian manifold admitting general connection, Bulletin of the Transilvania University of Brasov, 12(2) (2020), 233-246.
[2] A. Biswas and K. K. Baishya, A general connection on Sasakian manifolds and the case of almost pseudo symmetric Sasakian manifolds, Scienti c Studies and Research Series Mathematics and Informatics, 29(1) (2019), 59-72.
[3] D. E Blair, Contact manifolds in Riemannian Geometry, Lect. Notes Math. Springer-Verlag, Berlin 509, (1976).
[4] A. M. Blaga, Canonical connection on Para Kenmotsu manifold, Novi Sad. J. Math, 45(2) (2015), 131-142.
[5] A. Das and A. Mandal, Study of Ricci solitons on concircularly  at Sasakian manifolds admitting Zamkovoy connection, The Aligarh Bull. of Math., 39(2) (2020), 47-61.
[6] R. S. Hamilton, The Ricci Flow on surfaces, Math. and General Relativity (Santa Cruz CA,1986), American Math. Soc. Contemp. math., 71 (1988), 232-262.
[7] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J. (2), 24(1) (1972), 93-103.
[8] A. Mandal and A. Das, On M-Projective Curvature Tensor of Sasakian Manifolds admitting Zamkovoy Connection, Adv. Math. Sci. J, 9(10) (2020), 8929-8940.
[9] A. Mandal and A. Das, Projective Curvature Tensor with respect to Zamkovoy connection in Lorentzian para-Sasakian manifolds, J. Indones. Math. Soc., 26(3) (2020), 369-379.
[10] A. Mandal and A. Das, LP-Sasakian manifold equipped with Zamkovoy connection and conharmonic curvature tensor, J. Indones. Math. Soc.,27(2) (2021), 137-149.
[11] A. Mandal and A. Das, Pseudo projective curvature tensor on Sasakian manifolds admitting Zamkovoy connection, Bull. Cal. Math. Soc., 112(5) (2020), 431-450. 
[12] D. S., Prasad, and D. Deekshitulu, Ricci and projective curvature tensors on a type of para-Kenmotsu manifold, Int. J. of Pure and Applied Math., 111(2) (2016), 273-280.
[13] K. S. Prasad and T. Satyanarayana, On para-Kenmotsu manifold, Int. J. Pure Appl. Math., 90(1) (2014), 35-41.
[14] H. G. Nagaraja and C. R. Premalatha, Ricci solitons in Kenmotsu manifolds, J. of Mathematical Analysis, 3(2) (2012) 18-24.
[15] G. P. Pokhariyal and R. S. Mishra, Curvature tensors and their relativistic signifcance,Yokohama Math. J., 18 (1970), 105-108.
[16] V. V. Reddy, R. Sharma and S. Sivaramkrishan, Space times through Hawking-Ellis construction with a back ground Riemannian metric, Class Quant. Grav., 24 (2007), 3339-3345.
[17] K. L. Sai Prasad and T. Satyanarayana., On para-Kenmotsu manifold, Int. J. Pure Appl. Math., 90(1) (2014), 35-41.
[18] T. Satyanarayana and K. S. Prasad, On a type of para-Kenmotsu manifold, Pure Mathematical Sciences, 2(4) (2013), 165-170.
[19] B. B. Sinha, K. L. Prosad, A class of almost paracontact metric manifold, Bull. Calcutta Math. Soc., 87 (1995), 307-312.
[20] R. Sharma, Certain results on K-contact and (k; )-contact manifolds, J. of Geom., 89 (2008) 138-147.
[21] M. M. Tripathi, Ricci solitons in contact metric manifold, ArXiv: 0801. 4222v1 [math. D. G.], 2008.
[22] M. M .Tripathi and P. Gupta, On  - curvature tensor in K-contact manifold and Sasakian manifold, International Electronic Journal of Mathematics, 4 (2011), 32-47.
[23] J. Welyczko, Slant curves in 3-dimensional normal Almost paracontact metric manifolds, Mediterr. J. Math. 11 (2014), 965-978.
[24] S. Zamkovoy, Canonical connections on paracontact manifolds, Ann. Global Anal. Geom., 36(1) (2008), 37-60.