We introduce some new concepts as lef t − weak∗ − weak convergence property [Lw∗wc−property] and right−weak∗− weak convergence property [Rw∗wc−property] for Banach algebra A. Suppose that A ∗ and A ∗∗, respectively, have Rw∗wc−property and Lw∗wc−property, then if A ∗∗ is weakly amenable, it follows that A is weakly amenable. Let D : A → A ∗ be a surjective derivation. If D 00 is a derivation, then A is Arens regular.
Haghnejad Azar, K. and Ranjbar, Z. (2012). Lw∗wc and Rw∗wc and weak amenability of banach algebras. Journal of Hyperstructures, 1(2), 61-70. doi: 10.22098/jhs.2012.2548
MLA
Haghnejad Azar, K. , and Ranjbar, Z. . "Lw∗wc and Rw∗wc and weak amenability of banach algebras", Journal of Hyperstructures, 1, 2, 2012, 61-70. doi: 10.22098/jhs.2012.2548
HARVARD
Haghnejad Azar, K., Ranjbar, Z. (2012). 'Lw∗wc and Rw∗wc and weak amenability of banach algebras', Journal of Hyperstructures, 1(2), pp. 61-70. doi: 10.22098/jhs.2012.2548
CHICAGO
K. Haghnejad Azar and Z. Ranjbar, "Lw∗wc and Rw∗wc and weak amenability of banach algebras," Journal of Hyperstructures, 1 2 (2012): 61-70, doi: 10.22098/jhs.2012.2548
VANCOUVER
Haghnejad Azar, K., Ranjbar, Z. Lw∗wc and Rw∗wc and weak amenability of banach algebras. Journal of Hyperstructures, 2012; 1(2): 61-70. doi: 10.22098/jhs.2012.2548