[1] P. Amster, C. G. Averbuj and M. C. Mariani, Solutions to a stationary nonlinear Black-Scholes type equation, J. Math. Anal. Appl. 276 (2002), 231-238.
[2] P. Amster, C. G. Averbuj and M.C. Mariani, Stationary solutions for two nonlinear BlackScholes type equations, Appl. Numer. Math. 47 (2003), 275-280.
[3] J. Ankudinova and M. Ehrhardt, On the numerical solution of nonlinear BlackScholes Equations, Comput. Math. Appl. 56 (2008), 799-812.
[4] C.M. Bender and S. A. Orszag, Advanced Mathematics Methods for Scientists and Engi-neers, McGraw-Hill Inc.,
New York ( 1978).
[5] F. Black and M. S. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 61 (1973), 637-654.
[6] M. Bohner and Y. Zheng, On analytical solution of the Black-Scholes equation, Appl. Math. Lett. 22 (2009), 309-313.
[7] Z. Cen and A. Le, A robust and accurate finite difference method for a generalized Black-Scholes equation;J. Comput. Appl. Math. 235 (2011), 3728-3733.
[8] R. Company, L. Jodar, J. R. Pintos, A numerical method for European Option Pricing with transaction costs nonlinear equation, Math. Comput. Modell. 50 (2009) 910-920.
[9] R. Company, E. Navarro, J. R. Pintos and E. Ponsoda, Numerical solution of linear and nonlinear Black-Scholes option pricing equations, Comput. Math. Appl. 56 (2008), 813-821.
[10] W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath,Boston (1965).
[11] F. Fabiao, M. R. Grossinho and O.A. Simoes, Positive solutions of a Dirichlet problem for a stationary nonlinear Black Scholes equation, Nonlinear Anal. 71 (2009), 4624-4631.
[12] R. K. Gazizov, R. K. and N. H. Ibragimov, Lie symmetry analysis of differential equations in Finance, Nonlin. Dynam. 17 (1998), 387-407.
[13] V. Gulkac, The homotopy perturbation method for the Black-Scholes equation, J. Stat. Comput. Simul. 80 (2010), 1349-1354.
[14] R. Haberman, Elementary Applied Partial Differential Equations with Fourier Series and Boundary Value Problems, third ed., Prentice-Hall, Inc., Englewood Cliffs, NJ (1998).
[15] H. Jafari and S. Seifi, Homotopy analysis method for solving linear and nonlinear frac-tional diffusion-wave equation,
J. Com. Nonl Sci. Numer. Simulat. 14 (2008), 2006-2012.
[16] H. Jafari and S. Seifi, Solving a system of nonlinear fractional partial differential equations using homotopy analysis method, J. Com. Nonl Sci. Numer. Simu. 14 (2009), 1962-1969.
[17] H. Jafari and S. Momani, Solving fractional diffusion and wave equations by modified homotopy perturbation method, Phys. Lett. A 370 (2007), 388-396.
[18] H. Jafari and M. Nazari, Application of Laplace decomposition method for solving linear and nonlinear fractional diffusion- wave equations, J. Appl. Math. Lett. 24 (2011), 1799-1805.
[19] J. Kevorkian and J.D. Cole, Perturbation Methods in Applied Mathematics, Springer-Verlag, New York ( 1981).
[20] A. Kilbas, H.M. Srivastava and H. M., J.J. Trujillo, Theory and Applications of Fractional Differential Equations, Elsevier: Amsterdam ( 2006).
[21] A. I. Klimushev and N. Krasovski, Uniform asymptotic stability of systems of differential equations with a small parameter in the derivative terms, Prikl. Mat. Meh. 25 (1961),680-690 (Russian); translated as J. Appl. Math. Meek. 25 (1962), 1011-1025.
[22] S. Kumar, A. Yildirim, Y. Khan, H. Jafari, K. Sayevand and L. Wei, Analytical solution of fractional Black-Scholes European option pricing equation by using Laplace transform, , J. Fractional Calculus and Appli. 2 ( 2012), 1-9.
[23] J. M. Manale, F. M. Mahomed, A simple formula for valuing American and European all and put options in: J. Banasiak (Ed.), Proceeding of the Hanno Rund Workshop on the Differential Equations, University of Natal (2000), 210-220.
[24] K. S. Miller, B. Ross, An introduction to the fractional calculus and Fractional Differential Equations, Johan Willey and Sons, Inc. New York ( 2003).
[25] M. A. Mohebbi and M. Ranjbar, European option pricing of fractional Black-Scholes model with new Lagrange multipliers, Comput. Methods for Differential Equa. 1
(2013),123-128.
[26] A.H. Nayfeh, Problems in Perturbation, John Wiley and Sons, Inc., New York ( 1993).
[27] K. B. Oldham, J. Spanier, The Fractional Calculus, Academic Press, New York (1974).
[28] I. Podlubny, Fractional Differential Equations Calculus, Academic Press, New York (1999).
[29] D. Zwillinger, Handbook of Differential Equations, Academic Press, Inc., New York (1992).