[1] A. Alipanah, S. Esmaeili, Numerical solution of the two-dimensional Fredholm integral equations using Gaussian radial basis function, J. Comput. Appl. Math.,235 (18) (2011) 5342-5347.
[2] K.E. Atkinson, The Numerical Solution of Integral Equations of the Second Kind, Cambridge Uni. Press (1997).
[3] E. Babolian, S. Bazm, P. Lima, Numerical solution of nonlinear two-dimensional integral equations using rationalized Haar functions, Commun. Nonl. Sci. Numer.Simul., 16 (2011) 1164-1175.
[4] E. Babolian, K. Maleknejad, M. Roodaki, H. Almasieh, Two-dimensional trian-gular functions and their applications to nonlinear 2D Volterra-Fredholm integral equations, Comput. Math. Appl., 60 (2010) 1711-1722.
[5] M.M. El-Borai, M. A. Abdou, M. Basseem, An Analysis of two dimesional inte-gral equations of the seconed kined, Le Matematiche, 62 (2007) 15-39.
[6] L.M. Delves, J. L. Mohamed, Computational methods for integral equations, Cambridge Uni. Press, Cambridge (1985).
[7] G. Han, J. Wang, Extrapolation of Nystr¨om solution for two dimensional nonlin-ear Fredholm integral equations, J. Comput. Appl. Math., 134 (2001) 259-268.
[8] R. Hanson, J. Phillips, Numerical solution of two-dimensional integral equations using linear elements, SIAM J. Numer. Anal., 15 (1978) 113-121.
[9] C. Hsio, Hybrid function method for solving Fredholm and Volterra integral equa-tions of the second kind, J. Comput. Appl. Math., 230(1) (2009) 59-68.
[10] A.J. Jerri, Introduction to Integral Equations with Applications, John Wiley and Sons, INC (1999).
[11] R.P. Kanwal, Linear integral equations, Academic Press, London (1971).
[12] R. Kress, Linear integral equations, Springer, Berlin (1999).
[13] F. Liang, F.R. Lin, A fast numerical solution method for two dimensional Fredholm integral equations of the second kind based on piecewise polynomial inter-polation, Appl. Math. Comput., 216 (2010) 3073-3088.
[14] K. Maleknejad, S. Sohrabi, B. Baranji, Application of 2D-BPFs to nonlinear integral equations, Commun. Nonlin. Sci. Numer. Simul., 15 (2010) 527-535.
[15] F. Mirzaee, S. Piroozfar, Numerical solution of the linear two-dimensional Fred-holm integral equations of the second kind via two-dimensional triangular orthogonal functions, J. King Saud Uni. Sci., 22 (2010) 185-193.
[16] T. Okayama, T. Matsuo, M. Sugihara, Sinc-collocation methods for weakly sin-gular Fredholm integral equations of the second kind, J. Comput. Math. Appl.,234 (2010) 1211-1227.
[17] K. Orav-Puurand, A. Pedas, G. Vainikko, Nystr¨om type methods for Fredholm integral equations with weak singularities, J. Comput. Appl. Math., 234 (2010)2848-2858.
[18] Y. Ordokhani, M. Razzaghi, Solution of nonlinear Volterra-Fredholm-Hammerstein integral equations via a collocation method and rationalized Haar functions, Appl. Math. Lett., 21 (2008) 4-9.
[19] M. Roodaki, H. Almasieh, Delta basis functions and their applications to systems of integral equations, Comput. Math. Appl., 63 (2012) 100-109.
[20] W.J. Xie, F.R. Lin, A fast numerical solution method for two dimensional Fred-holm integral equations of the second kind, Appl. Num. Math., 59 (2009) 1709-1719.
[21] A. Yildirim, Homotopi perturbation method for the mixed Volterra-Fredholm in-tegral equations, chaos, Solot. Fract.,
42 (2009) 2760-2764.
[22] S.A. Yousefi, A. Lotfi, Mehdi Dehghan, He’s variational iteration method for solving nonlinear mixed Volterra- Fredholm integral equations, Comput. Math. Appl., 58 (2009) 2172-2176.