On the 2-absorbing ideals and zero divisor graph of equivalence classes op zero divisors

Document Type : Research Paper

Authors

Department of Mathematics, Imam Khomeini International University , P.O.Box 34149-1-6818, Qazvin, Iran

Abstract

Let R be a commutative ring, I be a 2-absorbing ideal of R and let I = Q1 ∩ · · · ∩ Qn (n ≥ 2) with √Qi = Pi for i = 1, · · · , n, be a minimal primary decomposition of I. Let ΓE(R/I) denote the graph of equivalence classes of zero divisors of R/I. It is shown that Q1 ∩ · · · ∩ Qn−1, Q1 ∩ · · · ∩ Qn−2, · · · , Q1, P1, P2 · · · , Pn are all vertices of ΓE(R/I) and also the degrees of all vertices are determined. 

Keywords


[1] D. F. Anderson and A. Badawi, On n-absorbing ideals of commutavie rings,Comm. Algebra, 39 (2011), 1646-1672.
[2] D. F. Anderson and P. S. Livingston, The zero divisor graph of a commutative ring , J. Algebra, 217 (1999), 434-447.
[3] A. Badawi, On 2-absorbing ideals of commutavie rings, Bull. Austral. Math. Soc.,75 (2007), 417-429.
[4] I. Beck, Coloring of commutavie rings, J. Algebra, 116 (1988), 208-226.
[5] Sh. Payrovi and S. Babaei,On the 2-absorbing ideals in comutative rings,Bull.Malaysian Math.Sci.Soc.23(2013),1511-1526.
[6] Shane P. Redmond, An Ideal-Based Zero-Divisor Graph of a Commutative Ring, Comm. Algebra, 31 (2003), 4425-4443.
[7] R.Y. Sharp, Steps in commutative algebra, Cambridge: Cambridge University Press.
[8] S. Spiroff and C. Wickham, A zero divisor graph determined by equivalence classes of zero divisors, Comm. Algebra, 39 (2011), 2338-2348.