[1] M. Asgharzadeh K. and Divaani-Aazar, Finiteness properties of formal local co-homology modules and
Cohen-Macaulayness, Comm. Algebra, 39 (2011), 1082–1103.
[2] N. Bourbaki, Algebre, Chap. X:Algebre homologique, Masson, Paris, 1980.
[3] M. P. Brodman and R. Y. Sharp , Local cohomology, An algebraic introduction with geometric applications, Cambridge University Press, 1998.
[4] N. T. Coung and T. T. Nam, The I-adic completion and local homology, J, Algebra, 149 (1992), 438–453.
[5] M. Eghbali, On Artinianness of Formal Local cohomology, colocalization and coassociated primes, Math. Scand, 113 (2013), 5–19.
[6] E. E. Enochs and O. M. G. Jenda , Relative homological Algebra, Walter De Gruyter, expositions in Mathematics Berline, NewYork, 2000.
[7] A. Mafi, Results of formal local cohomology modules, Bull. Malays Math. Sci. Soc, 36 (2013), 173–177.
[8] H. Matsumura, Commutative ring theory, Cambridge University Press, 1986.
[9] A. Ooishi, Matlis duality and the width of a module, Hiroshima Math. J, 6 (1976), 573–587.
[10] R. N. Roberts, Krull dimension for Artinian modules over quasi-local commuta-tive rings, Quart. J. Math Oxford, 26 (1975), 177–195.
[11] J. J. Rotman, An introduction to homological Algebra, London Academic Press,1979.
[12] P. Schenzel, Proregular sequences, local cohomology and completion, Math Scand, 92 (2003), 161–180.
[13] P. Schenzel, On formal local cohomolgy and connectedness, Journal Of Algebra, 315 (2007), 894–923.
[14] Z. Tang, Local homology theory Artinian module, Comm Algebra, 22 (1994),1675–1684.
[15] C. A. Weibel, An introduction to homological Algebra, Cambridge University Press NewYork, 1994.