Riemman solitions in para sasakian Manifolds admitting different semi-symmetric structures

Document Type : Research Paper

Authors

1 Department of Mathematics, Raiganj University of Uttar Dinajpur, P.O.Box Raiganj, Raiganj, India

2 Department of Commerce, Mathabhanga College of Mathabhanga, P.O.Box Mathabhanga, Coochbehar, India

3 Department of Mathematics, Mathabhanga College, Mathabhanga, West Bengal-736146, India

Abstract

The object of the present paper is to study the Rie-mannian solitons on para sasakian manifolds admitting E.R=0, E.t P=0, E.E=0, E.P*=0, E.M=0, E.Wi=0, E.Wi*=0, R.R=0, R.P=0, R.E=0, R.P*=0, R.M=0, R.Wi=0, RWi*=0, R.K=0, R.C=0, E.C = 0, E.k=0, for i=1, 2, ..., 9.
 

Keywords


1] T. Adati and K. Matsumoto, On conformally recurrent and conformally sym-metric P-Sasakian manifolds, TRU Math., 13(1977), 25–32.
[2] C. Udriste, Riemann flow and Riemann wave, Ann. Univ. Vest, Timisoara. Ser. Mat.-Inf. 48(1-2) (2010), 265-274.
[3] C. Udriste, Riemann flow and Riemann wave via bialternate product Riemann-ian metric. preprint, arXiv.org/math.DG/1112.4279v4 (2012).
[4] C. Ozg¨ur and M. M. Tripathi, On P-Sasakianmanifolds satisfying certain condi-tions on the concircular curvature tensor. Turk. J. Math., 31(2007), 171-179.
[5] C. Ozg¨ur and M. M. Tripathi, On P-Sasakian Manifolds Satisfying Certain Con-ditions on the Concircular Curvature Tensor, Turk J. Math., 31(2007) , 171-179.
[6] C. S. Bagewadi and Venkatesha,Some curvature tensors on a Trans-Sasakian manifold, Turk J Math., 31 (2007) , 111-121.
[7] C. Ozgur, On a class of Para-Sasakian manifolds, Turkish J. Math., Turkish J.Math., 29(2005), 249–257.
[8] D.G. Prakasha and B. S. Hadimani, *-Ricci solitons on para-Sasakian manifolds,J. Geom., 108 (2017), 383-392.
[9] D.G. Prakasha and P. Veeresha, Para-Sasakian manifolds and *-Ricci solitons,Afrika Matematika, 05(2019), 1-10,
doi: 10.1007/s13370-019-00698-9
[10] G. Perelman, Ricci flow with surgery on three manifolds,http://arXiv.org/abs/math/0303109, 2003, 1-22.
[11] G.P. Pokhariyal and R.S.Mishra, Curvature tensor and their relativistic significance II. Yokohama Math. J., 19(2),
97–103 (1971).
[12] G.P. Pokhariyal, Relativistic significance of curvature tensors.Int.J. Math. Sci.,5(1), 133–139 (1982).
[13] G.P. Pokhariyal and R. S. Mishra, Curvature tensor and their relativistic signifi-cance. Yokohama Math. J. 18(2),
105–108 (1970).
[14] I.E. Hirica, C. Udriste, Ricci and Riemann solitons, Balkan J. Geom. Applications. 21(2) (2016), 35-44.
[15] Jae-Bok Jun, Uday Chand De, and Goutam Pathak, On Kenmotsu manifolds,J.Korean Math. Soc. 42(2005), No. 3,435-445
[16] K. Yano and S. Bochner,Curvature and Betti numbers,Annals of Mathematics Studies 32,Princeton University Press, 1953.
[17] L. P. Eisenhart, Riemannian Geometry, Princeton University Press, 1949.
[18] R. S. Hamilton, The Ricci flow on surfaces, Mathematics and general relativity,Contemp. Math., 71, American Math. Soc., (1988), 237-262.
[19] Saikh, A. A. and Kundu H., On equivalency of various geometric structures, J.Geom., doi: 10.1007/s00022-013-0200-4.
[20] S.E. Stepanov, I.I. Tsyganok, The theory of infinitesimal harmonic transformations and its applications to the global geometry of Riemann solitons, Balk. J. Geom. Appl. 24 (2019), 113121.
[21] Y. Ishii, On conharmonic transformations, Tensor (N.S.), 7 (1957), 73-80.
[22] Z. I. Szab´o, Structure theorems on Riemannian spaces satisfying R(X, Y )·R =0, I (the local version), J. Diff. Geom.
17 (1982), 531-582.
[23] Z. I. Szab´o, Classification and construction of complete hypersurfaces satisfying R(X, Y )·R = 0, Acta.Sci.Math.,
7 (1984), 321-348.